首页 > 最新文献

IET Circuits Devices Syst.最新文献

英文 中文
Improved VLSI architecture for triangular windowed sliding DFT based on CORDIC algorithm 基于CORDIC算法的三角窗滑动DFT改进VLSI架构
Pub Date : 2019-03-01 DOI: 10.1049/iet-cds.2018.5110
Tanmai Kulshreshtha, A. Dhar
This study presents a very-large-scale integration (VLSI) architecture for the triangular windowed sliding discrete Fourier transform (SDFT) based on COordinate rotation DIgital computer (CORDIC) algorithm. In the literature, the triangular windowed SDFT is obtained by direct cascading of two SDFT modules, whereas the idea of direct cascading leads to the error in the odd bins of the spectrum. The proposed architecture is modified to provide the correct outputs with a high-throughput rate compared to the existing designs. The SDFT has a recursive structure, and therefore it accumulates the error over iterations as the computation proceeds. A refreshing mechanism is utilised to limit the inaccuracy at the final output. The concept of generalised architecture as an area efficient implementation for obtaining more number of discrete Fourier transform (DFT) bins is introduced. An architecture is implemented using Verilog HDL on FPGA as well as in ASIC platform, and its arithmetic verification is performed in MATLAB.
提出了一种基于坐标旋转数字计算机(CORDIC)算法的三角窗滑动离散傅里叶变换(SDFT)的大规模集成(VLSI)架构。在文献中,三角加窗SDFT是由两个SDFT模块直接级联得到的,而直接级联的思想导致了频谱奇箱中的误差。与现有设计相比,所提出的体系结构经过修改以提供具有高吞吐率的正确输出。SDFT具有递归结构,因此随着计算的进行,它会在迭代中累积误差。使用了刷新机制来限制最终输出的不准确性。引入了广义结构的概念,作为获得更多离散傅里叶变换(DFT)箱的面积有效实现。利用Verilog HDL在FPGA和ASIC平台上实现了该体系结构,并在MATLAB中进行了算法验证。
{"title":"Improved VLSI architecture for triangular windowed sliding DFT based on CORDIC algorithm","authors":"Tanmai Kulshreshtha, A. Dhar","doi":"10.1049/iet-cds.2018.5110","DOIUrl":"https://doi.org/10.1049/iet-cds.2018.5110","url":null,"abstract":"This study presents a very-large-scale integration (VLSI) architecture for the triangular windowed sliding discrete Fourier transform (SDFT) based on COordinate rotation DIgital computer (CORDIC) algorithm. In the literature, the triangular windowed SDFT is obtained by direct cascading of two SDFT modules, whereas the idea of direct cascading leads to the error in the odd bins of the spectrum. The proposed architecture is modified to provide the correct outputs with a high-throughput rate compared to the existing designs. The SDFT has a recursive structure, and therefore it accumulates the error over iterations as the computation proceeds. A refreshing mechanism is utilised to limit the inaccuracy at the final output. The concept of generalised architecture as an area efficient implementation for obtaining more number of discrete Fourier transform (DFT) bins is introduced. An architecture is implemented using Verilog HDL on FPGA as well as in ASIC platform, and its arithmetic verification is performed in MATLAB.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"118030416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Drain current modelling of double gate-all-around (DGAA) MOSFETs 双栅全能(DGAA) mosfet漏极电流建模
Pub Date : 2019-02-04 DOI: 10.1049/IET-CDS.2018.5201
Arun Kumar, S. Bhushan, P. Tiwari
Here, an analytical modelling of drain current is presented for double gate-all-around (DGAA) MOSFETs. A common feature in all the multi-gate (MG) MOSFETs is that the channel charge in the sub-threshold regime is proportional to the channel cross-sectional area; whereas, the inversion charges above threshold locate near the Si/SiO2 interfaces and are proportional to the total gated perimeter of the channel body. This distinctive feature introduces the notion of equivalent charge and has been widely used to model the drain current of any arbitrary non-classical MOSFET architecture. The authors have extended the aforementioned quasi-approach to model the drain current of DGAA MOSFET. The total gated perimeter of DGAA MOSFET is mapped by the gated perimeter of two GAA MOSFETs with different radii for the calculation of surface inversion charges above threshold. The currents obtained from two GAA MOSFETs are summed up to obtain the current of DGAA MOSFET. I–V characteristics and transconductance of the device for various physical parameters are compared and analysed with the numerical simulation results obtained from Visual-TCAD of Cogenda Int.
本文提出了双栅全功率(DGAA) mosfet漏极电流的解析模型。所有多栅(MG) mosfet的一个共同特征是,亚阈值区域的通道电荷与通道横截面积成正比;而高于阈值的反转电荷位于Si/SiO2界面附近,且与通道体的总门控周长成正比。这种独特的特性引入了等效电荷的概念,并被广泛用于模拟任意非经典MOSFET结构的漏极电流。作者扩展了上述的准方法来模拟DGAA MOSFET的漏极电流。DGAA MOSFET的总门控周长由两个半径不同的GAA MOSFET的门控周长映射,用于计算阈值以上表面反转电荷。将两个GAA MOSFET的电流相加得到DGAA MOSFET的电流。对比分析了不同物理参数下器件的I-V特性和跨导特性,并与Cogenda Int公司Visual-TCAD的数值模拟结果进行了比较。
{"title":"Drain current modelling of double gate-all-around (DGAA) MOSFETs","authors":"Arun Kumar, S. Bhushan, P. Tiwari","doi":"10.1049/IET-CDS.2018.5201","DOIUrl":"https://doi.org/10.1049/IET-CDS.2018.5201","url":null,"abstract":"Here, an analytical modelling of drain current is presented for double gate-all-around (DGAA) MOSFETs. A common feature in all the multi-gate (MG) MOSFETs is that the channel charge in the sub-threshold regime is proportional to the channel cross-sectional area; whereas, the inversion charges above threshold locate near the Si/SiO2 interfaces and are proportional to the total gated perimeter of the channel body. This distinctive feature introduces the notion of equivalent charge and has been widely used to model the drain current of any arbitrary non-classical MOSFET architecture. The authors have extended the aforementioned quasi-approach to model the drain current of DGAA MOSFET. The total gated perimeter of DGAA MOSFET is mapped by the gated perimeter of two GAA MOSFETs with different radii for the calculation of surface inversion charges above threshold. The currents obtained from two GAA MOSFETs are summed up to obtain the current of DGAA MOSFET. I–V characteristics and transconductance of the device for various physical parameters are compared and analysed with the numerical simulation results obtained from Visual-TCAD of Cogenda Int.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"119736578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Integrated routing scheme and inverter switch to develop a mobile controlled energy saving system 综合路由方案和逆变开关,开发了移动可控节能系统
Pub Date : 2019-01-17 DOI: 10.1049/iet-cds.2018.0086
J. Chen
The solutions of inverter switch and routing scheme are integrated to develop a mobile controlled energy saving system (MCESS). For the transient response problem of an n-channel metal-oxide-semiconductor field-effect transistor acting as an invert switch, and a routing scheme is solved for developing the MCESS. It can be claimed that all the mentioned previously schemes are very challenge for addressing the problems in the design of an analogue processing circuit and the implementation of Android applications (or Apps). The developed MCESS is experimentally verified automatically switch for adjusting the energy output appropriately. A control system with a solution of MCESS can replace the traditional sustainable energy systems, and obtain much longer lifetime and a steady state of the storage equipment. Furthermore, the proposed MCESS integrates Apps developed on a smart device using the Android platform with different wireless protocols, such as WiFi, Bluetooth for controlling the system with contactless. Moreover, there much experience in the development of MCESS is provided audiences with useful materials, for example a routing solution that employs wireless local area network with the WiFi protocol is implemented to transmit packets of the regulator circuit and the instant feedback display.
将逆变器开关方案和路由方案相结合,开发了移动控制节能系统。针对n沟道金属氧化物半导体场效应晶体管作为反相开关的瞬态响应问题,提出了一种实现反相开关的路由方案。可以说,前面提到的所有方案对于解决模拟处理电路的设计和Android应用程序(或app)的实现问题都是非常具有挑战性的。实验验证了所研制的MCESS能自动切换,适当调节能量输出。采用MCESS解决方案的控制系统可以取代传统的可持续能源系统,并获得更长的使用寿命和稳定的存储设备状态。此外,所提出的MCESS集成了在使用Android平台的智能设备上开发的应用程序与不同的无线协议,如WiFi,蓝牙,以非接触式控制系统。此外,还为观众提供了许多MCESS开发的经验,例如实现了一种采用无线局域网与WiFi协议传输稳压电路数据包和即时反馈显示的路由解决方案。
{"title":"Integrated routing scheme and inverter switch to develop a mobile controlled energy saving system","authors":"J. Chen","doi":"10.1049/iet-cds.2018.0086","DOIUrl":"https://doi.org/10.1049/iet-cds.2018.0086","url":null,"abstract":"The solutions of inverter switch and routing scheme are integrated to develop a mobile controlled energy saving system (MCESS). For the transient response problem of an n-channel metal-oxide-semiconductor field-effect transistor acting as an invert switch, and a routing scheme is solved for developing the MCESS. It can be claimed that all the mentioned previously schemes are very challenge for addressing the problems in the design of an analogue processing circuit and the implementation of Android applications (or Apps). The developed MCESS is experimentally verified automatically switch for adjusting the energy output appropriately. A control system with a solution of MCESS can replace the traditional sustainable energy systems, and obtain much longer lifetime and a steady state of the storage equipment. Furthermore, the proposed MCESS integrates Apps developed on a smart device using the Android platform with different wireless protocols, such as WiFi, Bluetooth for controlling the system with contactless. Moreover, there much experience in the development of MCESS is provided audiences with useful materials, for example a routing solution that employs wireless local area network with the WiFi protocol is implemented to transmit packets of the regulator circuit and the instant feedback display.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"145 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120264128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Programmable CCCII: reliability analysis and design methodology 可编程CCCII:可靠性分析和设计方法
Pub Date : 2019-01-17 DOI: 10.1049/IET-CDS.2018.5165
M. K. Tiwari, N. Pandey, S. K. Paul, Saiyid Mohammad Irshad Rizvi
In this study, an effective and efficient approach for reliability analysis is developed to bridge the gap between device-level reliability and that at the product level. Continual reduction of device dimensions, gate-oxide and increase in channel doping results in an increased electric field which is introducing most of the reliability concerns. Four most important reliability issues impacting circuit design are hot carrier injection, bias temperature instability, time-dependent dielectric breakdown and self-heating. As the second-generation current controlled conveyor (CCCII) circuit are used to implement oscillator, filter clock and so on, which are working continuously even in sleep mode. So it is important to take care of all the reliability aspects while designing CCCII. There is a challenge in complex design to identify which devices (MOS, resistor and capacitor) are susceptible to degradation and then redesign and mitigate this effect for a robust and reliable design. The objective of this work is to detect reliability issues and design a programmable current conveyor which can work safely for a long duration. The circuit has been designed and simulated using 28 nm CMOS technology model parameters on Cadence Virtuoso/AMS environment (ELDO simulator) using ± 1.8 V supply voltage and results have been verified with post-layout netlist.
在本研究中,开发了一种有效的可靠性分析方法,以弥合设备级可靠性与产品级可靠性之间的差距。器件尺寸的不断减小,栅极氧化和通道掺杂的增加导致电场的增加,这是引入大多数可靠性问题的原因。影响电路设计的四个最重要的可靠性问题是热载流子注入、偏置温度不稳定性、随时间变化的介质击穿和自加热。第二代电流控制输送机(CCCII)电路用于实现振荡器、滤波器时钟等,即使在休眠模式下也能连续工作。因此,在设计CCCII时,考虑到所有方面的可靠性是很重要的。在复杂的设计中,识别哪些器件(MOS、电阻器和电容器)容易退化,然后重新设计并减轻这种影响,以实现稳健可靠的设计,这是一个挑战。这项工作的目的是检测可靠性问题,并设计一个可编程的电流输送机,可以安全工作很长一段时间。采用28nm CMOS技术模型参数在Cadence Virtuoso/AMS环境(ELDO模拟器)上进行了电路设计和仿真,电源电压为±1.8 V,并通过布局后网表对结果进行了验证。
{"title":"Programmable CCCII: reliability analysis and design methodology","authors":"M. K. Tiwari, N. Pandey, S. K. Paul, Saiyid Mohammad Irshad Rizvi","doi":"10.1049/IET-CDS.2018.5165","DOIUrl":"https://doi.org/10.1049/IET-CDS.2018.5165","url":null,"abstract":"In this study, an effective and efficient approach for reliability analysis is developed to bridge the gap between device-level reliability and that at the product level. Continual reduction of device dimensions, gate-oxide and increase in channel doping results in an increased electric field which is introducing most of the reliability concerns. Four most important reliability issues impacting circuit design are hot carrier injection, bias temperature instability, time-dependent dielectric breakdown and self-heating. As the second-generation current controlled conveyor (CCCII) circuit are used to implement oscillator, filter clock and so on, which are working continuously even in sleep mode. So it is important to take care of all the reliability aspects while designing CCCII. There is a challenge in complex design to identify which devices (MOS, resistor and capacitor) are susceptible to degradation and then redesign and mitigate this effect for a robust and reliable design. The objective of this work is to detect reliability issues and design a programmable current conveyor which can work safely for a long duration. The circuit has been designed and simulated using 28 nm CMOS technology model parameters on Cadence Virtuoso/AMS environment (ELDO simulator) using ± 1.8 V supply voltage and results have been verified with post-layout netlist.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"118583239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hardware implementation of the quasi-maximum likelihood estimator core for polynomial phase signals 多项式相位信号拟极大似然估计器核心的硬件实现
Pub Date : 2018-12-03 DOI: 10.1049/iet-cds.2018.5112
Nevena R. Brnovic, I. Djurović, Veselin N. Ivanović, M. Simeunović
Flexible, multiple-clock-cycle, hardware design for the quasi-maximum likelihood (QML) algorithm core realisation for the polynomial phase signals (PPSs) estimation is proposed. The QML algorithm significantly outperforms existing PPS estimators in terms of accuracy. However, its practical applications require efficient software and hardware systems. The main challenges in the proposed hardware development with respect to existing systems for time–frequency (TF) analysis are realisation of TF representation based instantaneous frequency estimator, the polynomial regression, and phase extraction. The developed design is tested on a PPS corrupted by a white Gaussian noise and verified by a field programmable gate array circuit design. All implementation and verification details are provided along with the comparison of the results achieved by hardware and software implementations.
提出了多项式相位信号估计的准极大似然(QML)算法核心实现的灵活、多时钟周期的硬件设计。QML算法在精度方面显著优于现有的PPS估计器。然而,其实际应用需要高效的软件和硬件系统。针对现有的时频(TF)分析系统,提出的硬件开发的主要挑战是基于瞬时频率估计器、多项式回归和相位提取的TF表示的实现。该设计在高斯白噪声干扰的PPS上进行了测试,并通过现场可编程门阵列电路设计进行了验证。提供了所有的实现和验证细节,并对硬件和软件实现的结果进行了比较。
{"title":"Hardware implementation of the quasi-maximum likelihood estimator core for polynomial phase signals","authors":"Nevena R. Brnovic, I. Djurović, Veselin N. Ivanović, M. Simeunović","doi":"10.1049/iet-cds.2018.5112","DOIUrl":"https://doi.org/10.1049/iet-cds.2018.5112","url":null,"abstract":"Flexible, multiple-clock-cycle, hardware design for the quasi-maximum likelihood (QML) algorithm core realisation for the polynomial phase signals (PPSs) estimation is proposed. The QML algorithm significantly outperforms existing PPS estimators in terms of accuracy. However, its practical applications require efficient software and hardware systems. The main challenges in the proposed hardware development with respect to existing systems for time–frequency (TF) analysis are realisation of TF representation based instantaneous frequency estimator, the polynomial regression, and phase extraction. The developed design is tested on a PPS corrupted by a white Gaussian noise and verified by a field programmable gate array circuit design. All implementation and verification details are provided along with the comparison of the results achieved by hardware and software implementations.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"169 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"119080594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Highly-digital voltage scalable 4-bit flash ADC 高数字电压可扩展的4位闪存ADC
Pub Date : 2018-11-26 DOI: 10.1049/iet-cds.2018.5148
Ashima Gupta, Anil Singh, A. Agarwal
This study describes the highly-digital 4-bit 200 MS flash analogue to digital converter (ADC) whose major part can be digitally synthesised thus achieving low power, reducing the time-to-market and is scalable with technology. The comparators used in the ADC consist of complementary metal-oxide-semiconductor (CMOS)-based inverter and NAND-NOR as standard cells. The complete flash ADC is designed in 180 nm CMOS technology with 1.8 V supply with the power consumption of 4.51 mW. The signal-to-noise and distortion ratio, signal-to-noise ratio and spurious-free dynamic range are equal to 23.3, 25.2 and 30.1 dB. It provides an effective number of bits equal to 3.5. The differential non-linearity (DNL) of this ADC is ± 0.25 LSB and integral non-linearity (INL) is + 0.6 LSB.
本研究描述了高数字4位200 MS闪存模拟数字转换器(ADC),其主要部分可以数字合成,从而实现低功耗,缩短上市时间,并具有技术可扩展性。ADC中使用的比较器由基于互补金属氧化物半导体(CMOS)的逆变器和NAND-NOR作为标准单元组成。完整的闪存ADC采用180nm CMOS技术设计,1.8 V电源,功耗为4.51 mW。信噪比和失真比、信噪比和无杂散动态范围分别为23.3、25.2和30.1 dB。它提供的有效位数等于3.5。该ADC的微分非线性(DNL)为±0.25 LSB,积分非线性(INL)为+ 0.6 LSB。
{"title":"Highly-digital voltage scalable 4-bit flash ADC","authors":"Ashima Gupta, Anil Singh, A. Agarwal","doi":"10.1049/iet-cds.2018.5148","DOIUrl":"https://doi.org/10.1049/iet-cds.2018.5148","url":null,"abstract":"This study describes the highly-digital 4-bit 200 MS flash analogue to digital converter (ADC) whose major part can be digitally synthesised thus achieving low power, reducing the time-to-market and is scalable with technology. The comparators used in the ADC consist of complementary metal-oxide-semiconductor (CMOS)-based inverter and NAND-NOR as standard cells. The complete flash ADC is designed in 180 nm CMOS technology with 1.8 V supply with the power consumption of 4.51 mW. The signal-to-noise and distortion ratio, signal-to-noise ratio and spurious-free dynamic range are equal to 23.3, 25.2 and 30.1 dB. It provides an effective number of bits equal to 3.5. The differential non-linearity (DNL) of this ADC is ± 0.25 LSB and integral non-linearity (INL) is + 0.6 LSB.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"106 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120714765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Synthesis of passive fractional-order LC n-port with three element orders 三元阶无源分数阶LC n-端口的合成
Pub Date : 2018-08-30 DOI: 10.1049/iet-cds.2018.5166
Guishu Liang, Zheng Qi
Fractional-order circuits find a widespread use in different engineering applications. The problem of realising fractional-order circuits has been discussed by several authors, however, it is far from being solved. Realising fractional-order resistorless passive network with three element orders is been studied. At first, this study extends the two-variable reactance matrix synthesis method to three-variable case, and then proposes a synthesis method of fractional-order reactance matrix with three element orders by variable substitution. The process in above methods mainly involves variable substitution, decomposition of three-variable reactance matrix, extraction of unit inductors, Laurent series expansion, spectral factorisation of two-variable positive semidefinite Hermitian matrix and synthesis of univariable reactance matrix. Then the above-mentioned synthesis process is illustrated by two examples.
分数阶电路在不同的工程应用中有着广泛的应用。实现分数阶电路的问题已经被一些作者讨论过,然而,这个问题还远没有解决。研究了三元阶分数阶无阻无源网络的实现。本文首先将二变量电抗矩阵的综合方法推广到三变量情况,然后通过变量替换提出了一种具有三元阶的分数阶电抗矩阵的综合方法。上述方法的过程主要包括变量替换、三变量电抗矩阵的分解、单位电感的提取、劳伦级数展开、两变量正半定厄米特矩阵的谱分解和单变量电抗矩阵的合成。然后通过两个实例说明了上述合成过程。
{"title":"Synthesis of passive fractional-order LC n-port with three element orders","authors":"Guishu Liang, Zheng Qi","doi":"10.1049/iet-cds.2018.5166","DOIUrl":"https://doi.org/10.1049/iet-cds.2018.5166","url":null,"abstract":"Fractional-order circuits find a widespread use in different engineering applications. The problem of realising fractional-order circuits has been discussed by several authors, however, it is far from being solved. Realising fractional-order resistorless passive network with three element orders is been studied. At first, this study extends the two-variable reactance matrix synthesis method to three-variable case, and then proposes a synthesis method of fractional-order reactance matrix with three element orders by variable substitution. The process in above methods mainly involves variable substitution, decomposition of three-variable reactance matrix, extraction of unit inductors, Laurent series expansion, spectral factorisation of two-variable positive semidefinite Hermitian matrix and synthesis of univariable reactance matrix. Then the above-mentioned synthesis process is illustrated by two examples.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117903721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0.65 V integrable electronic realisation of integer- and fractional-order Hindmarsh-Rose neuron model using companding technique 基于扩展技术的整数阶和分数阶Hindmarsh-Rose神经元模型的0.65 V可积电子实现
Pub Date : 2018-08-13 DOI: 10.1049/iet-cds.2018.5033
F. A. Khanday, Mohammad Rafiq Dar, N. A. Kant, J. Rosselló, C. Psychalinos
Some neurons like neocortical pyramidal neurons adapt with multiple time-scales, which is consistent with fractional-order differentiation. The fractional-order neuron models are therefore believed to portray the firing rate of neurons more accurately than their integer-order models. It has been studied that as the fractional order of differentiator and integrator involved in the neuron model decreases, bursting frequency of the neurons increases. The opposite effect has been observed on increasing the external excitation. In this study, integer- and fractional-order Hindmarsh–Rose (HR) neuron models have been implemented using sinh companding technique. Besides, the application of the HR neuron model in a simple network of two neurons has also been considered. The designs offer a low-voltage and low-power implementation along with the electronic tunability of the performance characteristics. Due to the use of only metal-oxide semiconductor (MOS) transistors and grounded capacitors, the proposed implementation can be integrated in chip form. On comparing with existing implementations, the implemented fractional-order and integer-order models show a better performance in terms of power consumption, supply voltage, order and flexibility. The performance of the circuits has been verified using 130 nm complementary MOS (CMOS) technology process provided by Austrian Micro Systems using HSPICE simulation software.
一些神经元如新皮层锥体神经元适应多时间尺度,这与分数阶分化是一致的。因此,分数阶神经元模型被认为比整数阶模型更准确地描述了神经元的放电速率。研究表明,随着神经元模型中微分器和积分器分数阶的降低,神经元的破裂频率增加。在增加外部激励时,观察到相反的效果。在本研究中,采用sinh扩展技术实现了整数阶和分数阶Hindmarsh-Rose (HR)神经元模型。此外,还考虑了HR神经元模型在简单双神经元网络中的应用。该设计提供了低电压和低功耗的实现以及性能特征的电子可调性。由于仅使用金属氧化物半导体(MOS)晶体管和接地电容器,所提出的实现可以集成在芯片形式。与现有的实现方法相比,所实现的分数阶和整阶模型在功耗、供电电压、顺序和灵活性方面表现出更好的性能。采用奥地利微系统公司提供的130 nm互补MOS (CMOS)工艺,利用HSPICE仿真软件对电路的性能进行了验证。
{"title":"0.65 V integrable electronic realisation of integer- and fractional-order Hindmarsh-Rose neuron model using companding technique","authors":"F. A. Khanday, Mohammad Rafiq Dar, N. A. Kant, J. Rosselló, C. Psychalinos","doi":"10.1049/iet-cds.2018.5033","DOIUrl":"https://doi.org/10.1049/iet-cds.2018.5033","url":null,"abstract":"Some neurons like neocortical pyramidal neurons adapt with multiple time-scales, which is consistent with fractional-order differentiation. The fractional-order neuron models are therefore believed to portray the firing rate of neurons more accurately than their integer-order models. It has been studied that as the fractional order of differentiator and integrator involved in the neuron model decreases, bursting frequency of the neurons increases. The opposite effect has been observed on increasing the external excitation. In this study, integer- and fractional-order Hindmarsh–Rose (HR) neuron models have been implemented using sinh companding technique. Besides, the application of the HR neuron model in a simple network of two neurons has also been considered. The designs offer a low-voltage and low-power implementation along with the electronic tunability of the performance characteristics. Due to the use of only metal-oxide semiconductor (MOS) transistors and grounded capacitors, the proposed implementation can be integrated in chip form. On comparing with existing implementations, the implemented fractional-order and integer-order models show a better performance in terms of power consumption, supply voltage, order and flexibility. The performance of the circuits has been verified using 130 nm complementary MOS (CMOS) technology process provided by Austrian Micro Systems using HSPICE simulation software.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"118112797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
DC modelling of SOI four-gate transistor (G4FET) for implementation in circuit simulator using multivariate regression polynomial 利用多元回归多项式实现SOI四栅极晶体管(G4FET)的直流建模
Pub Date : 2018-06-26 DOI: 10.1049/iet-cds.2018.0059
Md. Sakib Hasan, S. Islam
An efficient numerical model of silicon-on-insulator (SOI) four-gate transistors (G4FET) and its implementation in circuit simulator is presented here. A set of available data for different operating conditions is used to empirically determine the parameters of this model and a different set of test data is used to verify its predictive accuracy. This DC model is used to express the drain current as a single multivariate regression polynomial with its validity spanning across different possible operating regions as long as the chosen independent variables lie within the range of data set used to develop the model. The continuity of the polynomial model and its derivatives makes it particularly suitable for implementation in a circuit simulator. Models for both n-channel and p-channel G4FETs have been developed and validated using TCAD and experimental data and are successfully implemented in SPICE simulator for simulating two experimentally demonstrated G4FET circuits.
本文给出了绝缘体上硅(SOI)四栅极晶体管(G4FET)的有效数值模型及其在电路模拟器中的实现。利用不同工况下的一组可用数据对该模型的参数进行经验性确定,并利用不同工况下的一组试验数据对模型的预测精度进行验证。该直流模型用于将漏极电流表示为单个多元回归多项式,只要所选的自变量在用于建立模型的数据集范围内,其有效性就可以跨越不同可能的工作区域。多项式模型及其导数的连续性使其特别适合在电路模拟器中实现。利用TCAD和实验数据,开发并验证了n沟道和p沟道G4FET的模型,并成功地在SPICE模拟器中实现了两个实验证明的G4FET电路的模拟。
{"title":"DC modelling of SOI four-gate transistor (G4FET) for implementation in circuit simulator using multivariate regression polynomial","authors":"Md. Sakib Hasan, S. Islam","doi":"10.1049/iet-cds.2018.0059","DOIUrl":"https://doi.org/10.1049/iet-cds.2018.0059","url":null,"abstract":"An efficient numerical model of silicon-on-insulator (SOI) four-gate transistors (G4FET) and its implementation in circuit simulator is presented here. A set of available data for different operating conditions is used to empirically determine the parameters of this model and a different set of test data is used to verify its predictive accuracy. This DC model is used to express the drain current as a single multivariate regression polynomial with its validity spanning across different possible operating regions as long as the chosen independent variables lie within the range of data set used to develop the model. The continuity of the polynomial model and its derivatives makes it particularly suitable for implementation in a circuit simulator. Models for both n-channel and p-channel G4FETs have been developed and validated using TCAD and experimental data and are successfully implemented in SPICE simulator for simulating two experimentally demonstrated G4FET circuits.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"118304615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Two-stage current-reused variable-gain low-noise amplifier for X-band receivers in 65 nm complementary metal oxide semiconductor technology 用于65纳米互补金属氧化物半导体技术的x波段接收器的两级电流复用变增益低噪声放大器
Pub Date : 2018-06-15 DOI: 10.1049/iet-cds.2017.0538
Mohammad Reza Nikbakhsh, E. Abiri, Hossein Ghasemian, M. Salehi
In this study, a variable gain low noise amplifier (VG-LNA) working at X band is designed and simulated in 65 nm complementary metal oxide semiconductor technology. A two-stage structure is used in the proposed VG-LNA. Besides, the current-reused technique causes a higher gain without consuming extra power. As an on-chip voltage ( V cnt) is changed, the gain continuously and almost linearly varies. The highest gain is 27.8 dB that can be reduced to 8.3 dB almost linearly and continuously as the control voltage is increased. The lowest value of S11 is −28.2 dB at 10 GHz. Also, NF is <2.75 dB at the operating frequency range; while NF min = 1.8 dB. The highest value of third-order intercept point is 2.03 dBm that always remain larger than −10.1 dBm. The basic advantage of this structure in comparison with other similar works is that not only the key parameters remain fixed with reduction of gain, but also the operation range of V cnt is widened from 0.3 V to V dd in order to extend the gain control range to 19.5 dB. Moreover, these results are achieved in a situation that the proposed VG-LNA draws only 3.9 mA from a 1.2 V.
在本研究中,设计了一个工作在X波段的可变增益低噪声放大器(VG-LNA),并在65nm互补金属氧化物半导体技术下进行了仿真。提出的VG-LNA采用两级结构。此外,电流复用技术可以在不消耗额外功率的情况下获得更高的增益。当片上电压(vcnt)改变时,增益连续且几乎线性变化。最高增益为27.8 dB,随着控制电压的增加,增益几乎可以线性连续地降低到8.3 dB。在10ghz时,S11的最小值为−28.2 dB。在工作频率范围内,NF <2.75 dB;NF min = 1.8 dB。三阶截距点最大值为2.03 dBm,且始终大于−10.1 dBm。与其他同类结构相比,该结构的基本优点是不仅关键参数保持不变而增益降低,而且将V / t的工作范围从0.3 V扩大到V / d,从而将增益控制范围扩大到19.5 dB。此外,这些结果是在所提出的VG-LNA从1.2 V仅吸收3.9 mA的情况下实现的。
{"title":"Two-stage current-reused variable-gain low-noise amplifier for X-band receivers in 65 nm complementary metal oxide semiconductor technology","authors":"Mohammad Reza Nikbakhsh, E. Abiri, Hossein Ghasemian, M. Salehi","doi":"10.1049/iet-cds.2017.0538","DOIUrl":"https://doi.org/10.1049/iet-cds.2017.0538","url":null,"abstract":"In this study, a variable gain low noise amplifier (VG-LNA) working at X band is designed and simulated in 65 nm complementary metal oxide semiconductor technology. A two-stage structure is used in the proposed VG-LNA. Besides, the current-reused technique causes a higher gain without consuming extra power. As an on-chip voltage (\u0000 V cnt\u0000) is changed, the gain continuously and almost linearly varies. The highest gain is 27.8 dB that can be reduced to 8.3 dB almost linearly and continuously as the control voltage is increased. The lowest value of S11 is −28.2 dB at 10 GHz. Also, NF is <2.75 dB at the operating frequency range; while NF\u0000 min\u0000 = 1.8 dB. The highest value of third-order intercept point is 2.03 dBm that always remain larger than −10.1 dBm. The basic advantage of this structure in comparison with other similar works is that not only the key parameters remain fixed with reduction of gain, but also the operation range of V cnt\u0000 is widened from 0.3 V to V dd\u0000 in order to extend the gain control range to 19.5 dB. Moreover, these results are achieved in a situation that the proposed VG-LNA draws only 3.9 mA from a 1.2 V.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117845898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
期刊
IET Circuits Devices Syst.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1