Spectroscopic measurements have the potential to positively impact a wide range of research, development, monitoring and control applications. In many cases, this potential is not realized because the spectrometer cannot be brought out of the laboratory to the measurement site due to sensitivities to environmental factors, highly accurate data cannot be obtained in a timely manner, or customizing the spectrometer to a specific application is costly and precludes re-use of the device for other application once its original purpose is served. We present the development of a DLP-based spectroscopic system in the near-infrared that is low-cost, compact and rugged, provides high resolution and is highly adaptable through straightforward software control. The key elements of the design include an efficient and compact optical pathway, a high-resolution DMD controlled by a fast DLP board, and a user-friendly, feature-rich software package that facilitates system configuration and data analysis. The DMD replaces the detector array in traditional spectrometers, and is shown to provide greater functionality while eliminating the need for mechanical scanning. We demonstrate how the long, thin columns of mirrors in the DMD provide high wavelength selectivity and capture more light at each wavelength, increasing measurement SNR. Selectively activating columns of mirrors is shown to adaptively tailor the resolution and the wavelengths collected and analyzed by the system allow one device to meet the needs of many different applications and to reduce measurement times. The software interface developed for accessing the many features of the spectrometer is discussed.
{"title":"Miniature transmissive DLP-based infrared spectrometer","authors":"Badia Koudsi, H. Refai","doi":"10.1117/12.2213758","DOIUrl":"https://doi.org/10.1117/12.2213758","url":null,"abstract":"Spectroscopic measurements have the potential to positively impact a wide range of research, development, monitoring and control applications. In many cases, this potential is not realized because the spectrometer cannot be brought out of the laboratory to the measurement site due to sensitivities to environmental factors, highly accurate data cannot be obtained in a timely manner, or customizing the spectrometer to a specific application is costly and precludes re-use of the device for other application once its original purpose is served. We present the development of a DLP-based spectroscopic system in the near-infrared that is low-cost, compact and rugged, provides high resolution and is highly adaptable through straightforward software control. The key elements of the design include an efficient and compact optical pathway, a high-resolution DMD controlled by a fast DLP board, and a user-friendly, feature-rich software package that facilitates system configuration and data analysis. The DMD replaces the detector array in traditional spectrometers, and is shown to provide greater functionality while eliminating the need for mechanical scanning. We demonstrate how the long, thin columns of mirrors in the DMD provide high wavelength selectivity and capture more light at each wavelength, increasing measurement SNR. Selectively activating columns of mirrors is shown to adaptively tailor the resolution and the wavelengths collected and analyzed by the system allow one device to meet the needs of many different applications and to reduce measurement times. The software interface developed for accessing the many features of the spectrometer is discussed.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132372208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Serkland, K. Geib, G. Peake, G. Keeler, Michael Shaw, M. Baker, M. Okandan
We report on the development of single-frequency VCSELs (vertical-cavity surface-emitting lasers) for sensing the position of a moving MEMS (micro-electro-mechanical system) object with resolution much less than 1nm. Position measurement is the basis of many different types of MEMS sensors, including accelerometers, gyroscopes, and pressure sensors. Typically, by switching from a traditional capacitive electronic readout to an interferometric optical readout, the resolution can be improved by an order of magnitude with a corresponding improvement in MEMS sensor performance. Because the VCSEL wavelength determines the scale of the position measurement, laser wavelength (frequency) stability is desirable. This paper discusses the impact of VCSEL amplitude and frequency noise on the position measurement.
{"title":"VCSELs for interferometric readout of MEMS sensors","authors":"D. Serkland, K. Geib, G. Peake, G. Keeler, Michael Shaw, M. Baker, M. Okandan","doi":"10.1117/12.2214522","DOIUrl":"https://doi.org/10.1117/12.2214522","url":null,"abstract":"We report on the development of single-frequency VCSELs (vertical-cavity surface-emitting lasers) for sensing the position of a moving MEMS (micro-electro-mechanical system) object with resolution much less than 1nm. Position measurement is the basis of many different types of MEMS sensors, including accelerometers, gyroscopes, and pressure sensors. Typically, by switching from a traditional capacitive electronic readout to an interferometric optical readout, the resolution can be improved by an order of magnitude with a corresponding improvement in MEMS sensor performance. Because the VCSEL wavelength determines the scale of the position measurement, laser wavelength (frequency) stability is desirable. This paper discusses the impact of VCSEL amplitude and frequency noise on the position measurement.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"307 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131610707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We propose an athermal Mach-Zehnder interferometer (MZI) with a subwavelength grating waveguide implemented in one of the arms to increase its fabrication error tolerance. The design is demonstrated with a CMOS compatible fabrication. In this work we will discuss the design principles of the subwavelength grating, loss mechanism, fabrication procedure and experimental results obtained. The fabricated devices have a temperature sensitivity of less than 10 pm/K over a spectral range from 1.5μm to 1.64μm. Also, the fabricated devices have a stable performance within the aforementioned specifications even with fabrication linewidth variations from -20 nm to 40 nm.
{"title":"Subwavelength grating waveguide-integrated athermal Mach-Zehnder interferometer with enhanced fabrication error tolerance and wide stable spectral range","authors":"P. Xing, Jaime Viegas","doi":"10.1117/12.2214101","DOIUrl":"https://doi.org/10.1117/12.2214101","url":null,"abstract":"We propose an athermal Mach-Zehnder interferometer (MZI) with a subwavelength grating waveguide implemented in one of the arms to increase its fabrication error tolerance. The design is demonstrated with a CMOS compatible fabrication. In this work we will discuss the design principles of the subwavelength grating, loss mechanism, fabrication procedure and experimental results obtained. The fabricated devices have a temperature sensitivity of less than 10 pm/K over a spectral range from 1.5μm to 1.64μm. Also, the fabricated devices have a stable performance within the aforementioned specifications even with fabrication linewidth variations from -20 nm to 40 nm.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114646449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We show a novel design and operation technique for an array of optically coupled vertical cavity surface emitting lasers enabling high-performance optical transmission. Bandwidths up to 37 GHz have been obtained under single-mode operation with narrow spectral width and increased output power while the laser array is biased at low current density. Using dynamic coupled mode theory analysis we determine important design parameters to engineer for greater enhancement of modulation response.
{"title":"Low-dispersion ultra-high-bandwidth vertical-cavity surface-emitting laser arrays","authors":"S. Fryslie, K. Choquette","doi":"10.1117/12.2218907","DOIUrl":"https://doi.org/10.1117/12.2218907","url":null,"abstract":"We show a novel design and operation technique for an array of optically coupled vertical cavity surface emitting lasers enabling high-performance optical transmission. Bandwidths up to 37 GHz have been obtained under single-mode operation with narrow spectral width and increased output power while the laser array is biased at low current density. Using dynamic coupled mode theory analysis we determine important design parameters to engineer for greater enhancement of modulation response.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"108 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116547489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This presentation gives an overview on some of seminal research in optical science, condensed matter physics, biophysics, biology, biomedical, nonlinear optics, and structure light propagation and interactions at CCNY and GTE Labs over past 46 years. The advent of ultrafast laser pulses with picosecond and femtosecond pulses and optical spectroscopy (label free native fluorescence and Raman) has led to unravel some of mysteries in the molecular world leading to breakthroughs in various areas of science and medicine. The following topics are discussed: white light continuum called now Supercontinuum (SC); first direct measurement of Optical Phonon’s lifetimes; first observation of creation of daughter vibrations in time from excited mother vibration in liquids; first direct measurement of creation and decay of Spin Angular Momentum of electrons in GaAs where picosecond Circular Polarized Light carrying Optical Spin Angular Momentum is generated; Pulse break up into ballistic, snake and diffusive components in scattering media such as um beads and tissues; and use of optical spectroscopy for first cancer detection in label free tissues. Most recently, advances in Biomedical Optics showed that Tryptophan as a key biomarker for aggressive cancers; there are three new optical windows with the Golden window #3 the best for penetrating tissue from 1600 nm to 1800 nm; Complex light with OAM offers potential deeper tissue penetration and Resonance Raman excited using magic 532 nm wavelength in tissues.
{"title":"Overview of selected seminal optical science and photonics processes in nature","authors":"R. Alfano","doi":"10.1117/12.2217476","DOIUrl":"https://doi.org/10.1117/12.2217476","url":null,"abstract":"This presentation gives an overview on some of seminal research in optical science, condensed matter physics, biophysics, biology, biomedical, nonlinear optics, and structure light propagation and interactions at CCNY and GTE Labs over past 46 years. The advent of ultrafast laser pulses with picosecond and femtosecond pulses and optical spectroscopy (label free native fluorescence and Raman) has led to unravel some of mysteries in the molecular world leading to breakthroughs in various areas of science and medicine. The following topics are discussed: white light continuum called now Supercontinuum (SC); first direct measurement of Optical Phonon’s lifetimes; first observation of creation of daughter vibrations in time from excited mother vibration in liquids; first direct measurement of creation and decay of Spin Angular Momentum of electrons in GaAs where picosecond Circular Polarized Light carrying Optical Spin Angular Momentum is generated; Pulse break up into ballistic, snake and diffusive components in scattering media such as um beads and tissues; and use of optical spectroscopy for first cancer detection in label free tissues. Most recently, advances in Biomedical Optics showed that Tryptophan as a key biomarker for aggressive cancers; there are three new optical windows with the Golden window #3 the best for penetrating tissue from 1600 nm to 1800 nm; Complex light with OAM offers potential deeper tissue penetration and Resonance Raman excited using magic 532 nm wavelength in tissues.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"157 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124412504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. F. Carson, M. Warren, Preethi Dacha, Thomas E. Wilcox, J. Maynard, David J. Abell, Kirk J. Otis, J. Lott
Flip-chip bonding enables a unique architecture for two-dimensional arrays of VCSELs. Such arrays feature scalable power outputs and the capability to separately address sub-array regions while maintaining fast turn-on and turn-off response times. These substrate-emitting VCSEL arrays can also make use of integrated micro-lenses for beam shaping and directional control. Advances in the performance of these laser arrays will be reviewed and emerging applications are discussed.
{"title":"Progress in high-power high-speed VCSEL arrays","authors":"R. F. Carson, M. Warren, Preethi Dacha, Thomas E. Wilcox, J. Maynard, David J. Abell, Kirk J. Otis, J. Lott","doi":"10.1117/12.2215009","DOIUrl":"https://doi.org/10.1117/12.2215009","url":null,"abstract":"Flip-chip bonding enables a unique architecture for two-dimensional arrays of VCSELs. Such arrays feature scalable power outputs and the capability to separately address sub-array regions while maintaining fast turn-on and turn-off response times. These substrate-emitting VCSEL arrays can also make use of integrated micro-lenses for beam shaping and directional control. Advances in the performance of these laser arrays will be reviewed and emerging applications are discussed.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134284494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optics components entered in the automotive vehicle one century ago with headlamps and since then move towards even more sophisticated designs in lighting functions. Photonics sensors are just entering now in this market through driver assistance, in complement of incumbent ultrasonic and radar technologies. Gain of market shares is expected for this components with autonomous driving, that was few years ago a nice dream and whose early results exceed surprisingly expectations of roadmaps and historic OEM have quickly joined the course launched by Google Company 5 years ago. Technological components, among them CMOS camera followed by Laser Scanners, cost-effective flash LIDAR are already experimenting their first miles in real condition and new consumers in South Asia plebiscite this new way to drive cars .The issue is still for photonics companies to move from well suited technological solution to mass-production components with corresponding cost reduction. MEMS components that follow the same curve 15 years ago (with market entries in airbags, tire pressure monitoring systems…) experimented the hard pressure on price for wide market adoption. Besides price, which is a CFO issue, photonic technologies will keep in place if they can both reassure OEM CEO and let CTO and designers dream. Reassurance will be through higher level of standardization and reliability of these components whereas dream will be linked to innovative sensing application, e.g spectroscopy.
{"title":"From advanced driver assistance to autonomous driving: perspectives for photonics sensors","authors":"Jacques Cochard, C. Bouyé","doi":"10.1117/12.2212657","DOIUrl":"https://doi.org/10.1117/12.2212657","url":null,"abstract":"Optics components entered in the automotive vehicle one century ago with headlamps and since then move towards even more sophisticated designs in lighting functions. Photonics sensors are just entering now in this market through driver assistance, in complement of incumbent ultrasonic and radar technologies. Gain of market shares is expected for this components with autonomous driving, that was few years ago a nice dream and whose early results exceed surprisingly expectations of roadmaps and historic OEM have quickly joined the course launched by Google Company 5 years ago. Technological components, among them CMOS camera followed by Laser Scanners, cost-effective flash LIDAR are already experimenting their first miles in real condition and new consumers in South Asia plebiscite this new way to drive cars .The issue is still for photonics companies to move from well suited technological solution to mass-production components with corresponding cost reduction. MEMS components that follow the same curve 15 years ago (with market entries in airbags, tire pressure monitoring systems…) experimented the hard pressure on price for wide market adoption. Besides price, which is a CFO issue, photonic technologies will keep in place if they can both reassure OEM CEO and let CTO and designers dream. Reassurance will be through higher level of standardization and reliability of these components whereas dream will be linked to innovative sensing application, e.g spectroscopy.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124839545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present results from an evaluation of phase and frequency estimation algorithms for read-out instrumentation of interferometric sensors. Tests on interrogating a micro Fabry-Perot sensor made of semi-spherical stimuli-responsive hydrogel immobilized on a single mode fiber end face, shows that an iterative quadrature demodulation technique (IQDT) implemented on a 32-bit microcontroller unit can achieve an absolute length accuracy of ±50 nm and length change accuracy of ±3 nm using an 80 nm SLED source and a grating spectrometer for interrogation. The mean absolute error for the frequency estimator is a factor 3 larger than the theoretical lower bound for a maximum likelihood estimator. The corresponding factor for the phase estimator is 1.3. The computation time for the IQDT algorithm is reduced by a factor 1000 compared to the full QDT for the same accuracy requirement.
{"title":"Fast and accurate read-out of interferometric optical fiber sensors","authors":"Ingebrigt Bartholsen, D. Hjelme","doi":"10.1117/12.2212611","DOIUrl":"https://doi.org/10.1117/12.2212611","url":null,"abstract":"We present results from an evaluation of phase and frequency estimation algorithms for read-out instrumentation of interferometric sensors. Tests on interrogating a micro Fabry-Perot sensor made of semi-spherical stimuli-responsive hydrogel immobilized on a single mode fiber end face, shows that an iterative quadrature demodulation technique (IQDT) implemented on a 32-bit microcontroller unit can achieve an absolute length accuracy of ±50 nm and length change accuracy of ±3 nm using an 80 nm SLED source and a grating spectrometer for interrogation. The mean absolute error for the frequency estimator is a factor 3 larger than the theoretical lower bound for a maximum likelihood estimator. The corresponding factor for the phase estimator is 1.3. The computation time for the IQDT algorithm is reduced by a factor 1000 compared to the full QDT for the same accuracy requirement.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"9754 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129113866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leila Ahmadi, V. Kontturi, J. Laukkanen, M. Kuittinen, J. Saarinen, S. Honkanen, M. Roussey
We propose and demonstrate a low cost, large area, and mass production compatible method to fabricate strip-loaded waveguide structures. The structure is fabricated by combination of Atomic Layer Deposition and replication technique without applying any etching process to form the strip. The waveguide was realized in ring resonator configuration which eases the characterization process. The guiding layer is a 200 nm-thick TiO2 layer integrated with polymer strips to load light in the high index thin film. Due to the characteristic of the applied fabrication technique, achieving a very low propagation losses is expected.
{"title":"Polymer strip-loaded waveguides on ALD-TiO2 films","authors":"Leila Ahmadi, V. Kontturi, J. Laukkanen, M. Kuittinen, J. Saarinen, S. Honkanen, M. Roussey","doi":"10.1117/12.2212324","DOIUrl":"https://doi.org/10.1117/12.2212324","url":null,"abstract":"We propose and demonstrate a low cost, large area, and mass production compatible method to fabricate strip-loaded waveguide structures. The structure is fabricated by combination of Atomic Layer Deposition and replication technique without applying any etching process to form the strip. The waveguide was realized in ring resonator configuration which eases the characterization process. The guiding layer is a 200 nm-thick TiO2 layer integrated with polymer strips to load light in the high index thin film. Due to the characteristic of the applied fabrication technique, achieving a very low propagation losses is expected.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131271148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liwei Hua, Yang Song, Jie Huang, Baokai Cheng, Wenge Zhu, Hai Xiao
A multimode fiber (MMF) based cascaded intrinsic Fabry-Perot interferometers (IFPIs) system is presented and the distributed strain sensing has been experimentally demonstrated by using such system. The proposed 13 cascaded IFPIs have been formed by 14 cascaded reflectors that have been fabricated on a grade index MMF. Each reflector has been made by drawing a line on the center of the cross-section of the MMF through a femtosecond laser. The distance between any two adjacent reflectors is around 100 cm. The optical carrier based microwave interferometry (OCMI) technique has been used to interrogate the MMF based cascaded FPIs system by reading the optical interference information in the microwave domain. The location along with the shift of the interference fringe pattern for each FPI can be resolved though signal processing based on the microwave domain information. The multimode interference showed very little influence to the microwave domain signals. By using such system the strain of 10-4 for each FPI sensor and the spatial resolution of less than 5 cm for the system can be easily achieved.
{"title":"Femtosecond laser fabricated multimode fiber sensors interrogated by optical-carrier-based microwave interferometry technique for distributed strain sensing","authors":"Liwei Hua, Yang Song, Jie Huang, Baokai Cheng, Wenge Zhu, Hai Xiao","doi":"10.1117/12.2208912","DOIUrl":"https://doi.org/10.1117/12.2208912","url":null,"abstract":"A multimode fiber (MMF) based cascaded intrinsic Fabry-Perot interferometers (IFPIs) system is presented and the distributed strain sensing has been experimentally demonstrated by using such system. The proposed 13 cascaded IFPIs have been formed by 14 cascaded reflectors that have been fabricated on a grade index MMF. Each reflector has been made by drawing a line on the center of the cross-section of the MMF through a femtosecond laser. The distance between any two adjacent reflectors is around 100 cm. The optical carrier based microwave interferometry (OCMI) technique has been used to interrogate the MMF based cascaded FPIs system by reading the optical interference information in the microwave domain. The location along with the shift of the interference fringe pattern for each FPI can be resolved though signal processing based on the microwave domain information. The multimode interference showed very little influence to the microwave domain signals. By using such system the strain of 10-4 for each FPI sensor and the spatial resolution of less than 5 cm for the system can be easily achieved.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114958910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}