Pub Date : 2022-09-30DOI: 10.15282/ijame.19.3.2022.01.0761
M. W. Lee, Hedy Soon Keey Tiew, Wei Chang, M. Ishak, Assoc. Professor Dr Farzad Ismail
The long-term goal in the automotive industry is to reduce fuel consumption and environmental pollution without compromising the aerodynamic performance of the car. Herein, the aerodynamic performance of an in-house designed Shell Eco-Marathon prototype car is analyzed using Computational Fluid Dynamics simulations. Shape optimization of the Shell car is executed to reduce drag by modifying the rear underbody profile and stagnation point position. The effect of one modification to another is studied to determine the changes to overall flow around the car and, more importantly, the lift and drag coefficients. It has been found that the stagnation point height has a higher influence on the aerodynamic performance of the car compared to variations of the rear underbody, with optimum drag reductions of 17% and 10%, respectively. Moreover, combining the two best configurations to the car reduces CD by 25%, and this marks the highest drag reduction achieved in this study.
{"title":"Drag Reduction on a Three Dimensional Teardrop-Shaped Body Car with Different Stagnation Points","authors":"M. W. Lee, Hedy Soon Keey Tiew, Wei Chang, M. Ishak, Assoc. Professor Dr Farzad Ismail","doi":"10.15282/ijame.19.3.2022.01.0761","DOIUrl":"https://doi.org/10.15282/ijame.19.3.2022.01.0761","url":null,"abstract":"The long-term goal in the automotive industry is to reduce fuel consumption and environmental pollution without compromising the aerodynamic performance of the car. Herein, the aerodynamic performance of an in-house designed Shell Eco-Marathon prototype car is analyzed using Computational Fluid Dynamics simulations. Shape optimization of the Shell car is executed to reduce drag by modifying the rear underbody profile and stagnation point position. The effect of one modification to another is studied to determine the changes to overall flow around the car and, more importantly, the lift and drag coefficients. It has been found that the stagnation point height has a higher influence on the aerodynamic performance of the car compared to variations of the rear underbody, with optimum drag reductions of 17% and 10%, respectively. Moreover, combining the two best configurations to the car reduces CD by 25%, and this marks the highest drag reduction achieved in this study.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"48 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75528589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.15282/ijame.19.3.2022.03.0763
A. F. Fudzin, A. Mokhtar, M. Muhammad
Supply Chain Management (SCM) has gained the attention of business organizations as it affects corporate efficiency and competitive advantage. Component outsourcing is an important element of SCM practices and is considered to be a multi-criteria decision-making problem (MCDM) in vendor selection processes. However, decision-making on the selection of vendors is crucial, as the outsourcing program is influenced by multiple technical and commercial criteria of vendors. Developing an Excel-based Analytic Hierarchy Process (AHP) model for vendor selection therefore helps to simplify selection processes. In this paper, a Visual Basic Application (VBA) Excel-based AHP model was developed, which multiple criteria, sub-criteria and vendors and simultaneously compared with multiple main criteria, sub-criteria and alternatives for vendor selection. The model was validated with a case study of selecting a vendor for module components of body-in-white (BIW) in automotive industry as industrial application. As a result, vendor A is the best vendor since it has the highest overall score of 0.35206. Whereas vendor B is 0.239, vendor C is 0.126, vendor D is 0.146 and vendor E 0.135. In addition, the model is capable of resolving other MCDM problems. This paper provides resources such as AHP methodology, validating method and VBA code programming to readers in developing their own VBA Excel-based model.
{"title":"Supply Chain Management of Outsourcing Module Components Decision-Making using Analytical Hierarchy Process and Visual Basic Application in Automotive Body-in-White Welding Assembly Line","authors":"A. F. Fudzin, A. Mokhtar, M. Muhammad","doi":"10.15282/ijame.19.3.2022.03.0763","DOIUrl":"https://doi.org/10.15282/ijame.19.3.2022.03.0763","url":null,"abstract":"Supply Chain Management (SCM) has gained the attention of business organizations as it affects corporate efficiency and competitive advantage. Component outsourcing is an important element of SCM practices and is considered to be a multi-criteria decision-making problem (MCDM) in vendor selection processes. However, decision-making on the selection of vendors is crucial, as the outsourcing program is influenced by multiple technical and commercial criteria of vendors. Developing an Excel-based Analytic Hierarchy Process (AHP) model for vendor selection therefore helps to simplify selection processes. In this paper, a Visual Basic Application (VBA) Excel-based AHP model was developed, which multiple criteria, sub-criteria and vendors and simultaneously compared with multiple main criteria, sub-criteria and alternatives for vendor selection. The model was validated with a case study of selecting a vendor for module components of body-in-white (BIW) in automotive industry as industrial application. As a result, vendor A is the best vendor since it has the highest overall score of 0.35206. Whereas vendor B is 0.239, vendor C is 0.126, vendor D is 0.146 and vendor E 0.135. In addition, the model is capable of resolving other MCDM problems. This paper provides resources such as AHP methodology, validating method and VBA code programming to readers in developing their own VBA Excel-based model.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"3 6 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76062506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.15282/ijame.19.3.2022.05.0765
Kamel Bousnina, Anis Hamza, N. Ben yahia
With increased production and productivity in modern industry, particularly in the automotive, aeronautical, agro-food, and other sectors, the consumption of manufacturing energy is rapidly increasing, posing additional precautions and large investments to industries to reduce energy consumption at the manufacturing system level. This research proposes a novel energy optimisation using a response surface methodology (RSM) with artificial neural network (ANN) for machining processes that saves energy while improving productivity.The feed rate was discovered to be the most influential factor in this study, accounting for 84.13 percent of total energy consumed. Furthermore, it has been established that as the material removal rate (MRR) increases, energy efficiency (EE) declines. This optimization of cutting conditions gives us the optimal values of cutting speed Vc = 129.37 m/min, feed rate f = 0.098 mm/rev and depth of cut ap = 0.5 mm. This approach will allow us to decrease the total energy consumed (Etc) by 49.74 % and increase the energy efficiency (EE) by 13.63 %.
{"title":"Energy Optimization for Milling 304L Steel using Artificial Intelligence Methods","authors":"Kamel Bousnina, Anis Hamza, N. Ben yahia","doi":"10.15282/ijame.19.3.2022.05.0765","DOIUrl":"https://doi.org/10.15282/ijame.19.3.2022.05.0765","url":null,"abstract":"With increased production and productivity in modern industry, particularly in the automotive, aeronautical, agro-food, and other sectors, the consumption of manufacturing energy is rapidly increasing, posing additional precautions and large investments to industries to reduce energy consumption at the manufacturing system level. This research proposes a novel energy optimisation using a response surface methodology (RSM) with artificial neural network (ANN) for machining processes that saves energy while improving productivity.The feed rate was discovered to be the most influential factor in this study, accounting for 84.13 percent of total energy consumed. Furthermore, it has been established that as the material removal rate (MRR) increases, energy efficiency (EE) declines. This optimization of cutting conditions gives us the optimal values of cutting speed Vc = 129.37 m/min, feed rate f = 0.098 mm/rev and depth of cut ap = 0.5 mm. This approach will allow us to decrease the total energy consumed (Etc) by 49.74 % and increase the energy efficiency (EE) by 13.63 %.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"61 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90688736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.15282/ijame.19.3.2022.02.0762
A. Omar, Alaman Altaf, Waqar Asar
Drag is one of the most significant factors that increase fuel consumption, followed by operating cost of the vehicle. Square-back road vehicles like trucks and buses are common and popular means of transport across the globe. In this background, it is of great research value to reduce the drag on vehicles, improve their fuel efficiency and reduce their operational cost. In this work, a simplified model of a truck was considered, and its drag was reduced by modifying its geometry using passive drag reduction devices. The passive devices used in this study were backward-facing step, fins, splitter plates/tabs, dimple, vents, and channels. These devices, of different sizes and configurations, were numerically studied using CFD software Star CCM+ at a Reynolds number of 2.4127×10^6. Drag reduction up to 9.9% was achieved, when backward-facing step was placed at the bottom rear edge of the truck. Further, multiple circular channels used on the truck’s sides reduced the drag up to 6.5%, while multiple rectangular channels on the sides of the truck achieved 5.1% drag reduction. The maximum drag reduction of the fins was found to be 4.6%. In spite of these, no significant drag reduction was observed when using splitter plates/tabs, dimple and vents.
{"title":"Passive Drag Reduction of the Square Back Truck Body","authors":"A. Omar, Alaman Altaf, Waqar Asar","doi":"10.15282/ijame.19.3.2022.02.0762","DOIUrl":"https://doi.org/10.15282/ijame.19.3.2022.02.0762","url":null,"abstract":"Drag is one of the most significant factors that increase fuel consumption, followed by operating cost of the vehicle. Square-back road vehicles like trucks and buses are common and popular means of transport across the globe. In this background, it is of great research value to reduce the drag on vehicles, improve their fuel efficiency and reduce their operational cost. In this work, a simplified model of a truck was considered, and its drag was reduced by modifying its geometry using passive drag reduction devices. The passive devices used in this study were backward-facing step, fins, splitter plates/tabs, dimple, vents, and channels. These devices, of different sizes and configurations, were numerically studied using CFD software Star CCM+ at a Reynolds number of 2.4127×10^6. Drag reduction up to 9.9% was achieved, when backward-facing step was placed at the bottom rear edge of the truck. Further, multiple circular channels used on the truck’s sides reduced the drag up to 6.5%, while multiple rectangular channels on the sides of the truck achieved 5.1% drag reduction. The maximum drag reduction of the fins was found to be 4.6%. In spite of these, no significant drag reduction was observed when using splitter plates/tabs, dimple and vents.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"123 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81412123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-05DOI: 10.15282/ijame.19.2.2022.18.0760
M. Shekarzadeh, Ebrahim Hosseini
The Form Limit Curve (FLC) is an important and helpful concept for defining sheet metal ductility. The ductility of aluminum 6061 alloy sheet was analyzed in this work. The current study examined how to enhance the formation curve of aluminum 6061, which is frequently utilized in the automotive industry. These curves were plotted and compared at various temperatures and strain levels. Using the finite element approach, the formation curve of this alloy was produced under the impact of various temperatures and strain rates. The forming limit curve was accomplished in two-stage forming when the pre-stress was formed in the sheet, and this curve was predicted for different temperatures using the one-stage forming behavior pattern. It was determined that increasing the temperature led the curve to rise and fall, but increasing the strain rate caused the curve to fall and contract. It was also revealed that by using the curvature of the forming limit curve in single-stage forming at various temperatures and a two-stage forming limit curve at one temperature, it was feasible to estimate two-stage FLC at two temperatures.
{"title":"Investigation of Single-stage and Two-stage Forming Limit Curve of Aluminum 6061 with Different Temperatures and Strain Rates","authors":"M. Shekarzadeh, Ebrahim Hosseini","doi":"10.15282/ijame.19.2.2022.18.0760","DOIUrl":"https://doi.org/10.15282/ijame.19.2.2022.18.0760","url":null,"abstract":"The Form Limit Curve (FLC) is an important and helpful concept for defining sheet metal ductility. The ductility of aluminum 6061 alloy sheet was analyzed in this work. The current study examined how to enhance the formation curve of aluminum 6061, which is frequently utilized in the automotive industry. These curves were plotted and compared at various temperatures and strain levels. Using the finite element approach, the formation curve of this alloy was produced under the impact of various temperatures and strain rates. The forming limit curve was accomplished in two-stage forming when the pre-stress was formed in the sheet, and this curve was predicted for different temperatures using the one-stage forming behavior pattern. It was determined that increasing the temperature led the curve to rise and fall, but increasing the strain rate caused the curve to fall and contract. It was also revealed that by using the curvature of the forming limit curve in single-stage forming at various temperatures and a two-stage forming limit curve at one temperature, it was feasible to estimate two-stage FLC at two temperatures.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"44 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81396953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-05DOI: 10.15282/ijame.19.2.2022.17.0759
V. R. Aparow, Lok Tze Lun
The paper devised and compared the performances of PID, fuzzy-tuned PID and fuzzy logic controller in an Active Front Wheel Steering system to stabilize a 9-DOF nonlinear passenger vehicle when subjected to lateral wind disturbance. The vehicle model was derived mathematically and verified with data from IPG CarMaker at a longitudinal speed of 80 km/h. Initially, the disturbance test was conducted using three lateral wind disturbance profiles to test for controller resiliency with zero steering input. Then, a simple but effective yaw rate observer was derived without compromising the linearity of the vehicle model to simulate the disturbance test with a double lane change (DLC) steering input. A more extreme disturbance magnitude was evaluated in the latter test using the developed control designs. The three controllers showed good performances in both disturbance tests, with fuzzy logic having the lowest error out of the three, which is less than 5% for using the estimated yaw rate observer.
{"title":"Active Front Wheel Steering System using Yaw Rate Estimation based Fuzzy Logic Due to Various Lateral Wind Disturbance","authors":"V. R. Aparow, Lok Tze Lun","doi":"10.15282/ijame.19.2.2022.17.0759","DOIUrl":"https://doi.org/10.15282/ijame.19.2.2022.17.0759","url":null,"abstract":"The paper devised and compared the performances of PID, fuzzy-tuned PID and fuzzy logic controller in an Active Front Wheel Steering system to stabilize a 9-DOF nonlinear passenger vehicle when subjected to lateral wind disturbance. The vehicle model was derived mathematically and verified with data from IPG CarMaker at a longitudinal speed of 80 km/h. Initially, the disturbance test was conducted using three lateral wind disturbance profiles to test for controller resiliency with zero steering input. Then, a simple but effective yaw rate observer was derived without compromising the linearity of the vehicle model to simulate the disturbance test with a double lane change (DLC) steering input. A more extreme disturbance magnitude was evaluated in the latter test using the developed control designs. The three controllers showed good performances in both disturbance tests, with fuzzy logic having the lowest error out of the three, which is less than 5% for using the estimated yaw rate observer.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"23 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79154530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-20DOI: 10.15282/ijame.19.2.2022.16.0758
A. Mazumder, Asif Hasan, Arafat Hossain Ayon, D. H. Ahmed
A turbo-electric generator has been placed on the exhaust port of the petrol and diesel engines to investigate the possibility of recovering energy from the exhaust gas. Turbo-electric generator is a combination of a turbocharger and a generator. The aim of the study is to find the possibility and effectiveness of the turbo-electric generator for recovering the energy from the exhaust gas of an engine. The test has been conducted on the two engines, i.e. first one is TD 202 small test engine bed (diesel engine) and another one is Honda CG125 cc (petrol engine) motorcycle. Two types of motor i.e. DC motor and AC motor have been used as generators by altering the way a motor works. Firstly, a DC motor is used as a generator in the turbo-electric generator for both test engines. The results show that turbo-electric generator recover less than 1% energy of the exhaust gas for both engines when a DC motor is used as a generator (TD 202 and Honda CG125 cc motorcycle). But in case of Honda CG125 cc motorcycle, the percentage of recovering energy is comparatively higher than the TD 202 test engine. The experiment is further extended by using an AC motor as a generator only for the Honda CG125 cc motorcycle. The results show better energy recovering from exhaust gas through turbo-electric generator, which is more than 1% of exhaust gas. The results reveal that the engine speed and the mass flow rate of the exhaust gas play a major role in harvesting the energy from the exhaust gas. Moreover, it is found that the turbo-electric generator module provides good efficiency when an AC motor is used as a generator in the module. The experimental results have been compared with available literature.
{"title":"Energy Recovery from Exhaust Gas of Diesel and Petrol Engine by Turbo-electric Generator","authors":"A. Mazumder, Asif Hasan, Arafat Hossain Ayon, D. H. Ahmed","doi":"10.15282/ijame.19.2.2022.16.0758","DOIUrl":"https://doi.org/10.15282/ijame.19.2.2022.16.0758","url":null,"abstract":"A turbo-electric generator has been placed on the exhaust port of the petrol and diesel engines to investigate the possibility of recovering energy from the exhaust gas. Turbo-electric generator is a combination of a turbocharger and a generator. The aim of the study is to find the possibility and effectiveness of the turbo-electric generator for recovering the energy from the exhaust gas of an engine. The test has been conducted on the two engines, i.e. first one is TD 202 small test engine bed (diesel engine) and another one is Honda CG125 cc (petrol engine) motorcycle. Two types of motor i.e. DC motor and AC motor have been used as generators by altering the way a motor works. Firstly, a DC motor is used as a generator in the turbo-electric generator for both test engines. The results show that turbo-electric generator recover less than 1% energy of the exhaust gas for both engines when a DC motor is used as a generator (TD 202 and Honda CG125 cc motorcycle). But in case of Honda CG125 cc motorcycle, the percentage of recovering energy is comparatively higher than the TD 202 test engine. The experiment is further extended by using an AC motor as a generator only for the Honda CG125 cc motorcycle. The results show better energy recovering from exhaust gas through turbo-electric generator, which is more than 1% of exhaust gas. The results reveal that the engine speed and the mass flow rate of the exhaust gas play a major role in harvesting the energy from the exhaust gas. Moreover, it is found that the turbo-electric generator module provides good efficiency when an AC motor is used as a generator in the module. The experimental results have been compared with available literature.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"58 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91214455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-16DOI: 10.15282/ijame.19.2.2022.15.0757
S. B., K. A., K. Kumar
Indentation tests were conducted on Ti-6Al-4V and Haynes 242 alloys at macro, micro and nano load range using conventional and depth-sensing indentation instruments to study the load effects on the mechanical behaviour of the alloys. With the increase of indentation loads from macro to nano, a decrease in Young’s modulus and indentation hardness values was observed as a result of the indentation size effect in the alloys. During the loading procedure in macro, micro and nano indentations, the loading curves progressively moved upwards, showing the increase in resistance of the alloys with the increase in indentation load. Compared the depth-sensing instrumented indentation hardness of alloys with the conventional indentation hardness at micro loads, the magnitude of the depth-sensing instrumented indentation hardness is 10-25% greater than the conventional indentation hardness. The reason for this variation is explained as the depth-sensing instrumented indentation hardness is calculated at maximum load with the projected contact residual impression area, Ac, instead of the residual indenter impression projected area, Ar. So the indent pileup and sink-in play a major difference between the depth-sensing instrumented hardness and conventional indentation hardness. The outcome of the experimental work clearly indicates that for evaluation of the hardness usage of projected contact residual impression area provides more accurate results than when residual indenter impression projected area is used. The concept is synonmous to evaluation of engineering stress / strain and true stress / strain using original and actual cross sectional area respectively.
{"title":"Effect of Macro, Micro and Nano Loads on The Indentation Behavior of Ti-6Al-4V and Haynes 242 Alloys","authors":"S. B., K. A., K. Kumar","doi":"10.15282/ijame.19.2.2022.15.0757","DOIUrl":"https://doi.org/10.15282/ijame.19.2.2022.15.0757","url":null,"abstract":"Indentation tests were conducted on Ti-6Al-4V and Haynes 242 alloys at macro, micro and nano load range using conventional and depth-sensing indentation instruments to study the load effects on the mechanical behaviour of the alloys. With the increase of indentation loads from macro to nano, a decrease in Young’s modulus and indentation hardness values was observed as a result of the indentation size effect in the alloys. During the loading procedure in macro, micro and nano indentations, the loading curves progressively moved upwards, showing the increase in resistance of the alloys with the increase in indentation load. Compared the depth-sensing instrumented indentation hardness of alloys with the conventional indentation hardness at micro loads, the magnitude of the depth-sensing instrumented indentation hardness is 10-25% greater than the conventional indentation hardness. The reason for this variation is explained as the depth-sensing instrumented indentation hardness is calculated at maximum load with the projected contact residual impression area, Ac, instead of the residual indenter impression projected area, Ar. So the indent pileup and sink-in play a major difference between the depth-sensing instrumented hardness and conventional indentation hardness. The outcome of the experimental work clearly indicates that for evaluation of the hardness usage of projected contact residual impression area provides more accurate results than when residual indenter impression projected area is used. The concept is synonmous to evaluation of engineering stress / strain and true stress / strain using original and actual cross sectional area respectively.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"44 5 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78615859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-04DOI: 10.15282/ijame.19.2.2022.14.0756
Mohamed F. Abd Alsamieh
The current study aims to study the characteristics of transient elastohydrodynamic lubrication of smooth and rough surface contacts subjected to intermittent motion for different inactive periods of motion and deceleration/acceleration periods to fulfill an identified need for such conjunction. In this case, the non-steady Reynolds’ equation, the film thickness equation with elastic deformation and taking into account the influence of surface roughness, and the load balance equation are simultaneously solved using the Newton-Raphson with Gauss-Seidel iterations method to determine the film profile and pressure distribution at various time steps. Surface contact of sinusoidal waves is presented with different amplitudes and wavelengths. The results indicated that surface waviness causes random oscillations in pressure and film profiles at different time steps. The greater the amplitude of the waviness, the more pressure and film profile variations occur. The magnitude of the pressure and film profile fluctuations becomes little noticeable as the wavelength of a wavy surface rises. The findings of this investigation also revealed that increasing the inactive duration for wavy surfaces results in zero minimum film thickness and surface contact. Squeezing action is ineffective in conveying loading capacity in this circumstance. The central and maximum pressure heights increase during the stop time interval as stop time increases. The centre film thickness increases at the end of the deceleration phase when the deceleration/acceleration period is reduced, but the minimum film thickness is unaffected. In fact, the minimum film thickness tends to be zero at the end of the deceleration phase, regardless of the deceleration/acceleration period. The central and maximum pressure increase during the stop time interval with the decrease of the deceleration/acceleration period. The difference between the results for smooth and wavy surface contacts is the appearance of fluctuations in film and pressure profiles, as well as the reduction of the film thickness and increase in pressure for the wavy surface when compared to contact with a smooth surface.
{"title":"Transient Elastohydrodynamic Lubrication of Rough Contact Surface for Intermittent Motion","authors":"Mohamed F. Abd Alsamieh","doi":"10.15282/ijame.19.2.2022.14.0756","DOIUrl":"https://doi.org/10.15282/ijame.19.2.2022.14.0756","url":null,"abstract":"The current study aims to study the characteristics of transient elastohydrodynamic lubrication of smooth and rough surface contacts subjected to intermittent motion for different inactive periods of motion and deceleration/acceleration periods to fulfill an identified need for such conjunction. In this case, the non-steady Reynolds’ equation, the film thickness equation with elastic deformation and taking into account the influence of surface roughness, and the load balance equation are simultaneously solved using the Newton-Raphson with Gauss-Seidel iterations method to determine the film profile and pressure distribution at various time steps. Surface contact of sinusoidal waves is presented with different amplitudes and wavelengths. The results indicated that surface waviness causes random oscillations in pressure and film profiles at different time steps. The greater the amplitude of the waviness, the more pressure and film profile variations occur. The magnitude of the pressure and film profile fluctuations becomes little noticeable as the wavelength of a wavy surface rises. The findings of this investigation also revealed that increasing the inactive duration for wavy surfaces results in zero minimum film thickness and surface contact. Squeezing action is ineffective in conveying loading capacity in this circumstance. The central and maximum pressure heights increase during the stop time interval as stop time increases. The centre film thickness increases at the end of the deceleration phase when the deceleration/acceleration period is reduced, but the minimum film thickness is unaffected. In fact, the minimum film thickness tends to be zero at the end of the deceleration phase, regardless of the deceleration/acceleration period. The central and maximum pressure increase during the stop time interval with the decrease of the deceleration/acceleration period. The difference between the results for smooth and wavy surface contacts is the appearance of fluctuations in film and pressure profiles, as well as the reduction of the film thickness and increase in pressure for the wavy surface when compared to contact with a smooth surface.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"4 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78421467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-04DOI: 10.15282/ijame.19.2.2022.13.0755
A. Zakki, E. S. Hadi, A. Windyandari, Rizaldy Ilham
Composite material is a well-known structural material which is increasingly adopted as an engineering structure material. Glass fiber reinforced polymer offers the lightweight and high strength characteristics that is required for the modern industry, such as aviation, automotive, wind power, and marine technology. One of the important mechanical characteristics of the composite materials are the tensile properties, because it is well known as the material strength. Therefore, the investigation of mechanical response on the glass fiber reinforced polymer (GFRP) tensile test using numerical analysis is important for the estimation of structural response of the GFRP complex structure, such as boat construction. The objective of this research is to assess and estimate the mechanical response of the GFRP composite material subjected to tension load using finite element method. The linear transversely isotropic model is developed to estimate the unidirectional glass fiber GFRP with the configuration of fiber orientation angles of 0°, 30°, 45°, 60° and 90°. The results show that FE simulation are capable to detect the specimen response during the tensile test. The maximum discrepancy of the estimated stress strain diagram is about 16.5% to 32% compared to experimental data. The larger orientation angle has shown the larger discrepancy value. It is found that the increment of discrepancy value is generated by the nonlinearity behavior of the material due to the domination of polymer material behavior on the large orientation angle. Otherwise, the FE models have estimated accurately the ultimate strength, maximum displacement and fracture load. It can be concluded that the linear transversely isotropic model is adequately accepted as the estimation method of the GFRP composite structure response.
{"title":"Numerical Analysis of Unidirectional GFRP Composite Mechanical Response Subjected to Tension Load using Finite Element Method","authors":"A. Zakki, E. S. Hadi, A. Windyandari, Rizaldy Ilham","doi":"10.15282/ijame.19.2.2022.13.0755","DOIUrl":"https://doi.org/10.15282/ijame.19.2.2022.13.0755","url":null,"abstract":"Composite material is a well-known structural material which is increasingly adopted as an engineering structure material. Glass fiber reinforced polymer offers the lightweight and high strength characteristics that is required for the modern industry, such as aviation, automotive, wind power, and marine technology. One of the important mechanical characteristics of the composite materials are the tensile properties, because it is well known as the material strength. Therefore, the investigation of mechanical response on the glass fiber reinforced polymer (GFRP) tensile test using numerical analysis is important for the estimation of structural response of the GFRP complex structure, such as boat construction. The objective of this research is to assess and estimate the mechanical response of the GFRP composite material subjected to tension load using finite element method. The linear transversely isotropic model is developed to estimate the unidirectional glass fiber GFRP with the configuration of fiber orientation angles of 0°, 30°, 45°, 60° and 90°. The results show that FE simulation are capable to detect the specimen response during the tensile test. The maximum discrepancy of the estimated stress strain diagram is about 16.5% to 32% compared to experimental data. The larger orientation angle has shown the larger discrepancy value. It is found that the increment of discrepancy value is generated by the nonlinearity behavior of the material due to the domination of polymer material behavior on the large orientation angle. Otherwise, the FE models have estimated accurately the ultimate strength, maximum displacement and fracture load. It can be concluded that the linear transversely isotropic model is adequately accepted as the estimation method of the GFRP composite structure response.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"8 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72892309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}