首页 > 最新文献

Journal of Atmospheric and Solar-Terrestrial Physics最新文献

英文 中文
Multi-wave characteristics associated with January 15, 2022 Hunga-Tonga volcanic eruption: A global observation 与 2022 年 1 月 15 日 Hunga-Tonga 火山喷发有关的多波特征:全球观测
IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-06-23 DOI: 10.1016/j.jastp.2024.106283
M.S. Rose , P.S. Sunil , A. Sooraj , A.S. Sunil , Priyesh Kunnummal , K. Amal George , K.K. Ajith , Dhanya Thomas , V.K. Mini

The eruption of Hunga-Tonga Volcano on January 15, 2022 has stimulated a wide spectrum of atmospheric waves globally. To probe the surface deformation pattern, Sentinel-1 Synthetic Aperture Radar (SAR) data has been analyzed. It has been approximated that an overall area of about 2.47 square kilometres experienced deformation in conjunction with this event. To characterize the atmospheric wave propagation, barometric pressure data from 1814 stations distributed all around the globe have been examined. This study encompassed with the propagation characteristics of the waves over four zones including Indian and Polar regions for the first time using barometric data. Time-series observations indicate that the waves propagated globally multiple times. Within the Indian region, three minor arc passages and one major arc passage were identified. In Japan, two minor arc passages and one major arc were present. Conversely, in North America, both minor and major arc passages were detected, occurring a minimum of three times. Moreover, the attributes of these waves, such as their propagation speed and periodicity, were compared across these four regions. The estimated phase speed and periodicity fall within the ranges of approximately 291–314 m/s and 10–180 min, respectively including Polar Regions. These speed and periodicity measurements of the observed waves suggest that the dominant mode of wave propagation generated during the Tonga volcanic eruption is that of Lamb waves. In addition, a slower propagation phase speed of about 226.6 m/s was identified in Japan which corresponds to Pekeris mode of waves.

2022 年 1 月 15 日雄加-通加火山的喷发在全球范围内激发了广泛的大气波浪。为了探测地表变形模式,对哨兵-1 号合成孔径雷达(SAR)数据进行了分析。据估计,与此次事件同时发生形变的总面积约为 2.47 平方公里。为了描述大气波的传播特征,我们研究了分布在全球各地的 1814 个站点的气压数据。这项研究首次利用气压数据研究了气压波在印度和极地等四个地区的传播特征。时间序列观测结果表明,海浪在全球范围内多次传播。在印度地区,发现了三个小弧形通道和一个大弧形通道。在日本,出现了两个小弧形通道和一个大弧形通道。相反,在北美洲,既发现了小弧传,也发现了大弧传,至少出现了三次。此外,还比较了这四个地区的这些波的属性,如传播速度和周期。包括极地区域在内,估计的相速度和周期范围分别约为 291-314 米/秒和 10-180 分钟。这些观测到的波速和周期测量结果表明,汤加火山爆发期间产生的主要波传播方式是兰姆波。此外,在日本还发现了一个较慢的传播相位速度,约为 226.6 米/秒,与 Pekeris 波模式相对应。
{"title":"Multi-wave characteristics associated with January 15, 2022 Hunga-Tonga volcanic eruption: A global observation","authors":"M.S. Rose ,&nbsp;P.S. Sunil ,&nbsp;A. Sooraj ,&nbsp;A.S. Sunil ,&nbsp;Priyesh Kunnummal ,&nbsp;K. Amal George ,&nbsp;K.K. Ajith ,&nbsp;Dhanya Thomas ,&nbsp;V.K. Mini","doi":"10.1016/j.jastp.2024.106283","DOIUrl":"https://doi.org/10.1016/j.jastp.2024.106283","url":null,"abstract":"<div><p>The eruption of Hunga-Tonga Volcano on January 15, 2022 has stimulated a wide spectrum of atmospheric waves globally. To probe the surface deformation pattern, Sentinel-1 Synthetic Aperture Radar (SAR) data has been analyzed. It has been approximated that an overall area of about 2.47 square kilometres experienced deformation in conjunction with this event. To characterize the atmospheric wave propagation, barometric pressure data from 1814 stations distributed all around the globe have been examined. This study encompassed with the propagation characteristics of the waves over four zones including Indian and Polar regions for the first time using barometric data. Time-series observations indicate that the waves propagated globally multiple times. Within the Indian region, three minor arc passages and one major arc passage were identified. In Japan, two minor arc passages and one major arc were present. Conversely, in North America, both minor and major arc passages were detected, occurring a minimum of three times. Moreover, the attributes of these waves, such as their propagation speed and periodicity, were compared across these four regions. The estimated phase speed and periodicity fall within the ranges of approximately 291–314 m/s and 10–180 min, respectively including Polar Regions. These speed and periodicity measurements of the observed waves suggest that the dominant mode of wave propagation generated during the Tonga volcanic eruption is that of Lamb waves. In addition, a slower propagation phase speed of about 226.6 m/s was identified in Japan which corresponds to Pekeris mode of waves.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the characterization of Cloud occurrence and its impact on solar radiation in Mbour, Senegal 塞内加尔姆布尔的云层特征及其对太阳辐射的影响
IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-06-21 DOI: 10.1016/j.jastp.2024.106284
Mamadou Simina Dramé , Pape Mbagnick N'Diaye , Serigne Abdoul Aziz Niang , Ismaila Diallo , Astou Sarr , Ahmed Gueye , Demba Ndao Niang

The objective of this study is to evaluate the clouds seasonal occurrence characteristics, and to estimate their impact on solar radiation in Mbour, Senegal, West Africa. Here, we use datasets from various sources including: i) observations from the Clouds and Earth's Radiant Energy System satellite sensors, ii) in situ shortwave radiation measurement obtained from the Mbour station, and iii) the outgoing longwave radiation (OLR) obtained from the National Centers for Environmental Prediction reanalysis data. Results show a marked seasonality, associated with high spatial variation in terms of cloud occurrence over Senegal. The maximum cloud occurrences are observed during the wet summer season (June–October), whilst the minimum cloud occurrences are recorded during the long-dry season from November to May. During the monsoon season the cloud activity becomes more intense with a total cloud cover of about 80%, a cloud optical depth of around 7, and a high convective activity illustrated by a low OLR (below 240 W/m2). Likewise, across Senegal a strong north-south gradient of the cloud characteristics is observed. Based on quantitative comparison between cloud occurrence and radiation measurement, results show an important seasonal impact on available solar potential in Mbour. Conversely to the cloud occurrence, the maximum of both direct normal and global solar potentials is recorded during the dry season, coinciding with the period with clean sky. An investigation of the cloud influence on solar radiation on selected study cases indicates a decrease of 60% (80%) for the total (direct normal) radiation during the peak of the summer monsoon season.

本研究的目的是评估云的季节性出现特征,并估计其对西非塞内加尔姆布尔太阳辐射的影响。在这里,我们使用了各种来源的数据集,包括:i) 云和地球辐射能量系统卫星传感器的观测数据;ii) 姆布尔站的原地短波辐射测量数据;iii) 国家环境预测中心再分析数据中获得的外向长波辐射(OLR)数据。结果表明,塞内加尔上空的云量具有明显的季节性,且空间变化很大。在夏季湿季(6 月至 10 月)云量最多,而在 11 月至 5 月的长旱季云量最少。在季风季节,云层活动更加频繁,总云层覆盖率约为 80%,云层光学深度约为 7,对流活动频繁,OLR 较低(低于 240 W/m2)。同样,在整个塞内加尔,也观察到了强烈的南北梯度云层特征。通过对云层出现情况和辐射测量结果进行定量比较,结果表明季节性因素对姆布尔的可用太阳潜能有重要影响。与云层出现的情况相反,直接正常太阳辐射和全球太阳辐射的最大值出现在旱季,与天空清洁的时期相吻合。对选定研究案例中云层对太阳辐射影响的调查表明,在夏季季风季节的高峰期,总辐射(直接正常辐射)减少了 60%(80%)。
{"title":"On the characterization of Cloud occurrence and its impact on solar radiation in Mbour, Senegal","authors":"Mamadou Simina Dramé ,&nbsp;Pape Mbagnick N'Diaye ,&nbsp;Serigne Abdoul Aziz Niang ,&nbsp;Ismaila Diallo ,&nbsp;Astou Sarr ,&nbsp;Ahmed Gueye ,&nbsp;Demba Ndao Niang","doi":"10.1016/j.jastp.2024.106284","DOIUrl":"https://doi.org/10.1016/j.jastp.2024.106284","url":null,"abstract":"<div><p>The objective of this study is to evaluate the clouds seasonal occurrence characteristics, and to estimate their impact on solar radiation in Mbour, Senegal, West Africa. Here, we use datasets from various sources including: i) observations from the Clouds and Earth's Radiant Energy System satellite sensors, ii) in situ shortwave radiation measurement obtained from the Mbour station, and iii) the outgoing longwave radiation (OLR) obtained from the National Centers for Environmental Prediction reanalysis data. Results show a marked seasonality, associated with high spatial variation in terms of cloud occurrence over Senegal. The maximum cloud occurrences are observed during the wet summer season (June–October), whilst the minimum cloud occurrences are recorded during the long-dry season from November to May. During the monsoon season the cloud activity becomes more intense with a total cloud cover of about 80%, a cloud optical depth of around 7, and a high convective activity illustrated by a low OLR (below 240 W/m<sup>2</sup>). Likewise, across Senegal a strong north-south gradient of the cloud characteristics is observed. Based on quantitative comparison between cloud occurrence and radiation measurement, results show an important seasonal impact on available solar potential in Mbour. Conversely to the cloud occurrence, the maximum of both direct normal and global solar potentials is recorded during the dry season, coinciding with the period with clean sky. An investigation of the cloud influence on solar radiation on selected study cases indicates a decrease of 60% (80%) for the total (direct normal) radiation during the peak of the summer monsoon season.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ionospheric responses to the tropical cyclones from different oceanic basins over the globe 电离层对全球不同大洋盆地热带气旋的响应
IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-06-19 DOI: 10.1016/j.jastp.2024.106270
Arup Patari , Anirban Guha

The perturbations in the ionosphere due to eight tropical cyclones (TCs), namely Iota, Haima, Harold, Willa, Amphan, Gaja, Vadrah and Bulbul, originated and grown in different oceanic basins, are investigated. Total Electron Content (TEC) data, from Global Positioning System (GPS) TEC receiver in operation at Agartala (AGT) or different International GNSS Service (IGS) stations near the cyclone landfall regions, are used in this study. Despite some differences, the ionosphere responds to all tropical cyclones in an almost similar manner. Though the geomagnetic conditions are quiet and there are no perturbations due to any other geophysical phenomena in the active cyclonic storm stage, in all the cases there is a fall in average vertical total electron content (VTEC) deviations below the monthly mean value either on the landfall day or on the following day or even on just previous day. Decrements in Vertical Total Electron Content are found higher for tropical cyclones over North Indian and South Pacific oceanic basins. Recoveries in vertical total electron content values are slower for cyclones over the North Atlantic and North West Pacific basins. Recoveries in vertical total electron content (VTEC) values are slow for tropical cyclones (TCs) over the North Atlantic and North West Pacific basins. But those over other basins are quick. The longer the track of a tropical cyclone (TC), the higher is the reduction in the vertical total electron content (VTEC) value. A negative correlation exists between the maximum sustained surface wind velocities and the total periods of different TCs and also the difference of lowest average differential VTECs with that on the previous day. The observed anomaly in ionospheric responses might be due to the combined effect of TC-inspired gravity waves, ejection of neutral particles from the terminator of a tropical cyclone (TC) and lightning electric fields. To explain the observed results convective activities during TC, with the help of outgoing long wave radiation (OLR) map, are also taken into account. This study provides the primary results regarding regional characteristics and hence a comparative idea for the responses of the ionosphere to different tropical cyclones (TCs) from different geographical positions on the globe, which needs further comprehensive investigation in future.

研究了八个热带气旋(即伊欧塔、海马、哈罗德、威拉、安潘、伽伽、瓦德拉和布尔)对电离层的扰动,这八个热带气旋起源并生长于不同的海洋盆地。本研究使用了在阿加尔塔拉(AGT)运行的全球定位系统(GPS)总电子含量(TEC)接收器或气旋登陆区附近的不同国际全球导航卫星系统服务(IGS)站点提供的数据。尽管存在一些差异,但电离层对所有热带气旋的反应几乎相似。虽然在气旋风暴活跃阶段,地磁条件平静,没有任何其他地球物理现象造成的扰动,但在所有情况下,无论是登陆日还是次日,甚至是前一天,平均垂直电子总含量(VTEC)偏差都低于月平均值。北印度洋和南太平洋海盆上空的热带气旋的垂直总电子含量下降幅度较大。北大西洋和西北太平洋海盆上的气旋的垂直总电子含量值恢复较慢。北大西洋和西北太平洋海盆上空的热带气旋的垂直电子总含量值恢复较慢。但其他海盆上的热带气旋则恢复得很快。热带气旋(TC)的路径越长,垂直电子总含量(VTEC)值的下降幅度就越大。不同热带气旋的最大持续表面风速和总周期之间存在负相关,最低平均差值 VTEC 与前一天的差值也存在负相关。观测到的电离层反应异常可能是由于热带气旋引发的重力波、热带气旋终结者喷射出的中性粒子和闪电电场的共同作用造成的。为了解释热带气旋期间的对流活动,还考虑了外向长波辐射图。这项研究提供了有关区域特征的主要结果,从而为电离层对全球不同地理位置的不同热带气旋(TC)的响应提供了一个比较思路,这需要在未来进行进一步的全面调查。
{"title":"Ionospheric responses to the tropical cyclones from different oceanic basins over the globe","authors":"Arup Patari ,&nbsp;Anirban Guha","doi":"10.1016/j.jastp.2024.106270","DOIUrl":"https://doi.org/10.1016/j.jastp.2024.106270","url":null,"abstract":"<div><p>The perturbations in the ionosphere due to eight tropical cyclones (TCs), namely Iota, Haima, Harold, Willa, Amphan, Gaja, Vadrah and Bulbul, originated and grown in different oceanic basins, are investigated. Total Electron Content (TEC) data, from Global Positioning System (GPS) TEC receiver in operation at Agartala (AGT) or different International GNSS Service (IGS) stations near the cyclone landfall regions, are used in this study. Despite some differences, the ionosphere responds to all tropical cyclones in an almost similar manner. Though the geomagnetic conditions are quiet and there are no perturbations due to any other geophysical phenomena in the active cyclonic storm stage, in all the cases there is a fall in average vertical total electron content (VTEC) deviations below the monthly mean value either on the landfall day or on the following day or even on just previous day. Decrements in Vertical Total Electron Content are found higher for tropical cyclones over North Indian and South Pacific oceanic basins. Recoveries in vertical total electron content values are slower for cyclones over the North Atlantic and North West Pacific basins. Recoveries in vertical total electron content (VTEC) values are slow for tropical cyclones (TCs) over the North Atlantic and North West Pacific basins. But those over other basins are quick. The longer the track of a tropical cyclone (TC), the higher is the reduction in the vertical total electron content (VTEC) value. A negative correlation exists between the maximum sustained surface wind velocities and the total periods of different TCs and also the difference of lowest average differential VTECs with that on the previous day. The observed anomaly in ionospheric responses might be due to the combined effect of TC-inspired gravity waves, ejection of neutral particles from the terminator of a tropical cyclone (TC) and lightning electric fields. To explain the observed results convective activities during TC, with the help of outgoing long wave radiation (OLR) map, are also taken into account. This study provides the primary results regarding regional characteristics and hence a comparative idea for the responses of the ionosphere to different tropical cyclones (TCs) from different geographical positions on the globe, which needs further comprehensive investigation in future.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A methodology for estimating spectral indices to fluctuation measurements of ionospheric parameters 电离层参数波动测量的光谱指数估算方法
IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-06-18 DOI: 10.1016/j.jastp.2024.106273
G. Fornari , F.C. de Meneses , R.R. Rosa , Esfhan A. Kherani , S. Domingos

Spectral analysis is a technique largely used to study scale size regime of ionospheric plasma irregularities based on in situ measurements, notwithstanding the visual representation of power spectral density (PSD) of a signal is often a source of ambiguity during fitting routines and identification of breakpoints. In this work, a method is proposed in order to mitigate the uncertainties inherent to this process. Here, the spectral behavior of time series fluctuations is alternatively investigated using Detrended Fluctuation Analysis (DFA). The DFA algorithm is a scaling analysis procedure widely applied to estimate the detection of long-range correlation without considering apparent short-range ones. Furthermore, the DFA technique is able to remove trends implicit to the signal and to be applied to non-stationary time series. Using in situ measurements of both ionospheric electron density and electric field fluctuations, it was able to analyze plasma bubbles with scales ranging from 1.66 km to 12.4 m. The results show that DFA and PSD routines provide quite similar spectra, but different spectral indices. On the other hand, the spectra revealed steep slopes wrapping the medium scales, a characteristic also detected in other studies. Besides that, the DFA is less noisy than Fourier spectra, which allows a more precise identification of spectral breakpoints.

尽管信号功率谱密度(PSD)的可视化表示在拟合程序和识别断点时往往是模糊不清的来源,但光谱分析是一种主要用于根据现场测量结果研究电离层等离子体不规则性的尺度大小机制的技术。在这项工作中,我们提出了一种方法来减少这一过程中固有的不确定性。在此,我们使用去趋势波动分析法(DFA)来研究时间序列波动的频谱行为。DFA 算法是一种缩放分析程序,广泛应用于估计检测长程相关性,而不考虑明显的短程相关性。此外,DFA 技术还能去除信号中隐含的趋势,并适用于非稳态时间序列。利用对电离层电子密度和电场波动的现场测量,能够分析尺度从 1.66 千米到 12.4 米的等离子气泡。另一方面,光谱显示出包裹中等尺度的陡峭斜坡,这也是其他研究发现的一个特征。此外,与傅立叶光谱相比,DFA 的噪声较小,可以更精确地确定光谱断点。
{"title":"A methodology for estimating spectral indices to fluctuation measurements of ionospheric parameters","authors":"G. Fornari ,&nbsp;F.C. de Meneses ,&nbsp;R.R. Rosa ,&nbsp;Esfhan A. Kherani ,&nbsp;S. Domingos","doi":"10.1016/j.jastp.2024.106273","DOIUrl":"https://doi.org/10.1016/j.jastp.2024.106273","url":null,"abstract":"<div><p>Spectral analysis is a technique largely used to study scale size regime of ionospheric plasma irregularities based on <em>in situ</em> measurements, notwithstanding the visual representation of power spectral density (PSD) of a signal is often a source of ambiguity during fitting routines and identification of breakpoints. In this work, a method is proposed in order to mitigate the uncertainties inherent to this process. Here, the spectral behavior of time series fluctuations is alternatively investigated using Detrended Fluctuation Analysis (DFA). The DFA algorithm is a scaling analysis procedure widely applied to estimate the detection of long-range correlation without considering apparent short-range ones. Furthermore, the DFA technique is able to remove trends implicit to the signal and to be applied to non-stationary time series. Using <em>in situ</em> measurements of both ionospheric electron density and electric field fluctuations, it was able to analyze plasma bubbles with scales ranging from 1.66 km to 12.4 m. The results show that DFA and PSD routines provide quite similar spectra, but different spectral indices. On the other hand, the spectra revealed steep slopes wrapping the medium scales, a characteristic also detected in other studies. Besides that, the DFA is less noisy than Fourier spectra, which allows a more precise identification of spectral breakpoints.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term oscillations and trends of the mesosphere derived from 60 Years of standard phase-heights measurements over Europe: An update 欧洲上空 60 年标准相位高度测量得出的中间层长期振荡和趋势:更新
IF 1.8 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-06-14 DOI: 10.1016/j.jastp.2024.106274
Mani Sivakandan, Dieter H.W. Peters, Günter Entzian

The time series of standard phase-height (SPH) and plasma scale-height (PSH) have been updated from a 60-year long-radio-wave measurement of the broadcasting station Allouis (France, 162 kHz). The signal was received at Kühlungsborn (54° N, 12° E, Mecklenburg, Northern Germany).

The statistical analysis of the SPH series shows a significant overall trend with a decrease of 116 m/decade indicating a subsidence of the long-radio wave reflection height of about 700 m. With consideration of a stratopause altitude trend (-70 m/decade) follows an overall mesospheric shrinking of about 300 m over Western Europe.

As expected the time series of SPH shows in its spectrum dominant modes which are typical for the solar cycle, ENSO and for QBO bands indicating solar and lower atmospheric influences. Solar cycle and ENSO (-QBO)-like band-pass show a growing increase of SPH up to 1987, followed by a decrease afterward. We found a strong reduction in the amplitude of the solar cycle band due to the weak solar cycle 24, but an increase in the ENSO band.

For summer months during solar minimum years, and without stratopause altitude trend, a thickness temperature trend of the mesosphere is significant with a trend value of −0.47 ± 0.43 K/decade. The long-term solar variability and the stratopause altitude trend were excluded to determine a more realistic intrinsic mesospheric thickness temperature trend. The overall cooling of the intrinsic mesospheric temperature during 60 years of observation is in the order of 3 K.

The long-term solar variability including the decreasing maximum of last solar cycle, and the stratopause altitude trend have to be excluded in order to determine an intrinsic mesospheric temperature trend, which may be caused by greenhouse gas increase in the middle atmosphere.

标准相位高度(SPH)和等离子尺度高度(PSH)的时间序列是根据阿卢瓦广播站(法国,162 kHz)60 年的长电波测量结果更新的。对 SPH 序列的统计分析显示,总体趋势显著,每十年下降 116 米,表明长电波反射高度下沉了约 700 米。考虑到平流层顶高度趋势(-70 米/十年),西欧上空的中间层总体上缩小了约 300 米。类似太阳周期和厄尔尼诺/南方涛动(-QBO)的带通显示,直到 1987 年,SPH 都在不断增加,之后则有所减少。我们发现,由于太阳周期24较弱,太阳周期带的振幅明显减小,但厄尔尼诺/南方涛动带的振幅却增大了。在太阳最小年的夏季月份,在没有平流层顶高度趋势的情况下,中间层温度厚度趋势显著,趋势值为-0.47 ± 0.43 K/十年。排除了太阳长期变率和平流层顶高度趋势,以确定更切合实际的中间层固有厚度温度趋势。在 60 年的观测过程中,中间层固有温度的总体降温幅度约为 3 K。为了确定中间层固有温度趋势,必须排除包括上一个太阳周期最大值递减在内的长期太阳变率和平流层顶高度趋势,而中间层固有温度趋势可能是由中层大气温室气体增加引起的。
{"title":"Long-term oscillations and trends of the mesosphere derived from 60 Years of standard phase-heights measurements over Europe: An update","authors":"Mani Sivakandan,&nbsp;Dieter H.W. Peters,&nbsp;Günter Entzian","doi":"10.1016/j.jastp.2024.106274","DOIUrl":"10.1016/j.jastp.2024.106274","url":null,"abstract":"<div><p>The time series of standard phase-height (SPH) and plasma scale-height (PSH) have been updated from a 60-year long-radio-wave measurement of the broadcasting station Allouis (France, 162 kHz). The signal was received at Kühlungsborn (54° N, 12° E, Mecklenburg, Northern Germany).</p><p>The statistical analysis of the SPH series shows a significant overall trend with a decrease of 116 m/decade indicating a subsidence of the long-radio wave reflection height of about 700 m. With consideration of a stratopause altitude trend (-70 m/decade) follows an overall mesospheric shrinking of about 300 m over Western Europe.</p><p>As expected the time series of SPH shows in its spectrum dominant modes which are typical for the solar cycle, ENSO and for QBO bands indicating solar and lower atmospheric influences. Solar cycle and ENSO (-QBO)-like band-pass show a growing increase of SPH up to 1987, followed by a decrease afterward. We found a strong reduction in the amplitude of the solar cycle band due to the weak solar cycle 24, but an increase in the ENSO band.</p><p>For summer months during solar minimum years, and without stratopause altitude trend, a thickness temperature trend of the mesosphere is significant with a trend value of −0.47 ± 0.43 K/decade. The long-term solar variability and the stratopause altitude trend were excluded to determine a more realistic intrinsic mesospheric thickness temperature trend. The overall cooling of the intrinsic mesospheric temperature during 60 years of observation is in the order of 3 K.</p><p>The long-term solar variability including the decreasing maximum of last solar cycle, and the stratopause altitude trend have to be excluded in order to determine an intrinsic mesospheric temperature trend, which may be caused by greenhouse gas increase in the middle atmosphere.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364682624001020/pdfft?md5=f9a3fe6ce245a7e4dd4aac2d5748c9fc&pid=1-s2.0-S1364682624001020-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141410342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empirical models and artificial intelligence for estimating hourly diffuse solar radiation in the state of Alagoas, Northeastern Brazil 用于估算巴西东北部阿拉戈斯州每小时漫射太阳辐射的经验模型和人工智能
IF 1.8 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-06-13 DOI: 10.1016/j.jastp.2024.106269
Joana Madeira Krieger , Cicero Manoel dos Santos , Gustavo Bastos Lyra , José Leonaldo de Souza , Ricardo Araujo Ferreira Junior , Anthony Carlos Silva Porfirio , Guilherme Bastos Lyra , Marcel Carvalho Abreu

Diffuse solar irradiation (HD) data are essential for the design and management of photovoltaic solar systems, biosphere-atmosphere modeling, and other applications. However, HD observations are scarce in several locations, especially in tropical regions. Employing hourly diffuse solar irradiation (HDh) and global solar irradiation (HGh) data collected between 2002─2003 and 2007─2008 in Alagoas State, Northeast Brazil, this study assesses various modeling techniques. Empirical models, including third-degree polynomial, logistic, sigmoidal, and rational functions, were compared with AI methods such as artificial neural networks (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). Additionally, it explores how solarimetric and meteorological variables impact the performance of these models. The empirical models showed similar performance in estimating KDh(=HDh/HGh) (r2 > 0.726, modified Willmott – dm > 0.704, and RMSD < 0.103), with the third-degree polynomial model standing out. The empirical models had difficulty estimating KDh for hourly atmospheric transmittance (KTh) > 0.80, which indicated that they are not able to adequately simulate clear sky conditions, mostly due to surface reflections and clouds at the end of the day. ANN (r2 > 0.718, dm > 0.702, and RMSD < 0.105) showed better precision and accuracy of estimates for a greater number of schemes in relation to SVM and ANFIS (r2 > 0.704, dm > 0.699, RMSD < 0.108) and to empirical models. AI methods were able to represent the complexity of these conditions, with overall performance in estimating KDh superior or equivalent to empirical models. This study underscores the significance of exploring diverse methods for HD estimation, demonstrating promising potential for accurate and reliable estimation of hourly diffuse solar irradiation.

漫反射太阳辐照(HD)数据对于光伏太阳能系统的设计和管理、生物圈-大气建模以及其他应用至关重要。然而,在一些地方,尤其是热带地区,太阳漫射观测数据十分匮乏。本研究利用 2002-2003 年至 2007-2008 年期间在巴西东北部阿拉戈斯州收集的每小时漫射太阳辐照(HDh)和全球太阳辐照(HGh)数据,对各种建模技术进行了评估。包括三度多项式函数、对数函数、西格玛函数和有理函数在内的经验模型与人工神经网络(ANN)、支持向量机(SVM)和自适应神经模糊推理系统(ANFIS)等人工智能方法进行了比较。此外,它还探讨了日照和气象变量如何影响这些模型的性能。经验模型在估计 KDh(=HDh/HGh)方面表现出相似的性能(r2 >0.726,修正的 Willmott - dm >0.704,RMSD <0.103),其中三度多项式模型表现突出。经验模型难以估算每小时大气透过率(KTh)为 0.80 的 KDh,这表明它们无法充分模拟晴空条件,这主要是由于地表反射和日终云层造成的。与 SVM 和 ANFIS(r2:0.704,dm:0.699,RMSD:0.108)以及经验模型相比,ANN(r2:0.718,dm:0.702,RMSD:0.105)对更多方案的估计精度和准确度更高。人工智能方法能够表现这些条件的复杂性,在估计 KDh 方面的总体性能优于或等同于经验模型。这项研究强调了探索不同方法进行HD估算的重要性,显示了准确可靠地估算每小时漫射太阳辐照的巨大潜力。
{"title":"Empirical models and artificial intelligence for estimating hourly diffuse solar radiation in the state of Alagoas, Northeastern Brazil","authors":"Joana Madeira Krieger ,&nbsp;Cicero Manoel dos Santos ,&nbsp;Gustavo Bastos Lyra ,&nbsp;José Leonaldo de Souza ,&nbsp;Ricardo Araujo Ferreira Junior ,&nbsp;Anthony Carlos Silva Porfirio ,&nbsp;Guilherme Bastos Lyra ,&nbsp;Marcel Carvalho Abreu","doi":"10.1016/j.jastp.2024.106269","DOIUrl":"10.1016/j.jastp.2024.106269","url":null,"abstract":"<div><p>Diffuse solar irradiation (H<sub>D</sub>) data are essential for the design and management of photovoltaic solar systems, biosphere-atmosphere modeling, and other applications. However, H<sub>D</sub> observations are scarce in several locations, especially in tropical regions. Employing hourly diffuse solar irradiation (<span><math><msubsup><mi>H</mi><mi>D</mi><mi>h</mi></msubsup></math></span>) and global solar irradiation (<span><math><msubsup><mi>H</mi><mi>G</mi><mi>h</mi></msubsup></math></span>) data collected between 2002─2003 and 2007─2008 in Alagoas State, Northeast Brazil, this study assesses various modeling techniques. Empirical models, including third-degree polynomial, logistic, sigmoidal, and rational functions, were compared with AI methods such as artificial neural networks (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). Additionally, it explores how solarimetric and meteorological variables impact the performance of these models. The empirical models showed similar performance in estimating <span><math><mspace></mspace><msubsup><mi>K</mi><mi>D</mi><mi>h</mi></msubsup><mspace></mspace><mo>(</mo><mo>=</mo><mspace></mspace><msubsup><mi>H</mi><mi>D</mi><mi>h</mi></msubsup><mspace></mspace><mo>/</mo><mspace></mspace><msubsup><mi>H</mi><mi>G</mi><mi>h</mi></msubsup><mo>)</mo><mspace></mspace><mspace></mspace></math></span> (r<sup>2</sup> &gt; 0.726, modified Willmott – d<sub>m</sub> &gt; 0.704, and RMSD &lt; 0.103), with the third-degree polynomial model standing out. The empirical models had difficulty estimating <span><math><mrow><msubsup><mi>K</mi><mi>D</mi><mi>h</mi></msubsup></mrow></math></span> for hourly atmospheric transmittance <span><math><mo>(</mo><msubsup><mi>K</mi><mi>T</mi><mi>h</mi></msubsup><mo>)</mo></math></span> &gt; 0.80, which indicated that they are not able to adequately simulate clear sky conditions, mostly due to surface reflections and clouds at the end of the day. ANN (r<sup>2</sup> &gt; 0.718, d<sub>m</sub> &gt; 0.702, and RMSD &lt; 0.105) showed better precision and accuracy of estimates for a greater number of schemes in relation to SVM and ANFIS (r<sup>2</sup> &gt; 0.704, d<sub>m</sub> &gt; 0.699, RMSD &lt; 0.108) and to empirical models. AI methods were able to represent the complexity of these conditions, with overall performance in estimating <span><math><mrow><msubsup><mi>K</mi><mi>D</mi><mi>h</mi></msubsup></mrow></math></span> superior or equivalent to empirical models. This study underscores the significance of exploring diverse methods for H<sub>D</sub> estimation, demonstrating promising potential for accurate and reliable estimation of hourly diffuse solar irradiation.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141412686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring the ionospheric conditions during the annular solar eclipse December 2019: A case study 2019 年 12 月日环食期间电离层状况监测:案例研究
IF 1.9 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-06-01 DOI: 10.1016/j.jastp.2024.106272
Siti Syukriah Khamdan , Tajul Ariffin Musa , Suhaila M. Buhari , Kornayat Hozumi , Neil Ashcroft , Nashriq Ferdaus Ahmad , Clara Yatini

This study investigates the ionospheric response to the December 26, 2019 annular solar eclipse over the southern tip of the Asia region, focusing on Malaysia, Sumatra, and Singapore. Utilizing data from GPS stations and ionosondes along the eclipse path, variations in Total Electron Content (TEC) and ionospheric foF2 parameters were analysed to assess the eclipse's impact. Results indicate a slight northward depletion of TEC, possibly linked to the Equatorial Ionization Anomaly (EIA), with up to −30% of depletions observed across all sites. Time delays in TEC and foF2 parameter responses suggest the influence of recombination and photochemical processes. Differences in depletion percentages between TEC and foF2 parameters may stem from production rate reductions during the eclipse. Post-sunset enhancements in TEC and foF2 parameters suggest the formation of ionospheric plasma blobs associated with Travelling Ionospheric Disturbances (TIDs) during the eclipse. While consistent with trends observed in prior studies, the study's findings highlight regional variations in ionospheric effects. This study enhances our understanding of ionospheric dynamics during solar eclipses and paves the way for further exploration in this area.

本研究调查了电离层对 2019 年 12 月 26 日亚洲地区南端日环食的响应,重点是马来西亚、苏门答腊和新加坡。利用日食路径沿线全球定位系统站和电离层探测仪的数据,分析了电子总含量(TEC)和电离层 foF2 参数的变化,以评估日食的影响。结果表明,电子总含量(TEC)向北略有损耗,可能与赤道电离异常(EIA)有关,所有站点观测到的损耗高达-30%。TEC 和 foF2 参数响应的时间延迟表明受到了重组和光化学过程的影响。TEC和foF2参数耗损百分比的差异可能是由于日食期间生产率降低造成的。日落后 TEC 和 foF2 参数的增强表明日食期间形成了与电离层扰动(TID)相关的电离层等离子体团。研究结果与先前研究中观察到的趋势一致,但突出了电离层效应的区域差异。这项研究加深了我们对日食期间电离层动态的了解,并为这一领域的进一步探索铺平了道路。
{"title":"Monitoring the ionospheric conditions during the annular solar eclipse December 2019: A case study","authors":"Siti Syukriah Khamdan ,&nbsp;Tajul Ariffin Musa ,&nbsp;Suhaila M. Buhari ,&nbsp;Kornayat Hozumi ,&nbsp;Neil Ashcroft ,&nbsp;Nashriq Ferdaus Ahmad ,&nbsp;Clara Yatini","doi":"10.1016/j.jastp.2024.106272","DOIUrl":"https://doi.org/10.1016/j.jastp.2024.106272","url":null,"abstract":"<div><p>This study investigates the ionospheric response to the December 26, 2019 annular solar eclipse over the southern tip of the Asia region, focusing on Malaysia, Sumatra, and Singapore. Utilizing data from GPS stations and ionosondes along the eclipse path, variations in Total Electron Content (TEC) and ionospheric foF2 parameters were analysed to assess the eclipse's impact. Results indicate a slight northward depletion of TEC, possibly linked to the Equatorial Ionization Anomaly (EIA), with up to −30% of depletions observed across all sites. Time delays in TEC and foF2 parameter responses suggest the influence of recombination and photochemical processes. Differences in depletion percentages between TEC and foF2 parameters may stem from production rate reductions during the eclipse. Post-sunset enhancements in TEC and foF2 parameters suggest the formation of ionospheric plasma blobs associated with Travelling Ionospheric Disturbances (TIDs) during the eclipse. While consistent with trends observed in prior studies, the study's findings highlight regional variations in ionospheric effects. This study enhances our understanding of ionospheric dynamics during solar eclipses and paves the way for further exploration in this area.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141240286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluctuations in the “static” atmosphere and their effects on tropospheric ozone distribution 静态 "大气中的波动及其对对流层臭氧分布的影响
IF 1.9 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-06-01 DOI: 10.1016/j.jastp.2024.106268
Jiang Xiaofei , Wang Jizhi , Yang Yuanqin , Liu Pan , Deng Guo , Yao Shuang , Xiao Yang

Atmospheric fluctuation can be seen everywhere. This study focuses on the record-breaking increase of O3 concentration during the summer in some sensitive areas in recent years. The findings indicate that in the vicinity of the East Asian continent near western Pacific ocean, when the atmospheric conditions are stable or neutral, it is conducive to the maintenance and propagation of atmospheric oscillations near the height of the pollutant mixed layer (H_PML). Accompanied by the "peak-trough" effect of external gravity wave oscillations, due to the abundant water vapor of the cloud system (there are low pressure or typhoon disturbances in summer) near the large-scale cloud belt at the edge of the subtropical high in the western Pacific, the bright temperature at cloud top shows "light and dark changes" on satellite images, forming a wave-like cloud system. The novelty of this study lies in the fact that atmospheric fluctuations near the H_PML is not only related to the known aggravation of heavy rainfall, but also leads to the additional value-added effect of aerosols. Under static atmospheric conditions, the impact of atmospheric fluctuations near the H_PML on additional rise of O3 concentration helps us to deepen our understanding of the so-called "entrained ozone (EZ) effect" in the atmosphere. Due to the external gravity waves, the concentration of O3 increased further. Diurnal variations of solar zenith angle and H_PML are key meteorological factors influencing the significant increase in near-surface O3 concentration entrainment. The formation mechanism of solar photochemical O3 is further deepened and supplemented by analyzing the record-breaking increase of O3 concentration in summer observed in recent years.

大气波动随处可见。本研究主要关注近年来一些敏感地区夏季臭氧浓度破纪录的上升。研究结果表明,在西太平洋附近的东亚大陆附近,当大气条件稳定或中性时,有利于污染物混合层(H_PML)高度附近大气振荡的维持和传播。伴随着外部重力波振荡的 "峰-槽 "效应,由于西太平洋副热带高压边缘大尺度云带附近云系水汽丰富(夏季有低压或台风扰动),云顶亮温在卫星图像上呈现 "明暗变化",形成波状云系。这项研究的新颖之处在于,H_PML 附近的大气波动不仅与已知的强降雨加剧有关,还导致气溶胶的额外增值效应。在静态大气条件下,H_PML 附近的大气波动对 O3 浓度额外上升的影响有助于我们加深对大气中所谓 "夹带臭氧(EZ)效应 "的理解。在外部引力波的作用下,O3 的浓度进一步上升。太阳天顶角和 H_PML 的日变化是影响近地面 O3 浓度夹带显著增加的关键气象因素。通过分析近年来观测到的夏季 O3 浓度破纪录的增长,进一步深化和补充了太阳光化学 O3 的形成机制。
{"title":"Fluctuations in the “static” atmosphere and their effects on tropospheric ozone distribution","authors":"Jiang Xiaofei ,&nbsp;Wang Jizhi ,&nbsp;Yang Yuanqin ,&nbsp;Liu Pan ,&nbsp;Deng Guo ,&nbsp;Yao Shuang ,&nbsp;Xiao Yang","doi":"10.1016/j.jastp.2024.106268","DOIUrl":"https://doi.org/10.1016/j.jastp.2024.106268","url":null,"abstract":"<div><p>Atmospheric fluctuation can be seen everywhere. This study focuses on the record-breaking increase of O<sub>3</sub> concentration during the summer in some sensitive areas in recent years. The findings indicate that in the vicinity of the East Asian continent near western Pacific ocean, when the atmospheric conditions are stable or neutral, it is conducive to the maintenance and propagation of atmospheric oscillations near the height of the pollutant mixed layer (H_PML). Accompanied by the \"peak-trough\" effect of external gravity wave oscillations, due to the abundant water vapor of the cloud system (there are low pressure or typhoon disturbances in summer) near the large-scale cloud belt at the edge of the subtropical high in the western Pacific, the bright temperature at cloud top shows \"light and dark changes\" on satellite images, forming a wave-like cloud system. The novelty of this study lies in the fact that atmospheric fluctuations near the H_PML is not only related to the known aggravation of heavy rainfall, but also leads to the additional value-added effect of aerosols. Under static atmospheric conditions, the impact of atmospheric fluctuations near the H_PML on additional rise of O<sub>3</sub> concentration helps us to deepen our understanding of the so-called \"entrained ozone (EZ) effect\" in the atmosphere. Due to the external gravity waves, the concentration of O<sub>3</sub> increased further. Diurnal variations of solar zenith angle and H_PML are key meteorological factors influencing the significant increase in near-surface O<sub>3</sub> concentration entrainment. The formation mechanism of solar photochemical O<sub>3</sub> is further deepened and supplemented by analyzing the record-breaking increase of O<sub>3</sub> concentration in summer observed in recent years.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141249688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of local time on the variations of the total electron contents at an American and Asian longitudes and their comparison with IRI-2016, IRI-Plas2017 and NeQuick-2 models during solar cycle 24 太阳周期 24 期间当地时间对美洲和亚洲经度总电子含量变化的影响及其与 IRI-2016、IRI-Plas2017 和 NeQuick-2 模型的比较。
IF 1.9 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-06-01 DOI: 10.1016/j.jastp.2024.106271
Yusuf Olanrewaju Kayode , Daniel Okoh , Eugene Oghenakpobor Onori , Oluwafunmilayo Oluwayemisi Ometan , Rafiu Bolaji Adegbola , Aghogho Ogwala , Emmanuel Olufemi Somoye , Rasaq Adewemimo Adeniji-Adele

Ionospheric modelling is one of the major tools to study the behavior of the ionosphere. Ionospheric models have been useful in predicting the true state of the ionosphere particularly in regions where Global Positioning System (GPS) are not readily available. This research paper aims to study the longitudinal variations and the effects of local time on the total electron content (TEC) recorded in two different sectors (Asia and America) during the ascending, maximum and descending phases of solar cycle 24 (2011–2017) and also to compare its values to IRI-2016, IRI-Plas2017 and NeQuick-2 models in order to evaluate their performances. An hourly interval profile computed on seasonal basis were used to study the behaviors of TEC diurnally and seasonally. A monthly interval error profile plotted on annual basis was also used to investigate the deviations of the models from the GPS values. Our results showed that the peak values of TEC in the Asian and American sectors were recorded around the dawn,06:00UT (13:00LT) and dusk, 18:00UT (15:00LT) respectively. We also affirmed from our results that seasonal/winter anomalies were recorded in all the phases of the solar cycle in both sectors. Equinoctial Asymmetry was also observed to be predominant during different phases of the solar cycle in both sectors except during ascending and descending phases in the Asian and American sectors respectively. Out of the 168 months of data collated for this study, only 162 months of data were available. The IRI-2016, IRI-Plas2017 and NeQuick-2 models have 11.7%, 23.5% and 64.8% better performance in all the months under consideration. Therefore, the NeQuick-2 model had the best performance in both the Asian and American sectors. Finally, from the results of our statistical analysis, Mean Absolute Error (MAE) has ∼3 TECU lower than the Root Mean Square Error (RMSE) values in both sectors and in all the solar cycle phase. Hence, MAE can evaluate the performance of ionospheric models better than RMSE.

电离层建模是研究电离层行为的主要工具之一。电离层模型有助于预测电离层的真实状态,特别是在没有全球定位系统(GPS)的地区。本研究论文旨在研究太阳周期24(2011-2017年)的上升、最大和下降阶段在两个不同地区(亚洲和美洲)记录的电子总含量(TEC)的纵向变化和当地时间的影响,并将其值与IRI-2016、IRI-Plas2017和NeQuick-2模型进行比较,以评估其性能。利用按季节计算的每小时间隔剖面图来研究 TEC 在昼夜和季节中的表现。此外,还使用按年绘制的月间隔误差曲线来研究模型与全球定位系统值的偏差。结果表明,亚洲和美洲扇区的 TEC 峰值分别出现在黎明 06:00(北京时间 13:00)和黄昏 18:00(北京时间 15:00)前后。我们的结果还证实,两个扇区在太阳周期的所有阶段都记录到了季节/冬季异常。除了亚洲区和美洲区分别在太阳周期的上升和下降阶段外,我们还观察到两个区在太阳周期的不同阶段都存在赤道不对称现象。在为本研究整理的 168 个月数据中,只有 162 个月的数据可用。IRI-2016 模型、IRI-Plas2017 模型和 NeQuick-2 模型在所有月份的表现分别比 IRI-2016 模型、IRI-Plas2017 模型和 NeQuick-2 模型好 11.7%、23.5% 和 64.8%。因此,NeQuick-2 模型在亚洲板块和美洲板块的表现都是最好的。最后,从我们的统计分析结果来看,平均绝对误差(MAE)比均方根误差(RMSE)值低 3 TECU,在两个部门和所有太阳周期阶段都是如此。因此,MAE 比 RMSE 更能评估电离层模型的性能。
{"title":"Effects of local time on the variations of the total electron contents at an American and Asian longitudes and their comparison with IRI-2016, IRI-Plas2017 and NeQuick-2 models during solar cycle 24","authors":"Yusuf Olanrewaju Kayode ,&nbsp;Daniel Okoh ,&nbsp;Eugene Oghenakpobor Onori ,&nbsp;Oluwafunmilayo Oluwayemisi Ometan ,&nbsp;Rafiu Bolaji Adegbola ,&nbsp;Aghogho Ogwala ,&nbsp;Emmanuel Olufemi Somoye ,&nbsp;Rasaq Adewemimo Adeniji-Adele","doi":"10.1016/j.jastp.2024.106271","DOIUrl":"10.1016/j.jastp.2024.106271","url":null,"abstract":"<div><p>Ionospheric modelling is one of the major tools to study the behavior of the ionosphere. Ionospheric models have been useful in predicting the true state of the ionosphere particularly in regions where Global Positioning System (GPS) are not readily available. This research paper aims to study the longitudinal variations and the effects of local time on the total electron content (TEC) recorded in two different sectors (Asia and America) during the ascending, maximum and descending phases of solar cycle 24 (2011–2017) and also to compare its values to IRI-2016, IRI-Plas2017 and NeQuick-2 models in order to evaluate their performances. An hourly interval profile computed on seasonal basis were used to study the behaviors of TEC diurnally and seasonally. A monthly interval error profile plotted on annual basis was also used to investigate the deviations of the models from the GPS values. Our results showed that the peak values of TEC in the Asian and American sectors were recorded around the dawn,06:00UT (13:00LT) and dusk, 18:00UT (15:00LT) respectively. We also affirmed from our results that seasonal/winter anomalies were recorded in all the phases of the solar cycle in both sectors. Equinoctial Asymmetry was also observed to be predominant during different phases of the solar cycle in both sectors except during ascending and descending phases in the Asian and American sectors respectively. Out of the 168 months of data collated for this study, only 162 months of data were available. The IRI-2016, IRI-Plas2017 and NeQuick-2 models have 11.7%, 23.5% and 64.8% better performance in all the months under consideration. Therefore, the NeQuick-2 model had the best performance in both the Asian and American sectors. Finally, from the results of our statistical analysis, Mean Absolute Error (MAE) has ∼3 TECU lower than the Root Mean Square Error (RMSE) values in both sectors and in all the solar cycle phase. Hence, MAE can evaluate the performance of ionospheric models better than RMSE.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141232168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determining the time constant of the global atmospheric electric circuit through modelling and observations 通过建模和观测确定全球大气电路的时间常数
IF 1.9 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-05-31 DOI: 10.1016/j.jastp.2024.106267
Michael J. Rycroft , Anna Odzimek , R. Giles Harrison

The DC global electric circuit (GEC) distributes charge in the lower atmosphere by current flow between “generator regions” (thunderstorms and rain clouds) and “load regions” (distant conductive air), with a timescale defined by circuit properties. Previously, the load has only been modelled by assuming fair weather (FW) conditions, neglecting cloud. As stratiform clouds cover ∼30 % of the Earth's surface, load resistance has been added to represent them, considered to provide semi fair weather (semi-FW) conditions. This increases the GEC timescale by 9 % for stratocumulus, or 33 % for stratus at a lower level. Including mutual capacitance between the outer charged layer and an electrode representing stratocumulus clouds increases the timescale by 35 %, to 8.6 min. These modelled results - the first including the semi-FW aspects - are demonstrated to be consistent with experimentally determined timescales of the real GEC, of between 7 and 12 min, derived from volcanic lightning variations associated with the May 2011 Grímsvötn eruption in Iceland. Accounting for semi-FW circumstances improves the modelled representation of the natural global circuit. Further, the GEC timescale is comparable with cloud droplet charging timescales in the updrafts of extensive layer clouds, suggesting its possible relevance to the microphysical behaviour of stratiform (layer) clouds in the climate system.

直流全球电路(GEC)通过 "发电机区域"(雷暴和雨云)和 "负载区域"(远处的导电空气)之间的电流在低层大气中分布电荷,其时间尺度由电路特性确定。以前,只在假设天气晴朗(FW)的条件下模拟负载,忽略了云层。由于层状云覆盖了地球表面的 30%,因此增加了负载电阻来代表它们,以提供半晴朗天气(semi-FW)条件。这将使层积云的 GEC 时间尺度增加 9%,或使较低层的层云的 GEC 时间尺度增加 33%。如果将带电外层与代表层积云的电极之间的相互电容计算在内,则时间尺度将增加 35%,达到 8.6 分钟。这些模拟结果--第一个包括半风向的模拟结果--被证明与根据 2011 年 5 月冰岛 Grímsvötn 火山喷发相关的火山闪电变化得出的实际 GEC 时间尺度一致,即介于 7 至 12 分钟之间。考虑到半闪电的情况,改进了对全球自然回路的模拟表示。此外,GEC 时间尺度与大范围层云上升气流中的云滴充电时间尺度相当,表明它可能与气候系统中层状(层)云的微物理行为有关。
{"title":"Determining the time constant of the global atmospheric electric circuit through modelling and observations","authors":"Michael J. Rycroft ,&nbsp;Anna Odzimek ,&nbsp;R. Giles Harrison","doi":"10.1016/j.jastp.2024.106267","DOIUrl":"https://doi.org/10.1016/j.jastp.2024.106267","url":null,"abstract":"<div><p>The DC global electric circuit (GEC) distributes charge in the lower atmosphere by current flow between “generator regions” (thunderstorms and rain clouds) and “load regions” (distant conductive air), with a timescale defined by circuit properties. Previously, the load has only been modelled by assuming fair weather (FW) conditions, neglecting cloud. As stratiform clouds cover ∼30 % of the Earth's surface, load resistance has been added to represent them, considered to provide semi fair weather (semi-FW) conditions. This increases the GEC timescale by 9 % for stratocumulus, or 33 % for stratus at a lower level. Including mutual capacitance between the outer charged layer and an electrode representing stratocumulus clouds increases the timescale by 35 %, to 8.6 min. These modelled results - the first including the semi-FW aspects - are demonstrated to be consistent with experimentally determined timescales of the real GEC, of between 7 and 12 min, derived from volcanic lightning variations associated with the May 2011 Grímsvötn eruption in Iceland. Accounting for semi-FW circumstances improves the modelled representation of the natural global circuit. Further, the GEC timescale is comparable with cloud droplet charging timescales in the updrafts of extensive layer clouds, suggesting its possible relevance to the microphysical behaviour of stratiform (layer) clouds in the climate system.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364682624000956/pdfft?md5=308c039835571e88593f6da69eefc695&pid=1-s2.0-S1364682624000956-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Atmospheric and Solar-Terrestrial Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1