首页 > 最新文献

Journal of Materials Science & Technology最新文献

英文 中文
Formation of a one-dimensional dislocation loop array in wurtzite zinc oxide at ambient temperature 纤锌矿氧化锌在常温下一维位错环阵的形成
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-09 DOI: 10.1016/j.jmst.2026.01.004
Shihao Zhang, Yan Li, Eita Tochigi, Kimitaka Higuchi, Yin Zhang, Shigeo Arai, Ting Zhu, Shigenobu Ogata, Atsutomo Nakamura
Introducing highly ordered dislocation configurations into brittle solids remains a significant challenge because of their inherently limited dislocation mobility. A prototypical example is the prismatic dislocation loop (PDL) array, and whether it can form and remain stable in brittle solids, as it does in metals, remains an open question. In this work, we show the formation of a long, one-dimensional array of PDLs in wurtzite zinc oxide ceramics using nanoindentation, confirmed by transmission electron microscope observations of their three-dimensional configurations and atomistic simulation based on our state-of-the-art neural network potential. Each PDL consisted of alternating basal and prismatic-I edge dislocation segments with a Burgers vector <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic" is="true">b</mi></math>' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="1.971ex" role="img" style="vertical-align: -0.235ex;" viewbox="0 -747.2 521.5 848.5" width="1.211ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g is="true"><use xlink:href="#MJMATHBI-62"></use></g></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi is="true" mathvariant="bold-italic">b</mi></math></span></span><script type="math/mml"><math><mi mathvariant="bold-italic" is="true">b</mi></math></script></span> = 1/3[<span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow is="true"><mn is="true">11</mn><mover accent="true" is="true"><mn is="true">2</mn><mo is="true">&#xAF;</mo></mover><mn is="true">0</mn></mrow></math>' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="2.202ex" role="img" style="vertical-align: -0.235ex;" viewbox="0 -846.5 2072 947.9" width="4.812ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g is="true"><g is="true"><use xlink:href="#MJMAIN-31"></use><use x="500" xlink:href="#MJMAIN-31" y="0"></use></g><g is="true" transform="translate(1001,0)"><g is="true" transform="translate(35,0)"><use xlink:href="#MJMAIN-32"></use></g><g is="true" transform="translate(0,198)"><use x="-70" xlink:href="#MJMAIN-AF" y="0"></use><use x="70" xlink:href="#MJMAIN-AF" y="0"></use></g></g><g is="true" transform="translate(1571,0)"><use xlink:href="#MJMAIN-30"></use></g></g></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow is="true"><mn is="true">11</mn><mover accent="true" is="true"><mn is="tru
在脆性固体中引入高度有序的位错构型仍然是一个重大挑战,因为它们固有的位错迁移率有限。一个典型的例子是棱柱位错环(PDL)阵列,它是否能在脆性固体中形成并保持稳定,就像在金属中一样,仍然是一个悬而未决的问题。在这项工作中,我们展示了利用纳米压痕在纤锌矿氧化锌陶瓷中形成一个长而一维的pdl阵列,并通过透射电子显微镜观察其三维结构和基于我们最先进的神经网络电位的原子模拟得到了证实。每个PDL由交替的基底位错段和棱柱位错段组成,以Burgers向量bb = 1/3[112¯0112¯0]构成一个闭合的位错环。几乎相同的pdl被压头连续地打入样品中,并沿着[112¯0112¯0]方向堆积。结果形成一维位错环阵,而周围区域保持无位错。我们证明了环间距可以在基于位错环的力平衡条件的理论框架内预测,与实验观察一致。这项研究不仅促进了对基于位错的塑性的理解,而且为脆性技术关键材料中高度有序PDL阵列的受控形成提供了一种策略。
{"title":"Formation of a one-dimensional dislocation loop array in wurtzite zinc oxide at ambient temperature","authors":"Shihao Zhang, Yan Li, Eita Tochigi, Kimitaka Higuchi, Yin Zhang, Shigeo Arai, Ting Zhu, Shigenobu Ogata, Atsutomo Nakamura","doi":"10.1016/j.jmst.2026.01.004","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.01.004","url":null,"abstract":"Introducing highly ordered dislocation configurations into brittle solids remains a significant challenge because of their inherently limited dislocation mobility. A prototypical example is the prismatic dislocation loop (PDL) array, and whether it can form and remain stable in brittle solids, as it does in metals, remains an open question. In this work, we show the formation of a long, one-dimensional array of PDLs in wurtzite zinc oxide ceramics using nanoindentation, confirmed by transmission electron microscope observations of their three-dimensional configurations and atomistic simulation based on our state-of-the-art neural network potential. Each PDL consisted of alternating basal and prismatic-I edge dislocation segments with a Burgers vector &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi mathvariant=\"bold-italic\" is=\"true\"&gt;b&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"1.971ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -747.2 521.5 848.5\" width=\"1.211ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;g is=\"true\"&gt;&lt;use xlink:href=\"#MJMATHBI-62\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\" mathvariant=\"bold-italic\"&gt;b&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/mml\"&gt;&lt;math&gt;&lt;mi mathvariant=\"bold-italic\" is=\"true\"&gt;b&lt;/mi&gt;&lt;/math&gt;&lt;/script&gt;&lt;/span&gt; = 1/3[&lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;11&lt;/mn&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;mo is=\"true\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;mn is=\"true\"&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -846.5 2072 947.9\" width=\"4.812ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;g is=\"true\"&gt;&lt;g is=\"true\"&gt;&lt;use xlink:href=\"#MJMAIN-31\"&gt;&lt;/use&gt;&lt;use x=\"500\" xlink:href=\"#MJMAIN-31\" y=\"0\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g is=\"true\" transform=\"translate(1001,0)\"&gt;&lt;g is=\"true\" transform=\"translate(35,0)\"&gt;&lt;use xlink:href=\"#MJMAIN-32\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g is=\"true\" transform=\"translate(0,198)\"&gt;&lt;use x=\"-70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"&gt;&lt;/use&gt;&lt;use x=\"70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/g&gt;&lt;g is=\"true\" transform=\"translate(1571,0)\"&gt;&lt;use xlink:href=\"#MJMAIN-30\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;11&lt;/mn&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mn is=\"tru","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"45 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145920524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomically dispersed bimetallic Pd-Fe clusters for boosting catalytic antibacterial performance with O2 原子分散双金属Pd-Fe簇提高氧催化抑菌性能
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-07 DOI: 10.1016/j.jmst.2025.12.048
Tao Li, Wan Wang, Jiawei Chen, Yue Wang, Xiangbin Cai, Lini Yang, Xin Liu, Jiangyong Diao, Zarrin Es'haghi, Lixin Xia, Li Jin, Guoqing Wang, Hongyang Liu
The development of highly efficient nanozymes faces challenges of insufficient catalytic activity and low atom utilization. Atomically dispersed metal nanozymes have received widespread attention due to their high atomic utilization efficiency and exceptional catalytic activity. Bimetallic catalysts demonstrated enhanced catalytic performance owing to synergistic geometric and electronic effects arising from heterometallic interactions. Herein, we report an atomically dispersed palladium-iron bimetallic cluster nanozyme, in which fully exposed Pd clusters bonded to adjacent Fe atomic clusters are anchored onto defect-rich nanodiamond-graphene supports (PdFe/ND@G). The Pd-Fe interfacial sites fabricated in atomically dispersed bimetallic clusters deliver abundant oxygen activation sites for high-efficiency catalytic reactions and exhibit enhanced oxidase-like catalytic activity, demonstrating superior enzymatic activity and antibacterial performance compared to monometallic Pd and Fe clusters, while surpassing those of previously reported nanozymes. DFT calculations reveal that, compared to monometallic Pd clusters, atomically dispersed Pd-Fe clusters synergistically catalyze O2 cleavage into OO* intermediates via Pd-Fe interfacial sites while exhibiting lower energy barriers, which is the critical factor for their enhanced enzyme-like activity. This study provides novel insights into constructing highly efficient atomically dispersed bimetallic cluster nanozymes.
高效纳米酶的开发面临催化活性不足和原子利用率低的挑战。原子分散金属纳米酶因其高的原子利用率和优异的催化活性而受到广泛关注。由于异质金属相互作用产生的协同几何和电子效应,双金属催化剂表现出增强的催化性能。本文中,我们报道了一种原子分散的钯铁双金属团簇纳米酶,其中完全暴露的Pd团簇与相邻的Fe原子团簇结合,被锚定在富含缺陷的纳米金刚石-石墨烯载体上(PdFe/ND@G)。在原子分散的双金属团簇中制备的Pd-Fe界面位点为高效催化反应提供了丰富的氧活化位点,并表现出增强的类似氧化酶的催化活性,与单金属Pd和Fe团簇相比,显示出优越的酶活性和抗菌性能,同时超过了先前报道的纳米酶。DFT计算表明,与单金属钯簇相比,原子分散的钯-铁簇通过钯-铁界面位点协同催化O2裂解成OO*中间体,同时具有较低的能垒,这是其增强类酶活性的关键因素。该研究为构建高效的原子分散双金属簇纳米酶提供了新的见解。
{"title":"Atomically dispersed bimetallic Pd-Fe clusters for boosting catalytic antibacterial performance with O2","authors":"Tao Li, Wan Wang, Jiawei Chen, Yue Wang, Xiangbin Cai, Lini Yang, Xin Liu, Jiangyong Diao, Zarrin Es'haghi, Lixin Xia, Li Jin, Guoqing Wang, Hongyang Liu","doi":"10.1016/j.jmst.2025.12.048","DOIUrl":"https://doi.org/10.1016/j.jmst.2025.12.048","url":null,"abstract":"The development of highly efficient nanozymes faces challenges of insufficient catalytic activity and low atom utilization. Atomically dispersed metal nanozymes have received widespread attention due to their high atomic utilization efficiency and exceptional catalytic activity. Bimetallic catalysts demonstrated enhanced catalytic performance owing to synergistic geometric and electronic effects arising from heterometallic interactions. Herein, we report an atomically dispersed palladium-iron bimetallic cluster nanozyme, in which fully exposed Pd clusters bonded to adjacent Fe atomic clusters are anchored onto defect-rich nanodiamond-graphene supports (PdFe/ND@G). The Pd-Fe interfacial sites fabricated in atomically dispersed bimetallic clusters deliver abundant oxygen activation sites for high-efficiency catalytic reactions and exhibit enhanced oxidase-like catalytic activity, demonstrating superior enzymatic activity and antibacterial performance compared to monometallic Pd and Fe clusters, while surpassing those of previously reported nanozymes. DFT calculations reveal that, compared to monometallic Pd clusters, atomically dispersed Pd-Fe clusters synergistically catalyze O<sub>2</sub> cleavage into OO* intermediates via Pd-Fe interfacial sites while exhibiting lower energy barriers, which is the critical factor for their enhanced enzyme-like activity. This study provides novel insights into constructing highly efficient atomically dispersed bimetallic cluster nanozymes.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"48 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145937952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and mechanical properties of VPP 3D-printed silicon nitride honeycombs VPP 3d打印氮化硅蜂窝的制备及其力学性能
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-07 DOI: 10.1016/j.jmst.2026.01.002
Chi Huang, Liya Zheng, Zhilin Tian, Bin Li
Silicon nitride (Si3N4) honeycombs are gaining increasing attention due to their high specific strength, excellent dielectric properties, and superior heat resistance. However, producing Si3N4 honeycombs with complex geometries and precisely controlled pore structures remains a significant challenge. This study successfully fabricates eight types of Si3N4 honeycomb ceramics with intricate designs using vat photopolymerization (VPP) technology. To enable these advanced structures, a slurry with enhanced curing depth was developed by hydroxylating Si3N4 powders and incorporating a highly reactive photosensitive resin, achieving a curing depth of 120 μm. The viscosity of the slurry decreased from 1782.17 to 0.70 Pa s as the shear rate increased from 1 to 100 s−1, with no noticeable sedimentation observed after 30 days. The study also investigates the failure mechanisms and mechanical properties of the different honeycomb structures. It was found that the failure modes were closely linked to their cell structure, with re-entrant, triangular, and square honeycombs exhibiting exceptional compressive properties. Notably, the re-entrant honeycomb demonstrated superior compressive strength, elastic modulus, energy absorption, specific energy absorption, and specific strength of 453.8 ± 41.6 MPa, 7.7 ± 0.8 GPa, 14.4 ± 1.3 kJ, 6.6 ± 0.4 kJ kg−1, and 210.2 ± 18.6 MPa cm3 g−1, respectively. The results indicate that the re-entrant structure, with its negative Poisson’s ratio, benefits from an interplay of strut deformations that delay failure, enhancing the overall structural strength. This work highlights the potential of VPP 3D printing to fabricate Si3N4 ceramic honeycombs with sophisticated structures and controllable pore geometries. It offers valuable insights into the mechanical properties and failure behaviors of different honeycomb designs, providing a foundation for the future design and application of Si3N4 honeycomb ceramics.
氮化硅(Si3N4)蜂窝由于其高比强度、优异的介电性能和优越的耐热性而受到越来越多的关注。然而,生产具有复杂几何形状和精确控制孔隙结构的Si3N4蜂窝仍然是一个重大挑战。本研究利用还原光聚合(VPP)技术成功制备了8种设计复杂的氮化硅蜂窝陶瓷。为了实现这些先进的结构,通过羟基化Si3N4粉末并加入高活性光敏树脂,开发了具有增强固化深度的浆料,实现了120 μm的固化深度。随着剪切速率从1增加到100 s−1,料浆粘度从1782.17降低到0.70 Pa s, 30 d后无明显沉降。研究了不同蜂窝结构的破坏机理和力学性能。研究发现,破坏模式与蜂窝结构密切相关,重入式、三角形和方形蜂窝均表现出优异的压缩性能。值得注意的是,再入蜂窝的抗压强度、弹性模量、能量吸收、比能吸收和比强度分别为453.8±41.6 MPa、7.7±0.8 GPa、14.4±1.3 kJ、6.6±0.4 kJ kg−1和210.2±18.6 MPa cm3 g−1。结果表明,负泊松比的再入结构受益于支撑变形的相互作用,延迟了破坏,提高了整体结构强度。这项工作强调了VPP 3D打印在制造具有复杂结构和可控孔隙几何形状的Si3N4陶瓷蜂窝方面的潜力。研究结果对不同蜂窝设计的力学性能和破坏行为有重要意义,为Si3N4蜂窝陶瓷的进一步设计和应用奠定了基础。
{"title":"Fabrication and mechanical properties of VPP 3D-printed silicon nitride honeycombs","authors":"Chi Huang, Liya Zheng, Zhilin Tian, Bin Li","doi":"10.1016/j.jmst.2026.01.002","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.01.002","url":null,"abstract":"Silicon nitride (Si<sub>3</sub>N<sub>4</sub>) honeycombs are gaining increasing attention due to their high specific strength, excellent dielectric properties, and superior heat resistance. However, producing Si<sub>3</sub>N<sub>4</sub> honeycombs with complex geometries and precisely controlled pore structures remains a significant challenge. This study successfully fabricates eight types of Si<sub>3</sub>N<sub>4</sub> honeycomb ceramics with intricate designs using vat photopolymerization (VPP) technology. To enable these advanced structures, a slurry with enhanced curing depth was developed by hydroxylating Si<sub>3</sub>N<sub>4</sub> powders and incorporating a highly reactive photosensitive resin, achieving a curing depth of 120 μm. The viscosity of the slurry decreased from 1782.17 to 0.70 Pa s as the shear rate increased from 1 to 100 s<sup>−1</sup>, with no noticeable sedimentation observed after 30 days. The study also investigates the failure mechanisms and mechanical properties of the different honeycomb structures. It was found that the failure modes were closely linked to their cell structure, with re-entrant, triangular, and square honeycombs exhibiting exceptional compressive properties. Notably, the re-entrant honeycomb demonstrated superior compressive strength, elastic modulus, energy absorption, specific energy absorption, and specific strength of 453.8 ± 41.6 MPa, 7.7 ± 0.8 GPa, 14.4 ± 1.3 kJ, 6.6 ± 0.4 kJ kg<sup>−1</sup>, and 210.2 ± 18.6 MPa cm<sup>3</sup> g<sup>−1</sup>, respectively. The results indicate that the re-entrant structure, with its negative Poisson’s ratio, benefits from an interplay of strut deformations that delay failure, enhancing the overall structural strength. This work highlights the potential of VPP 3D printing to fabricate Si<sub>3</sub>N<sub>4</sub> ceramic honeycombs with sophisticated structures and controllable pore geometries. It offers valuable insights into the mechanical properties and failure behaviors of different honeycomb designs, providing a foundation for the future design and application of Si<sub>3</sub>N<sub>4</sub> honeycomb ceramics.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"94 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145947507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schottky heterojunctions enabling enhanced interfacial polarization for high-performance electromagnetic wave absorption 肖特基异质结能够增强界面极化,用于高性能电磁波吸收
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-07 DOI: 10.1016/j.jmst.2025.12.046
Xuan Li, Jinkun Liu, Zirui Jia, Di Lan, Ding Ai, Zhenguo Gao, Fengrui Bai, Guanglei Wu
Constructing Schottky heterojunctions to enhance interfacial polarization holds great potential for advancing materials with efficient electromagnetic wave (EMW) absorption capabilities. In this study, porous carbon fiber composites were prepared by calcining NiFe-containing precursors to catalyze the growth of N-doped carbon nanotubes (N-CNTs). This approach resulted in the encapsulation of numerous NiFe nanoalloy particles within the N-CNTs, creating abundant Schottky heterointerfaces. Theoretical calculations confirmed the formation of Schottky heterojunctions and electron transfer from the NiFe nanoalloy particles to the N-CNTs, which established a strong built-in electric field and enhanced interfacial polarization. Experimental and analytical tests demonstrated excellent EMW absorption performance, achieving a minimum reflection loss of −52.4 dB at a thickness of 1.9 mm and an effective absorption bandwidth of 7.36 GHz at 2.5 mm. Furthermore, owing to its unique structural configuration, the composite exhibited outstanding corrosion resistance. This study elucidates the contribution of Schottky heterojunctions to synergistic polarization enhancement and provides meaningful guidance for the rational design of high-efficiency electromagnetic wave-absorbing materials through heterointerface engineering.
构建肖特基异质结来增强界面极化,对于提高具有高效电磁波吸收能力的材料具有巨大的潜力。在本研究中,通过煅烧含nife前驱体来催化n掺杂碳纳米管(N-CNTs)的生长,制备了多孔碳纤维复合材料。这种方法导致许多NiFe纳米合金颗粒被封装在N-CNTs内,从而产生丰富的肖特基异质界面。理论计算证实,NiFe纳米合金颗粒形成了Schottky异质结,电子从NiFe纳米合金颗粒向N-CNTs转移,建立了强大的内置电场,增强了界面极化。实验和分析测试表明,该材料具有优异的EMW吸收性能,在1.9 mm厚度处的反射损耗最小为- 52.4 dB,在2.5 mm厚度处的有效吸收带宽为7.36 GHz。此外,由于其独特的结构形态,复合材料表现出优异的耐腐蚀性。本研究阐明了肖特基异质结对协同极化增强的贡献,为异质界面工程合理设计高效电磁波吸波材料提供了有意义的指导。
{"title":"Schottky heterojunctions enabling enhanced interfacial polarization for high-performance electromagnetic wave absorption","authors":"Xuan Li, Jinkun Liu, Zirui Jia, Di Lan, Ding Ai, Zhenguo Gao, Fengrui Bai, Guanglei Wu","doi":"10.1016/j.jmst.2025.12.046","DOIUrl":"https://doi.org/10.1016/j.jmst.2025.12.046","url":null,"abstract":"Constructing Schottky heterojunctions to enhance interfacial polarization holds great potential for advancing materials with efficient electromagnetic wave (EMW) absorption capabilities. In this study, porous carbon fiber composites were prepared by calcining NiFe-containing precursors to catalyze the growth of N-doped carbon nanotubes (N-CNTs). This approach resulted in the encapsulation of numerous NiFe nanoalloy particles within the N-CNTs, creating abundant Schottky heterointerfaces. Theoretical calculations confirmed the formation of Schottky heterojunctions and electron transfer from the NiFe nanoalloy particles to the N-CNTs, which established a strong built-in electric field and enhanced interfacial polarization. Experimental and analytical tests demonstrated excellent EMW absorption performance, achieving a minimum reflection loss of −52.4 dB at a thickness of 1.9 mm and an effective absorption bandwidth of 7.36 GHz at 2.5 mm. Furthermore, owing to its unique structural configuration, the composite exhibited outstanding corrosion resistance. This study elucidates the contribution of Schottky heterojunctions to synergistic polarization enhancement and provides meaningful guidance for the rational design of high-efficiency electromagnetic wave-absorbing materials through heterointerface engineering.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"3 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145937517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing plasticity in Ti575 alloy through controlled deformation mechanisms activation by solid solution treatment 通过控制变形机制激活固溶处理提高Ti575合金塑性
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-06 DOI: 10.1016/j.jmst.2025.12.047
Guodong Wang, Sisi Xie, Yuqing Song, Mingxiang Zhu, Jinhong Guo, Xiaoxuan Xu, Yonghao Yu, Xiangyi Xue, Hongchao Kou
A dual-scale lamellar α-phase microstructure was developed in Ti575 alloy through solution treatment in the (α+β) region. Lowering solution temperature coarsened the lamellar α phase and reduced Al content, thereby shifting the early deformation mechanism to α twinning, followed by extensive dislocation slip. The significant twinning-induced plasticity effect from micron-scale α lamellae, combined with the crack-arresting capability of the dual-scale lamellar architecture, increased the elongation from 5.6% to 16.9% while maintaining the alloy’s strength. This approach, which does not require changes to the alloy composition, provides a practical and effective method to significantly enhance the plasticity of titanium alloys without compromising their strength.
通过固溶处理,Ti575合金在(α+β)区形成双尺度层状α相组织。降低固溶温度使片层α相变粗,Al含量降低,使早期变形机制转变为α孪晶,随后发生大面积位错滑移。微米级α片层显著的孪晶诱导塑性效应,加上双尺度片层结构的止裂能力,使合金的延伸率从5.6%提高到16.9%,同时保持了合金的强度。这种不需要改变合金成分的方法,为在不影响钛合金强度的情况下显著提高其塑性提供了一种实用有效的方法。
{"title":"Enhancing plasticity in Ti575 alloy through controlled deformation mechanisms activation by solid solution treatment","authors":"Guodong Wang, Sisi Xie, Yuqing Song, Mingxiang Zhu, Jinhong Guo, Xiaoxuan Xu, Yonghao Yu, Xiangyi Xue, Hongchao Kou","doi":"10.1016/j.jmst.2025.12.047","DOIUrl":"https://doi.org/10.1016/j.jmst.2025.12.047","url":null,"abstract":"A dual-scale lamellar α-phase microstructure was developed in Ti575 alloy through solution treatment in the (α+β) region. Lowering solution temperature coarsened the lamellar α phase and reduced Al content, thereby shifting the early deformation mechanism to α twinning, followed by extensive dislocation slip. The significant twinning-induced plasticity effect from micron-scale α lamellae, combined with the crack-arresting capability of the dual-scale lamellar architecture, increased the elongation from 5.6% to 16.9% while maintaining the alloy’s strength. This approach, which does not require changes to the alloy composition, provides a practical and effective method to significantly enhance the plasticity of titanium alloys without compromising their strength.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"28 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145902568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic toughening by phase transformation and dislocation activity in (5RE0.2)Ta3O9 (RE = La, Gd, Nd, Dy, Sm, Eu, Ce) high-entropy ceramics (5RE0.2)Ta3O9 (RE = La, Gd, Nd, Dy, Sm, Eu, Ce)高熵陶瓷的相变和位错活性协同增韧
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-06 DOI: 10.1016/j.jmst.2026.01.001
Binbin Ning, Junyao Wu, Sai Liu, Jinwei Guo, Xiaopeng Hu, Qing Liu, Wang Zhu
A series of five (5RE0.2)Ta3O9 high-entropy ceramics (RE = La, Gd, Nd, Dy, Sm, Eu, Ce) is successfully synthesized via a solid-state method. Their temperature-dependent fracture toughness is systematically investigated across the 25–1200 °C range, using in situ three-point bending tests coupled with the digital image correlation method. The fracture toughness exhibits a non-monotonic variation: it peaks at 2.3 MPa m1/2 at room temperature, then sharply declines to a minimum of 1.5 MPa m1/2 at 400 °C. Subsequently, an anomalous rebound to approximately 2.1 MPa m1/2 is observed at 800 °C, followed by a further decrease, stabilizing between 1.7 and 1.9 MPa m1/2 at 1200 °C. High-temperature X-ray diffraction and high-resolution transmission electron microscope results confirm an irreversible orthorhombic-to-tetragonal phase transformation occurring between 600 and 800 °C. Aberration-corrected STEM provides direct atomic-scale evidence of a high-density dislocation network interacting with crack tips, revealing dislocation pinning, bridging, and crack deflection. The combined action of phase-transformation-induced lattice strain and dislocation-mediated toughening effectively suppresses linear crack advance and enhances energy dissipation, thereby accounting for the partial recovery of fracture toughness at 800 °C. These direct observations establish a distinctive synergistic toughening mechanism in high-entropy ceramics, in which irreversible phase transformation and thermally activated dislocation networks cooperate to improve high-temperature fracture resistance.
采用固相法成功合成了5种(5RE0.2)Ta3O9高熵陶瓷(RE = La, Gd, Nd, Dy, Sm, Eu, Ce)。在25-1200°C范围内,使用现场三点弯曲试验和数字图像相关方法,系统地研究了它们的温度依赖断裂韧性。断裂韧性呈非单调变化,室温时达到峰值2.3 MPa m1/2, 400℃时急剧下降至最小值1.5 MPa m1/2。随后,在800°C时观察到异常反弹至约2.1 MPa m1/2,随后进一步下降,在1200°C时稳定在1.7至1.9 MPa m1/2之间。高温x射线衍射和高分辨率透射电镜结果证实,在600 ~ 800℃之间发生了不可逆的正交向四方相变。像差校正的STEM提供了高密度位错网络与裂纹尖端相互作用的直接原子尺度证据,揭示了位错钉住、桥接和裂纹偏转。相变引起的晶格应变和位错介导的增韧的共同作用有效地抑制了线性裂纹的扩展,增强了能量耗散,从而导致了800℃时断裂韧性的部分恢复。这些直接观察结果在高熵陶瓷中建立了独特的协同增韧机制,其中不可逆相变和热激活的位错网络共同提高了高温抗断裂能力。
{"title":"Synergistic toughening by phase transformation and dislocation activity in (5RE0.2)Ta3O9 (RE = La, Gd, Nd, Dy, Sm, Eu, Ce) high-entropy ceramics","authors":"Binbin Ning, Junyao Wu, Sai Liu, Jinwei Guo, Xiaopeng Hu, Qing Liu, Wang Zhu","doi":"10.1016/j.jmst.2026.01.001","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.01.001","url":null,"abstract":"A series of five (5RE<ce:inf loc=\"post\">0.2</ce:inf>)Ta<ce:inf loc=\"post\">3</ce:inf>O<ce:inf loc=\"post\">9</ce:inf> high-entropy ceramics (RE = La, Gd, Nd, Dy, Sm, Eu, Ce) is successfully synthesized via a solid-state method. Their temperature-dependent fracture toughness is systematically investigated across the 25–1200 °C range, using in situ three-point bending tests coupled with the digital image correlation method. The fracture toughness exhibits a non-monotonic variation: it peaks at 2.3 MPa m<ce:sup loc=\"post\">1/2</ce:sup> at room temperature, then sharply declines to a minimum of 1.5 MPa m<ce:sup loc=\"post\">1/2</ce:sup> at 400 °C. Subsequently, an anomalous rebound to approximately 2.1 MPa m<ce:sup loc=\"post\">1/2</ce:sup> is observed at 800 °C, followed by a further decrease, stabilizing between 1.7 and 1.9 MPa m<ce:sup loc=\"post\">1/2</ce:sup> at 1200 °C. High-temperature X-ray diffraction and high-resolution transmission electron microscope results confirm an irreversible orthorhombic-to-tetragonal phase transformation occurring between 600 and 800 °C. Aberration-corrected STEM provides direct atomic-scale evidence of a high-density dislocation network interacting with crack tips, revealing dislocation pinning, bridging, and crack deflection. The combined action of phase-transformation-induced lattice strain and dislocation-mediated toughening effectively suppresses linear crack advance and enhances energy dissipation, thereby accounting for the partial recovery of fracture toughness at 800 °C. These direct observations establish a distinctive synergistic toughening mechanism in high-entropy ceramics, in which irreversible phase transformation and thermally activated dislocation networks cooperate to improve high-temperature fracture resistance.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"42 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145919884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpretable high-throughput machine learning-based screening of high-thermal-conductivity composites with experimental validation 可解释的高通量机器学习筛选高导热复合材料与实验验证
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-05 DOI: 10.1016/j.jmst.2025.12.045
Yu Zhang, Bai Xue, Lingjun Zeng, Xiaoke Bu, Lan Xie, Quanwei Chen, Junhua Zhang
{"title":"Interpretable high-throughput machine learning-based screening of high-thermal-conductivity composites with experimental validation","authors":"Yu Zhang, Bai Xue, Lingjun Zeng, Xiaoke Bu, Lan Xie, Quanwei Chen, Junhua Zhang","doi":"10.1016/j.jmst.2025.12.045","DOIUrl":"https://doi.org/10.1016/j.jmst.2025.12.045","url":null,"abstract":"","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"4 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145902592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrahigh oxygen sensitivity to the formation of single-phase Bi2Ti2O7 pyrochlore during deep undercooling solidification 深过冷凝固过程中形成单相Bi2Ti2O7焦绿石的超高氧敏感性
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-05 DOI: 10.1016/j.jmst.2025.12.044
Yidong Hu, Fan Yang, Guoliang Ren, Jianguo Li, Qiaodan Hu
The effect of oxygen partial pressure (pO2) of the solidification atmosphere on the formation of single-phase Bi2Ti2O7 prepared by deep undercooling rapid solidification was investigated. Comprehensive analyses on the solidification products showed that single-phase Bi2Ti2O7 was highly sensitive to the presence of oxygen in the solidification atmosphere. At a low pO2 of 1%, Bi2Ti4O11 was identified as the secondary phase; at pO2 of 5% and 10%, Bi4Ti3O12 was observed as the secondary phase. The formation mechanisms of different types of secondary phases under various pO2 were discussed from density functional theory calculations and solidification pathway analysis. Results from this work revealed the critical role of solidification atmosphere on the synthesis of single-phase Bi2Ti2O7 by rapid solidification, and the findings might be expanded to the solidification of other metastable oxides.
研究了凝固气氛中氧分压(pO2)对深度过冷快速凝固制备的单相Bi2Ti2O7形成的影响。对凝固产物的综合分析表明,单相Bi2Ti2O7对凝固气氛中氧气的存在高度敏感。在低pO2为1%时,Bi2Ti4O11被确定为次级相;在pO2为5%和10%时,第二相为Bi4Ti3O12。从密度泛函理论计算和凝固路径分析两方面探讨了不同pO2条件下不同类型二次相的形成机理。本研究结果揭示了凝固气氛对快速凝固合成单相Bi2Ti2O7的关键作用,并可推广到其他亚稳氧化物的凝固。
{"title":"Ultrahigh oxygen sensitivity to the formation of single-phase Bi2Ti2O7 pyrochlore during deep undercooling solidification","authors":"Yidong Hu, Fan Yang, Guoliang Ren, Jianguo Li, Qiaodan Hu","doi":"10.1016/j.jmst.2025.12.044","DOIUrl":"https://doi.org/10.1016/j.jmst.2025.12.044","url":null,"abstract":"The effect of oxygen partial pressure (<em>p</em>O<sub>2</sub>) of the solidification atmosphere on the formation of single-phase Bi<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> prepared by deep undercooling rapid solidification was investigated. Comprehensive analyses on the solidification products showed that single-phase Bi<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> was highly sensitive to the presence of oxygen in the solidification atmosphere. At a low <em>p</em>O<sub>2</sub> of 1%, Bi<sub>2</sub>Ti<sub>4</sub>O<sub>11</sub> was identified as the secondary phase; at <em>p</em>O<sub>2</sub> of 5% and 10%, Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> was observed as the secondary phase. The formation mechanisms of different types of secondary phases under various <em>p</em>O<sub>2</sub> were discussed from density functional theory calculations and solidification pathway analysis. Results from this work revealed the critical role of solidification atmosphere on the synthesis of single-phase Bi<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> by rapid solidification, and the findings might be expanded to the solidification of other metastable oxides.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"21 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring the thermo-mechanical and ablation performance of carbon/carbon composites by fiber lamination hybridization 利用纤维层压杂交技术定制碳/碳复合材料的热机械和烧蚀性能
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-28 DOI: 10.1016/j.jmst.2025.11.063
Jingya Peng, Wei Dong, Tiyuan Wang, Qingliang Shen, Shouyang Zhang, Hejun Li
{"title":"Tailoring the thermo-mechanical and ablation performance of carbon/carbon composites by fiber lamination hybridization","authors":"Jingya Peng, Wei Dong, Tiyuan Wang, Qingliang Shen, Shouyang Zhang, Hejun Li","doi":"10.1016/j.jmst.2025.11.063","DOIUrl":"https://doi.org/10.1016/j.jmst.2025.11.063","url":null,"abstract":"","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"92 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2025-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145844839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interface-engineered Polybenzoxazine/Aramid Ⅲ nanofiber composite aerogels with ultralow thermal conductivity, exceptional mechanical robustness, and intrinsic flame retardancy 界面工程聚苯并恶嗪/芳纶Ⅲ纳米纤维复合气凝胶具有超低导热性,卓越的机械坚固性和内在阻燃性
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-26 DOI: 10.1016/j.jmst.2025.12.038
Jiandong Yin, Bin Wang, Yunmei Xie, Guiyan Yang, Dong Xiang, Yuanpeng Wu, Tao Peng, Jie Zhang, Tianhang Huang, Chunxia Zhao, Hui Li, Jinbo Cheng, Xinnian Fan
High-performance aerogels, characterized by ultra-low density and very low thermal conductivity, show great potential for applications in aerospace, energy management, and fire safety. However, conventional inorganic aerogels often exhibit high brittleness and poor toughness. Single-component aramid Ⅲ nanofiber (AⅢNF) aerogels tend to collapse structurally when exposed to high temperatures or flames, which severely restricts their long-term performance. To overcome this challenge, we propose an interface-engineered in-situ polymerization coating strategy. A robust composite aerogel framework is fabricated by in-situ polymerizing polybenzoxazine (PBa) onto the surface of AⅢNFs. The preparation of this aerogel involves four main steps: (i) deprotonation and reprotonation of AⅢNFs, (ii) acid-catalyzed polymerization of benzoxazine monomers, (Ⅲ) ice-template-assisted freeze-drying, and (iv) hydrophobic modification through chemical vapor deposition. The resulting PBa/AⅢNF composite aerogel demonstrates very low thermal conductivity (0.027–0.032 W m−1 K−1), high compressive strength (up to 18.92 MPa), a robust compressive modulus (11.59 MPa), and intrinsic flame retardancy with a limiting oxygen index of 41.7%. Mechanistic analysis reveals that the PBa coating strengthens interfacial bonding via hydrogen bonding and π-π interactions, while generating a dense carbon layer during combustion that effectively impedes heat and oxygen transfer. In addition, the aerogel displays superhydrophobicity (contact angle > 150°) and long-term thermal aging stability at elevated temperatures. This study proposes a universal strategy that integrates high-char-forming polymers with nanofiber frameworks, enabling synergistic optimization of aerogel lightweight design, mechanical reinforcement, and multifunctional protection.
高性能气凝胶具有超低密度和极低导热性的特点,在航空航天、能源管理和消防安全方面具有巨大的应用潜力。然而,传统的无机气凝胶往往具有脆性高、韧性差的特点。单组分芳纶Ⅲ纳米纤维(AⅢNF)气凝胶在高温或火焰下容易发生结构崩塌,这严重限制了其长期性能。为了克服这一挑战,我们提出了一种界面工程原位聚合涂层策略。将聚苯并恶嗪(PBa)原位聚合到AⅢNFs表面,制备了坚固的复合气凝胶框架。该气凝胶的制备包括四个主要步骤:(i) AⅢNFs的去质子化和再还原,(ii)酸催化苯并恶嗪单体聚合,(Ⅲ)冰模板辅助冷冻干燥,(iv)通过化学气相沉积进行疏水改性。所制得的PBa/AⅢNF复合气凝胶导热系数极低(0.027 ~ 0.032 W m−1 K−1),抗压强度高(高达18.92 MPa),抗压模量高(11.59 MPa),固有阻燃性(极限氧指数为41.7%)。机理分析表明,PBa涂层通过氢键和π-π相互作用增强界面键合,同时在燃烧过程中产生致密的碳层,有效地阻碍了热量和氧气的传递。此外,气凝胶具有超疏水性(接触角>; 150°)和高温下的长期热老化稳定性。本研究提出了一种通用策略,将高炭成型聚合物与纳米纤维框架相结合,实现气凝胶轻量化设计、机械加固和多功能保护的协同优化。
{"title":"Interface-engineered Polybenzoxazine/Aramid Ⅲ nanofiber composite aerogels with ultralow thermal conductivity, exceptional mechanical robustness, and intrinsic flame retardancy","authors":"Jiandong Yin, Bin Wang, Yunmei Xie, Guiyan Yang, Dong Xiang, Yuanpeng Wu, Tao Peng, Jie Zhang, Tianhang Huang, Chunxia Zhao, Hui Li, Jinbo Cheng, Xinnian Fan","doi":"10.1016/j.jmst.2025.12.038","DOIUrl":"https://doi.org/10.1016/j.jmst.2025.12.038","url":null,"abstract":"High-performance aerogels, characterized by ultra-low density and very low thermal conductivity, show great potential for applications in aerospace, energy management, and fire safety. However, conventional inorganic aerogels often exhibit high brittleness and poor toughness. Single-component aramid Ⅲ nanofiber (AⅢNF) aerogels tend to collapse structurally when exposed to high temperatures or flames, which severely restricts their long-term performance. To overcome this challenge, we propose an interface-engineered in-situ polymerization coating strategy. A robust composite aerogel framework is fabricated by in-situ polymerizing polybenzoxazine (PBa) onto the surface of AⅢNFs. The preparation of this aerogel involves four main steps: (i) deprotonation and reprotonation of AⅢNFs, (ii) acid-catalyzed polymerization of benzoxazine monomers, (Ⅲ) ice-template-assisted freeze-drying, and (iv) hydrophobic modification through chemical vapor deposition. The resulting PBa/AⅢNF composite aerogel demonstrates very low thermal conductivity (0.027–0.032 W m<sup>−1</sup> K<sup>−1</sup>), high compressive strength (up to 18.92 MPa), a robust compressive modulus (11.59 MPa), and intrinsic flame retardancy with a limiting oxygen index of 41.7%. Mechanistic analysis reveals that the PBa coating strengthens interfacial bonding via hydrogen bonding and π-π interactions, while generating a dense carbon layer during combustion that effectively impedes heat and oxygen transfer. In addition, the aerogel displays superhydrophobicity (contact angle &gt; 150°) and long-term thermal aging stability at elevated temperatures. This study proposes a universal strategy that integrates high-char-forming polymers with nanofiber frameworks, enabling synergistic optimization of aerogel lightweight design, mechanical reinforcement, and multifunctional protection.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"4 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145844675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Materials Science & Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1