Pub Date : 2019-04-04DOI: 10.1117/1.JMM.18.2.021205
T. Ohashi, K. Hasumi, M. Ikota, G. Lorusso, H. Mertens, N. Horiguchi
Abstract. A methodology to evaluate the electrical contact between nanowire (NW) and source/drain in NW FETs was investigated with SEM voltage contrast (VC). The electrical defects are robustly detected by VC. The validity of the inspection result was verified by transmission electron microscope (TEM) physical observations. Moreover, estimation of the parasitic resistance and capacitance was achieved from the quantitative analysis of VC images, which are acquired with different scan conditions of an electron beam (EB). A model considering the dynamics of EB-induced charging was proposed to calculate the VC. The resistance and capacitance can be determined by comparing the model-based VC with experimentally obtained VC. Quantitative estimation of resistance and capacitance would be valuable not only for more accurate inspection but also for identification of the defect point.
{"title":"Contact inspection and resistance–capacitance measurement of Si nanowire with SEM voltage contrast","authors":"T. Ohashi, K. Hasumi, M. Ikota, G. Lorusso, H. Mertens, N. Horiguchi","doi":"10.1117/1.JMM.18.2.021205","DOIUrl":"https://doi.org/10.1117/1.JMM.18.2.021205","url":null,"abstract":"Abstract. A methodology to evaluate the electrical contact between nanowire (NW) and source/drain in NW FETs was investigated with SEM voltage contrast (VC). The electrical defects are robustly detected by VC. The validity of the inspection result was verified by transmission electron microscope (TEM) physical observations. Moreover, estimation of the parasitic resistance and capacitance was achieved from the quantitative analysis of VC images, which are acquired with different scan conditions of an electron beam (EB). A model considering the dynamics of EB-induced charging was proposed to calculate the VC. The resistance and capacitance can be determined by comparing the model-based VC with experimentally obtained VC. Quantitative estimation of resistance and capacitance would be valuable not only for more accurate inspection but also for identification of the defect point.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"13 1","pages":"021205 - 021205"},"PeriodicalIF":2.3,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75495823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-04-04DOI: 10.1117/1.JMM.18.2.021202
Allen H. Gabor, N. Felix
Abstract. Background: The mathematical equations that explain overlay error of multiple-exposure patterning schemes have not been fully described in the literature and some commonly accepted methods lead to inaccurate estimated and/or measured overlay error. Aims: Develop the proper mathematical framework, using a first principles statistical approach, so that engineers using multiple-exposure patterning can determine the overlay impact and overlay controls needed. Alert patterning community that grouped overlay metrology of multiple-exposures undermeasures the true overlay error. Approach: Use image placement error and population-based statistics to enable a mathematical framework to be established that predicts the actual overlay error for an overlaying pattern that minimizes overlay error back to a pattern that is patterned with multiple-exposure patterning. Results: The overlay error between two patterns is usually less than the root sum square of the two overlay error values of the patterns individually measured to a common prior pattern. Overlay error for a pattern minimizing back to multiple-prior patterns increases quickly as systematic overlay error between the prior patterns increases. Conclusions: Controlling systematic overlay error between patterns of a multipatterned layer is important for subsequent patterns that need to minimize overlay error back to the composite multipatterned layer. The ratio between the overlay error determined with metrology and true overlay can be calculated.
{"title":"Overlay error statistics for multiple-exposure patterning","authors":"Allen H. Gabor, N. Felix","doi":"10.1117/1.JMM.18.2.021202","DOIUrl":"https://doi.org/10.1117/1.JMM.18.2.021202","url":null,"abstract":"Abstract. Background: The mathematical equations that explain overlay error of multiple-exposure patterning schemes have not been fully described in the literature and some commonly accepted methods lead to inaccurate estimated and/or measured overlay error. Aims: Develop the proper mathematical framework, using a first principles statistical approach, so that engineers using multiple-exposure patterning can determine the overlay impact and overlay controls needed. Alert patterning community that grouped overlay metrology of multiple-exposures undermeasures the true overlay error. Approach: Use image placement error and population-based statistics to enable a mathematical framework to be established that predicts the actual overlay error for an overlaying pattern that minimizes overlay error back to a pattern that is patterned with multiple-exposure patterning. Results: The overlay error between two patterns is usually less than the root sum square of the two overlay error values of the patterns individually measured to a common prior pattern. Overlay error for a pattern minimizing back to multiple-prior patterns increases quickly as systematic overlay error between the prior patterns increases. Conclusions: Controlling systematic overlay error between patterns of a multipatterned layer is important for subsequent patterns that need to minimize overlay error back to the composite multipatterned layer. The ratio between the overlay error determined with metrology and true overlay can be calculated.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"39 1","pages":"021202 - 021202"},"PeriodicalIF":2.3,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78370765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-04-01DOI: 10.1117/1.JMM.18.2.024003
G. Freychet, I. Cordova, Terry R. McAfee, G. Kumar, R. Pandolfi, C. Anderson, S. Dhuey, P. Naulleau, Cheng Wang, A. Hexemer
Abstract. Extreme ultraviolet (EUV) lithography is one of the most promising printing techniques for high-volume semiconductor manufacturing at the 14-nm half-pitch device node and beyond. However, key challenges around EUV photoresist materials, such as the exposure-dose sensitivity or the line-width roughness, continue to impede its full adoption into industrial nanofab facilities. Metrology tools are required to address these challenges by helping to assess the impact of the EUV materials’ properties and processing conditions along different steps of the nanofabrication process. We apply the resonant soft x-ray scattering (RSoXS) technique to gain insights into the structure of patterned EUV resists before the development step takes place. By using energies around the carbon K-edge to take advantage of small differences in chemistry, the electronic density contrast between the exposed and unexposed regions of the resists could be enhanced in order to image the patterns with subnanometer precision. Critical-dimension grazing-incidence small-angle x-ray scattering is then performed at energies where the contrast is maximized, enabling the reconstruction of the three-dimensional shape of the latent image. We demonstrate the potential of RSoXS to provide a high-resolution height-sensitive profile of patterned EUV resists, which will help in quantifying the evolution of critical features, such as the line-edge roughness, at a key step of the nanofabrication process.
{"title":"Reconstructing the three-dimensional latent image of extreme ultraviolet resists with resonant soft x-ray scattering","authors":"G. Freychet, I. Cordova, Terry R. McAfee, G. Kumar, R. Pandolfi, C. Anderson, S. Dhuey, P. Naulleau, Cheng Wang, A. Hexemer","doi":"10.1117/1.JMM.18.2.024003","DOIUrl":"https://doi.org/10.1117/1.JMM.18.2.024003","url":null,"abstract":"Abstract. Extreme ultraviolet (EUV) lithography is one of the most promising printing techniques for high-volume semiconductor manufacturing at the 14-nm half-pitch device node and beyond. However, key challenges around EUV photoresist materials, such as the exposure-dose sensitivity or the line-width roughness, continue to impede its full adoption into industrial nanofab facilities. Metrology tools are required to address these challenges by helping to assess the impact of the EUV materials’ properties and processing conditions along different steps of the nanofabrication process. We apply the resonant soft x-ray scattering (RSoXS) technique to gain insights into the structure of patterned EUV resists before the development step takes place. By using energies around the carbon K-edge to take advantage of small differences in chemistry, the electronic density contrast between the exposed and unexposed regions of the resists could be enhanced in order to image the patterns with subnanometer precision. Critical-dimension grazing-incidence small-angle x-ray scattering is then performed at energies where the contrast is maximized, enabling the reconstruction of the three-dimensional shape of the latent image. We demonstrate the potential of RSoXS to provide a high-resolution height-sensitive profile of patterned EUV resists, which will help in quantifying the evolution of critical features, such as the line-edge roughness, at a key step of the nanofabrication process.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"695 24","pages":"024003 - 024003"},"PeriodicalIF":2.3,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72437946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-22DOI: 10.1117/1.JMM.18.1.013507
J. Chen, Yibo Lin, Yufeng Guo, Maolin Zhang, M. Alawieh, D. Pan
Abstract. With the shrinking feature sizes of semiconductor devices, manufacturing challenges increase dramatically. Among these challenges, lithography hotspot stands out as a prominent ramification of the growing gap between design and manufacturing. Practically, a hotspot refers to the failure in printing desired patterns in lithography. As lithography hotspots have significant impacts on manufacturing yield, the detection of hotspots in the early design stage is desired to achieve fast design closure. We propose a lithography hotspot detection framework using a double inception module structure. This structure performs better in both accuracy and false alarms by widening the conventional stacked structure to benefit feature extraction and using global average pooling to keep the spatial information. Experimental results show that the proposed structure achieves better performance than existing methods.
{"title":"Lithography hotspot detection using a double inception module architecture","authors":"J. Chen, Yibo Lin, Yufeng Guo, Maolin Zhang, M. Alawieh, D. Pan","doi":"10.1117/1.JMM.18.1.013507","DOIUrl":"https://doi.org/10.1117/1.JMM.18.1.013507","url":null,"abstract":"Abstract. With the shrinking feature sizes of semiconductor devices, manufacturing challenges increase dramatically. Among these challenges, lithography hotspot stands out as a prominent ramification of the growing gap between design and manufacturing. Practically, a hotspot refers to the failure in printing desired patterns in lithography. As lithography hotspots have significant impacts on manufacturing yield, the detection of hotspots in the early design stage is desired to achieve fast design closure. We propose a lithography hotspot detection framework using a double inception module structure. This structure performs better in both accuracy and false alarms by widening the conventional stacked structure to benefit feature extraction and using global average pooling to keep the spatial information. Experimental results show that the proposed structure achieves better performance than existing methods.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"124 1","pages":"013507 - 013507"},"PeriodicalIF":2.3,"publicationDate":"2019-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73227306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-18DOI: 10.1117/1.JMM.18.1.013506
Sara Fernández, D. Kazazis, R. Rajendran, I. Mochi, P. Helfenstein, S. Yoshitake, Y. Ekinci
Abstract. Background: One of the challenges for extreme ultraviolet (EUV) lithography is the mitigation of mask three-dimensional effects arising from the oblique incident angle and the mask topography. As the scanners’ numerical aperture and the pattern aspect ratio increase, these effects become more prominent. A potential solution to reduce them consists in replacing the current TaBN absorber for a higher-k material. Aim: We demonstrate the potential of a mask inspection platform to evaluate the impact of different absorber materials on actinic defect inspection. Approach: We evaluate the performance of a reflective-mode EUV mask scanning microscope (RESCAN), our actinic lensless inspection tool, with three different absorber materials (hydrogen silsesquioxane, TaBN, and Ni). We study the effect of these materials on the image formation and compare the defect maps. Results: The Ni absorber mask exhibits a better contrast compared to the TaBN one, even though the thickness of the layers differs only by 10 nm. Programmed defects are localized and detected with a high signal-to-noise ratio (SNR). Conclusions: The gain in contrast for the Ni absorber being significant, the SNR is higher for a smaller defect in a TaBN absorber photomask. RESCAN allows the evaluation of the performance of absorber materials in defectivity and image formation on small samples.
{"title":"Comparative study of extreme ultraviolet absorber materials using lensless actinic imaging","authors":"Sara Fernández, D. Kazazis, R. Rajendran, I. Mochi, P. Helfenstein, S. Yoshitake, Y. Ekinci","doi":"10.1117/1.JMM.18.1.013506","DOIUrl":"https://doi.org/10.1117/1.JMM.18.1.013506","url":null,"abstract":"Abstract. Background: One of the challenges for extreme ultraviolet (EUV) lithography is the mitigation of mask three-dimensional effects arising from the oblique incident angle and the mask topography. As the scanners’ numerical aperture and the pattern aspect ratio increase, these effects become more prominent. A potential solution to reduce them consists in replacing the current TaBN absorber for a higher-k material. Aim: We demonstrate the potential of a mask inspection platform to evaluate the impact of different absorber materials on actinic defect inspection. Approach: We evaluate the performance of a reflective-mode EUV mask scanning microscope (RESCAN), our actinic lensless inspection tool, with three different absorber materials (hydrogen silsesquioxane, TaBN, and Ni). We study the effect of these materials on the image formation and compare the defect maps. Results: The Ni absorber mask exhibits a better contrast compared to the TaBN one, even though the thickness of the layers differs only by 10 nm. Programmed defects are localized and detected with a high signal-to-noise ratio (SNR). Conclusions: The gain in contrast for the Ni absorber being significant, the SNR is higher for a smaller defect in a TaBN absorber photomask. RESCAN allows the evaluation of the performance of absorber materials in defectivity and image formation on small samples.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"15 1","pages":"013506 - 013506"},"PeriodicalIF":2.3,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85319464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-13DOI: 10.1117/1.JMM.18.1.014002
I. Mochi, M. Timmermans, E. Gallagher, Marina Mariano, I. Pollentier, R. Rajendran, P. Helfenstein, Sara Fernández, D. Kazazis, Y. Ekinci
Abstract. Background: The purpose of EUV pellicles is to protect the surface of EUV lithography masks from particle contamination. It is important to ensure that the optical characteristics of the pellicle membrane do not critically affect the reticle image quality. Aim: We want to verify the possibility to integrate pellicle inspection and characterization capabilities in reflective-mode EUV mask scanning microscope (RESCAN), our actinic mask inspection platform based on coherent diffraction imaging. Approach: We studied the impact of a few selected EUV pellicle prototypes on the quality and the contrast of the reticle image obtained with RESCAN. Results: We measured the scattering distribution of the pellicles, and we correlated it with the mask image contrast and fidelity. We also detected the presence of a 6.5-μm-diameter fiber on the pellicle surface. Conclusions: We demonstrated that RESCAN is suitable for through-pellicle actinic mask inspection and can be also used to characterize and monitor the pellicle quality.
{"title":"Experimental evaluation of the impact of carbon nanotube EUV pellicles on reticle imaging","authors":"I. Mochi, M. Timmermans, E. Gallagher, Marina Mariano, I. Pollentier, R. Rajendran, P. Helfenstein, Sara Fernández, D. Kazazis, Y. Ekinci","doi":"10.1117/1.JMM.18.1.014002","DOIUrl":"https://doi.org/10.1117/1.JMM.18.1.014002","url":null,"abstract":"Abstract. Background: The purpose of EUV pellicles is to protect the surface of EUV lithography masks from particle contamination. It is important to ensure that the optical characteristics of the pellicle membrane do not critically affect the reticle image quality. Aim: We want to verify the possibility to integrate pellicle inspection and characterization capabilities in reflective-mode EUV mask scanning microscope (RESCAN), our actinic mask inspection platform based on coherent diffraction imaging. Approach: We studied the impact of a few selected EUV pellicle prototypes on the quality and the contrast of the reticle image obtained with RESCAN. Results: We measured the scattering distribution of the pellicles, and we correlated it with the mask image contrast and fidelity. We also detected the presence of a 6.5-μm-diameter fiber on the pellicle surface. Conclusions: We demonstrated that RESCAN is suitable for through-pellicle actinic mask inspection and can be also used to characterize and monitor the pellicle quality.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"18 1","pages":"014002 - 014002"},"PeriodicalIF":2.3,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90966297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-12DOI: 10.1117/1.JMM.18.1.013505
David A. B. Miller, D. Forman, Adam Jones, R. McLeod
Abstract. Background: Resolution enhancement combined with multiple patterning enables photolithography to write patterns with both feature size and spacing below the diffraction limit. Continued resolution enhancement at i-line will enable an older generation of lithographic tools to reach resolutions typically achieved using deep UV (DUV). Aim: A demonstration and deterministic model of large critical dimension enhancement at i-line. In addition to enhanced resolution, the technique must also achieve high repeatability and low line edge roughness (LER), while using commercial resists. Approach: Overexposing photoresist with high-contrast interference nulls leads to subwavelength critical dimensions. Starting with a theoretical analysis of the technique, we consider limits imposed by optics, linewidth scaling rates, and LER. This analysis shows that low LER and deterministic linewidth control are both readily achievable. Results: We demonstrate large area, i-line patterning of features with 50-nm linewidth, without the aid of subsequent trim or etch and with LER of 5 nm. Linewidth is shown to scale with dose as predicted from the optical model, independent of photoresist. Conclusions: These dimensions are similar to what may be achieved using scanning near-field, DUV, or e-beam lithography, yet achieved with far-field near UV exposures over a large area. Deterministic linewidth control and low LER make this process viable for fabrication at length scales well below those typically achieved with i-line tools.
{"title":"Super-resolved critical dimensions in far-field I-line photolithography","authors":"David A. B. Miller, D. Forman, Adam Jones, R. McLeod","doi":"10.1117/1.JMM.18.1.013505","DOIUrl":"https://doi.org/10.1117/1.JMM.18.1.013505","url":null,"abstract":"Abstract. Background: Resolution enhancement combined with multiple patterning enables photolithography to write patterns with both feature size and spacing below the diffraction limit. Continued resolution enhancement at i-line will enable an older generation of lithographic tools to reach resolutions typically achieved using deep UV (DUV). Aim: A demonstration and deterministic model of large critical dimension enhancement at i-line. In addition to enhanced resolution, the technique must also achieve high repeatability and low line edge roughness (LER), while using commercial resists. Approach: Overexposing photoresist with high-contrast interference nulls leads to subwavelength critical dimensions. Starting with a theoretical analysis of the technique, we consider limits imposed by optics, linewidth scaling rates, and LER. This analysis shows that low LER and deterministic linewidth control are both readily achievable. Results: We demonstrate large area, i-line patterning of features with 50-nm linewidth, without the aid of subsequent trim or etch and with LER of 5 nm. Linewidth is shown to scale with dose as predicted from the optical model, independent of photoresist. Conclusions: These dimensions are similar to what may be achieved using scanning near-field, DUV, or e-beam lithography, yet achieved with far-field near UV exposures over a large area. Deterministic linewidth control and low LER make this process viable for fabrication at length scales well below those typically achieved with i-line tools.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"91 1","pages":"013505 - 013505"},"PeriodicalIF":2.3,"publicationDate":"2019-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83774863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-27DOI: 10.1117/1.JMM.18.1.013504
Lianjia Wu, M. Baljozović, G. Portale, D. Kazazis, M. Vockenhuber, T. Jung, Y. Ekinci, S. Castellanos
Abstract. Background:Inorganic resists show promising performances in extreme ultraviolet (EUV) lithography. Yet, there is a need for understanding the exact chemical mechanisms induced by EUV light on these materials. Aim:To gain knowledge on the EUV chemistry of inorganic resists, we investigate hybrid inorganic–organic molecular compounds, metal oxoclusters (MOCs). Their molecular nature allows for the monitoring of specific structural changes by means of spectroscopy and thus for the elucidation of the mechanisms behind pattern formation. Approach:We compare the sensitivity of MOCs based on Zr and Hf, and methacrylate ligands as EUV resists. The chemical and structural changes causing the solubility switch were investigated by ex situ x-ray spectroscopy, infrared spectroscopy, ultraviolet–visible spectroscopy, and grazing incidence x-ray scattering. Results:Higher sensitivity was detected for the Hf-based material, in line with its higher absorptivity. A small fraction of the carboxylate ligands is lost at doses that yield solubility contrast, whereas aggregation of the inorganic clusters was not observed. Conclusions:These results provide evidence that, although the mechanism of solubility switch in these materials starts with decarboxylation reactions, it mainly proceeds through cross linking of the organic shells instead of aggregation of the inorganic clusters.
{"title":"Mechanistic insights in Zr- and Hf-based molecular hybrid EUV photoresists","authors":"Lianjia Wu, M. Baljozović, G. Portale, D. Kazazis, M. Vockenhuber, T. Jung, Y. Ekinci, S. Castellanos","doi":"10.1117/1.JMM.18.1.013504","DOIUrl":"https://doi.org/10.1117/1.JMM.18.1.013504","url":null,"abstract":"Abstract. Background:Inorganic resists show promising performances in extreme ultraviolet (EUV) lithography. Yet, there is a need for understanding the exact chemical mechanisms induced by EUV light on these materials. Aim:To gain knowledge on the EUV chemistry of inorganic resists, we investigate hybrid inorganic–organic molecular compounds, metal oxoclusters (MOCs). Their molecular nature allows for the monitoring of specific structural changes by means of spectroscopy and thus for the elucidation of the mechanisms behind pattern formation. Approach:We compare the sensitivity of MOCs based on Zr and Hf, and methacrylate ligands as EUV resists. The chemical and structural changes causing the solubility switch were investigated by ex situ x-ray spectroscopy, infrared spectroscopy, ultraviolet–visible spectroscopy, and grazing incidence x-ray scattering. Results:Higher sensitivity was detected for the Hf-based material, in line with its higher absorptivity. A small fraction of the carboxylate ligands is lost at doses that yield solubility contrast, whereas aggregation of the inorganic clusters was not observed. Conclusions:These results provide evidence that, although the mechanism of solubility switch in these materials starts with decarboxylation reactions, it mainly proceeds through cross linking of the organic shells instead of aggregation of the inorganic clusters.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"191 ","pages":"013504 - 013504"},"PeriodicalIF":2.3,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72542427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract. This erratum corrects mistakes in the original paper.
摘要这份勘误表纠正了原文中的错误。
{"title":"Optimization of defect compensation for extreme ultraviolet lithography mask by covariance-matrix-adaption evolution strategy (Erratum)","authors":"Heng Zhang, Sikun Li, Xiang-zhao Wang, Chaoxing Yang, Wei Cheng","doi":"10.1117/1.jmm.18.1.019801","DOIUrl":"https://doi.org/10.1117/1.jmm.18.1.019801","url":null,"abstract":"Abstract. This erratum corrects mistakes in the original paper.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"46 1","pages":"019801 - 019801"},"PeriodicalIF":2.3,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90639221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-21DOI: 10.1117/1.JMM.18.1.015503
Poorna Lakshmi Uppalapati, Balasubramanian Malayappan, Narayan Krishnaswamy, P. Pattnaik
Abstract. An electrostatically actuated MEMS cantilever beam-based waveguide Bragg grating tunable optical filter has been designed and simulated. The tunable filter is obtained by shifting the reflected wavelength of the waveguide Bragg grating located on the electrostatically actuated cantilever beam. An approach to increasing the electrostatic actuation of the beam by having an electrode underneath the beam is used and a large wavelength tuning range for the optical filter is achieved. Dimensions of the device are chosen such that full-width-half-maximum is 0.75 nm, thus capable of filtering adjacent channels of the dense wavelength division multiplexing (DWDM) network. The filter has a tuning range of 10.65 nm (1552.52 to 1563.17 nm) providing add/drop functionality for 14 adjacent DWDM channels.
{"title":"Electrostatically tunable MOEMS waveguide Bragg grating-based DWDM optical filter","authors":"Poorna Lakshmi Uppalapati, Balasubramanian Malayappan, Narayan Krishnaswamy, P. Pattnaik","doi":"10.1117/1.JMM.18.1.015503","DOIUrl":"https://doi.org/10.1117/1.JMM.18.1.015503","url":null,"abstract":"Abstract. An electrostatically actuated MEMS cantilever beam-based waveguide Bragg grating tunable optical filter has been designed and simulated. The tunable filter is obtained by shifting the reflected wavelength of the waveguide Bragg grating located on the electrostatically actuated cantilever beam. An approach to increasing the electrostatic actuation of the beam by having an electrode underneath the beam is used and a large wavelength tuning range for the optical filter is achieved. Dimensions of the device are chosen such that full-width-half-maximum is 0.75 nm, thus capable of filtering adjacent channels of the dense wavelength division multiplexing (DWDM) network. The filter has a tuning range of 10.65 nm (1552.52 to 1563.17 nm) providing add/drop functionality for 14 adjacent DWDM channels.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"35 1","pages":"015503 - 015503"},"PeriodicalIF":2.3,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77762458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}