Harun Niron, Arthur Vienne, Patrick Frings, Reinaldy Poetra, Sara Vicca
Climate change is one of the most urgent environmental challenges that humanity faces. In addition to the reduction of greenhouse gas emissions, safe and robust carbon dioxide removal (CDR) technologies that capture atmospheric CO2 and ensure long-term sequestration are required. Among CDR technologies, enhanced silicate weathering (ESW) has been suggested as a promising option. While ESW has been demonstrated to depend strongly on pH, water, and temperature, recent studies suggest that biota may accelerate mineral weathering rates. Bacillus subtilis is a plant growth-promoting rhizobacterium that can facilitate weathering to obtain mineral nutrients. It is a promising agricultural biofertilizer, as it helps plants acquire nutrients and protects them from environmental stresses. Given that croplands are optimal implementation fields for ESW, any synergy between ESW and B. subtilis can hold great potential for further practice. B. subtilis was reported to enhance weathering under laboratory conditions, but there is a lack of data for soil applications. In a soil-mesocosm experiment, we examined the effect of B. subtilis on basalt weathering. B. subtilis–basalt interaction stimulated basalt weathering and increased soil extractable Fe. The combined application displayed higher CDR potential compared to basalt-only application (3.7 vs. 2.3 tons CO2 ha−1) taking solid and liquid cation pools into account. However, the cumulative CO2 efflux decreased by approximately 2 tons CO2 ha−1 with basalt-only treatment, while the combined application did not affect the CO2 efflux. We found limited mobilization of cations to the liquid phase as most were retained in the soil. Additionally, we found substantial mobilization of basalt-originated Mg, Fe, and Al to oxide- and organic-bound soil fractions. We, therefore, conclude that basalt addition showed relatively low inorganic CDR potential but a high capacity for SOM stabilization. The outcomes indicated the importance of weathering rate–GHG emission integration and the high potential of SOM stabilization in ESW studies.
气候变化是人类面临的最紧迫的环境挑战之一。除了减少温室气体排放外,还需要安全稳健的二氧化碳去除(CDR)技术,以捕获大气中的二氧化碳并确保长期封存。在 CDR 技术中,增强硅酸盐风化(ESW)被认为是一种很有前途的选择。虽然 ESW 已被证明在很大程度上取决于 pH 值、水和温度,但最近的研究表明,生物群可加快矿物风化速度。枯草芽孢杆菌是一种促进植物生长的根瘤菌,可促进风化以获得矿物养分。它是一种很有前途的农业生物肥料,因为它能帮助植物获得养分,并保护植物免受环境压力的影响。鉴于农田是 ESW 的最佳实施领域,ESW 与枯草芽孢杆菌之间的任何协同增效作用都具有进一步实践的巨大潜力。据报道,在实验室条件下,枯草芽孢杆菌可促进风化,但缺乏土壤应用方面的数据。在一项土壤-模拟实验中,我们研究了枯草芽孢杆菌对玄武岩风化的影响。枯草芽孢杆菌与玄武岩的相互作用促进了玄武岩的风化并增加了土壤中的可提取铁。考虑到固体和液体阳离子池,联合施用比单独施用玄武岩显示出更高的CDR潜力(3.7吨二氧化碳对2.3吨二氧化碳公顷-1)。然而,只施基质的累积二氧化碳排出量减少了约 2 吨二氧化碳(公顷-1),而联合施肥对二氧化碳排出量没有影响。我们发现阳离子向液相的迁移量有限,因为大部分阳离子都保留在土壤中。此外,我们还发现玄武岩中的镁、铁和铝被大量迁移到氧化物和有机结合的土壤成分中。因此,我们得出结论,玄武岩添加物显示出相对较低的无机 CDR 潜力,但具有较高的 SOM 稳定能力。研究结果表明了风化率-温室气体排放整合的重要性以及 SOM 稳定化在 ESW 研究中的巨大潜力。
{"title":"Exploring the synergy of enhanced weathering and Bacillus subtilis: A promising strategy for sustainable agriculture","authors":"Harun Niron, Arthur Vienne, Patrick Frings, Reinaldy Poetra, Sara Vicca","doi":"10.1111/gcb.17511","DOIUrl":"10.1111/gcb.17511","url":null,"abstract":"<p>Climate change is one of the most urgent environmental challenges that humanity faces. In addition to the reduction of greenhouse gas emissions, safe and robust carbon dioxide removal (CDR) technologies that capture atmospheric CO<sub>2</sub> and ensure long-term sequestration are required. Among CDR technologies, enhanced silicate weathering (ESW) has been suggested as a promising option. While ESW has been demonstrated to depend strongly on pH, water, and temperature, recent studies suggest that biota may accelerate mineral weathering rates. <i>Bacillus subtilis</i> is a plant growth-promoting rhizobacterium that can facilitate weathering to obtain mineral nutrients. It is a promising agricultural biofertilizer, as it helps plants acquire nutrients and protects them from environmental stresses. Given that croplands are optimal implementation fields for ESW, any synergy between ESW and <i>B. subtilis</i> can hold great potential for further practice. <i>B. subtilis</i> was reported to enhance weathering under laboratory conditions, but there is a lack of data for soil applications. In a soil-mesocosm experiment, we examined the effect of <i>B. subtilis</i> on basalt weathering. <i>B. subtilis</i>–basalt interaction stimulated basalt weathering and increased soil extractable Fe. The combined application displayed higher CDR potential compared to basalt-only application (3.7 vs. 2.3 tons CO<sub>2</sub> ha<sup>−1</sup>) taking solid and liquid cation pools into account. However, the cumulative CO<sub>2</sub> efflux decreased by approximately 2 tons CO<sub>2</sub> ha<sup>−1</sup> with basalt-only treatment, while the combined application did not affect the CO<sub>2</sub> efflux. We found limited mobilization of cations to the liquid phase as most were retained in the soil. Additionally, we found substantial mobilization of basalt-originated Mg, Fe, and Al to oxide- and organic-bound soil fractions. We, therefore, conclude that basalt addition showed relatively low inorganic CDR potential but a high capacity for SOM stabilization. The outcomes indicated the importance of weathering rate–GHG emission integration and the high potential of SOM stabilization in ESW studies.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"30 9","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samuel J. Willard, Guopeng Liang, Savannah Adkins, Karen Foley, Jessica Murray, Bonnie Waring
Soil organic carbon (SOC) sequestration is increasingly emphasized as a climate mitigation solution, as scientists, policy makers, and land managers prioritize enhancing belowground C storage. To identify key underlying drivers of total SOC distributions, we compiled a global dataset of soil C stocks held in three chemical forms, reflecting different mechanisms of organic C protection: free particulate organic C (fPOC), physically protected particulate organic C (oPOC), and mineral-protected soil organic C (mSOC). In our dataset, these three SOC pools were differentially sensitive to the effects of climate, soil mineralogy, and ecosystem type, emphasizing the importance of distinguishing between physical and chemical C protection mechanisms. C stocks in all three pools varied among ecosystems: cropland soils stored the least amount in each pool, with forest and grassland soils both containing significantly more fPOC (40%–60% greater in each ecosystem) than croplands. oPOC stocks did not significantly differ from zero in croplands but were substantial in forest and grassland soils. Meanwhile, mSOC stocks were the greatest in grasslands and shrublands (90%–100% greater than croplands). In cropland soils, there were no major effects of tillage on C storage in any of the three pools, while manure addition enhanced mSOC stocks, especially when added with inorganic N. Thus, the human land use intensity in croplands appears to reduce SOC storage in all major pools, depending upon management; retaining native vegetation should be emphasized to maintain current global SOC stocks.
{"title":"Land use drives the distribution of free, physically protected, and chemically protected soil organic carbon storage at a global scale","authors":"Samuel J. Willard, Guopeng Liang, Savannah Adkins, Karen Foley, Jessica Murray, Bonnie Waring","doi":"10.1111/gcb.17507","DOIUrl":"10.1111/gcb.17507","url":null,"abstract":"<p>Soil organic carbon (SOC) sequestration is increasingly emphasized as a climate mitigation solution, as scientists, policy makers, and land managers prioritize enhancing belowground C storage. To identify key underlying drivers of total SOC distributions, we compiled a global dataset of soil C stocks held in three chemical forms, reflecting different mechanisms of organic C protection: free particulate organic C (fPOC), physically protected particulate organic C (oPOC), and mineral-protected soil organic C (mSOC). In our dataset, these three SOC pools were differentially sensitive to the effects of climate, soil mineralogy, and ecosystem type, emphasizing the importance of distinguishing between physical and chemical C protection mechanisms. C stocks in all three pools varied among ecosystems: cropland soils stored the least amount in each pool, with forest and grassland soils both containing significantly more fPOC (40%–60% greater in each ecosystem) than croplands. oPOC stocks did not significantly differ from zero in croplands but were substantial in forest and grassland soils. Meanwhile, mSOC stocks were the greatest in grasslands and shrublands (90%–100% greater than croplands). In cropland soils, there were no major effects of tillage on C storage in any of the three pools, while manure addition enhanced mSOC stocks, especially when added with inorganic N. Thus, the human land use intensity in croplands appears to reduce SOC storage in all major pools, depending upon management; retaining native vegetation should be emphasized to maintain current global SOC stocks.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"30 9","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.17507","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai L. Kopecky, Sally J. Holbrook, Emalia Partlow, Madeline Cunningham, Russell J. Schmitt
Ecosystem responses to disturbance depend on the nature of the perturbation and the ecological legacies left behind, making it critical to understand how climate-driven changes in disturbance regimes modify resilience properties of ecosystems. For coral reefs, recent increases in severe marine heat waves now co-occur with powerful storms, the historic agent of disturbance. While storms kill coral and remove their skeletons, heat waves bleach and kill corals but leave their skeletons intact. Here, we explored how the material legacy of dead coral skeletons modifies two key ecological processes that underpin coral reef resilience: the ability of herbivores to control macroalgae (spatial competitors of corals), and the replenishment of new coral colonies. Our findings, grounded by a major bleaching event at our long-term study locale, revealed that the presence of structurally complex dead skeletons reduced grazing on turf algae by ~80%. For macroalgae, browsing was reduced by >40% on less preferred (unpalatable) taxa, but only by ~10% on more preferred taxa. This enabled unpalatable macroalgae to reach ~45% cover in 2 years. By contrast, herbivores prevented macroalgae from becoming established on adjacent reefs that lacked skeletons. Manipulation of unpalatable macroalgae revealed that the cover reached after 1 year (~20%) reduced recruitment of corals by 50%. The effect of skeletons on juvenile coral growth was contingent on the timing of settlement relative to the disturbance. If corals settled directly after bleaching (before macroalgae colonized), dead skeletons enhanced colony growth by 34%, but this benefit was lost if corals colonized dead skeletons a year after the disturbance once macroalgae had proliferated. These findings underscore how a material legacy from a changing disturbance regime can alter ecosystem resilience properties by disrupting key trophic and competitive interactions that shape post-disturbance community dynamics.
{"title":"Changing disturbance regimes, material legacies, and stabilizing feedbacks: Dead coral skeletons impair key recovery processes following coral bleaching","authors":"Kai L. Kopecky, Sally J. Holbrook, Emalia Partlow, Madeline Cunningham, Russell J. Schmitt","doi":"10.1111/gcb.17504","DOIUrl":"10.1111/gcb.17504","url":null,"abstract":"<p>Ecosystem responses to disturbance depend on the nature of the perturbation and the ecological legacies left behind, making it critical to understand how climate-driven changes in disturbance regimes modify resilience properties of ecosystems. For coral reefs, recent increases in severe marine heat waves now co-occur with powerful storms, the historic agent of disturbance. While storms kill coral and remove their skeletons, heat waves bleach and kill corals but leave their skeletons intact. Here, we explored how the material legacy of dead coral skeletons modifies two key ecological processes that underpin coral reef resilience: the ability of herbivores to control macroalgae (spatial competitors of corals), and the replenishment of new coral colonies. Our findings, grounded by a major bleaching event at our long-term study locale, revealed that the presence of structurally complex dead skeletons reduced grazing on turf algae by ~80%. For macroalgae, browsing was reduced by >40% on less preferred (unpalatable) taxa, but only by ~10% on more preferred taxa. This enabled unpalatable macroalgae to reach ~45% cover in 2 years. By contrast, herbivores prevented macroalgae from becoming established on adjacent reefs that lacked skeletons. Manipulation of unpalatable macroalgae revealed that the cover reached after 1 year (~20%) reduced recruitment of corals by 50%. The effect of skeletons on juvenile coral growth was contingent on the timing of settlement relative to the disturbance. If corals settled directly after bleaching (before macroalgae colonized), dead skeletons enhanced colony growth by 34%, but this benefit was lost if corals colonized dead skeletons a year after the disturbance once macroalgae had proliferated. These findings underscore how a material legacy from a changing disturbance regime can alter ecosystem resilience properties by disrupting key trophic and competitive interactions that shape post-disturbance community dynamics.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"30 9","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.17504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modeling how climate change may affect the potential distribution of species and communities typically utilizes bioclimatic variables. Distribution predictions rely on the values of the bioclimatic variable (e.g., precipitation of the wettest quarter). However, the ecological meaning of most of these variables depends strongly on the within-year position of a specific climate period (SCP), for example, the wettest quarter of the year, which is often overlooked. Our aim was to determine how the within-year position of the SCPs would shift (SCP shift) in reaction to climate change in a global context. We calculated the deviations of the future within-year position of the SCPs relative to the reference period. We used four future time periods, four scenarios, and four CMIP6 global climate models (GCMs) to provide an ensemble of expectations regarding SCP shifts and locate the spatial hotspots of the shifts. Also, the size and frequency of the SCP shifts were subjected to linear models to evaluate the importance of the impact modeler's decision on time period, scenario, and GCM. We found ample examples of SCP shifts exceeding 2 months, with 6-month shifts being predicted as well. Many areas in the tropics are expected to experience both temperature and precipitation-related shifts, but precipitation-related shifts are abundantly predicted for the temperate and arctic zones as well. The combined shifts at the Equator reinforce the likelihood of the emergence of no-analogue climates there. The shifts become more pronounced as time and scenario progress, while GCMs could not be ranked in a clear order in this respect. For most SCPs, the modeler's decision on the GCM was the least important, while the choice of time period was typically more important than the choice of scenario. Future predictive distribution models should account for SCP shifts and incorporate the phenomenon in the modeling efforts.
{"title":"Precipitation and temperature timings underlying bioclimatic variables rearrange under climate change globally","authors":"Ákos Bede-Fazekas, Imelda Somodi","doi":"10.1111/gcb.17496","DOIUrl":"https://doi.org/10.1111/gcb.17496","url":null,"abstract":"<p>Modeling how climate change may affect the potential distribution of species and communities typically utilizes bioclimatic variables. Distribution predictions rely on the values of the bioclimatic variable (e.g., precipitation of the wettest quarter). However, the ecological meaning of most of these variables depends strongly on the within-year position of a specific climate period (SCP), for example, the wettest quarter of the year, which is often overlooked. Our aim was to determine how the within-year position of the SCPs would shift (SCP shift) in reaction to climate change in a global context. We calculated the deviations of the future within-year position of the SCPs relative to the reference period. We used four future time periods, four scenarios, and four CMIP6 global climate models (GCMs) to provide an ensemble of expectations regarding SCP shifts and locate the spatial hotspots of the shifts. Also, the size and frequency of the SCP shifts were subjected to linear models to evaluate the importance of the impact modeler's decision on time period, scenario, and GCM. We found ample examples of SCP shifts exceeding 2 months, with 6-month shifts being predicted as well. Many areas in the tropics are expected to experience both temperature and precipitation-related shifts, but precipitation-related shifts are abundantly predicted for the temperate and arctic zones as well. The combined shifts at the Equator reinforce the likelihood of the emergence of no-analogue climates there. The shifts become more pronounced as time and scenario progress, while GCMs could not be ranked in a clear order in this respect. For most SCPs, the modeler's decision on the GCM was the least important, while the choice of time period was typically more important than the choice of scenario. Future predictive distribution models should account for SCP shifts and incorporate the phenomenon in the modeling efforts.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"30 9","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.17496","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melanie Dickie, Robert Serrouya, Marcus Becker, Craig DeMars, Michael J. Noonan, Robin Steenweg, Stan Boutin, Adam T. Ford
In Dickie et al. (2024), we contrasted the effects of climate and habitat alteration on white-tailed deer density, recognizing the role of both these factors. Barnas et al.'s (2024) critique raised concerns about data transformations, model overfitting, and inference methods, but our analysis demonstrates that these criticisms are either unfounded or align with our original conclusions. We reaffirm that while both climate and habitat alteration contribute to deer densities, management decisions cannot ignore the strong role of climate, which is only predicted to increase in coming decades.