Pub Date : 2024-02-21DOI: 10.1016/j.mee.2024.112158
Kiran Raj, Yongwoo Kwon
Hafnia or hafnium oxide is a high- dielectric material with paramount importance in the realm of semiconductor devices. Recent advancements in 3D device structures require a few nanometer-thick conformal films on non-planar substrates. During the fabrication stage, the annealing process of thin films has been discovered to mitigate delamination issues at the film-substrate interface. However, it has been observed that the residual stress, which emerges as the film cools to room temperature, may lead to delamination. In this study, we propose an idealized atomistic model to mimic the critical region of a 3D-NAND structure, to get insights into the effect of thermal stress and delamination during the annealing of hafnia-made thin film. We employ molecular dynamics simulation using charge-optimized many-body potential (COMB) to perform heating and cooling simulations for different thicknesses of the hafnia layer. Our results suggest that, during heating, as the annealing temperature increases, the severity of delamination decreases. At extremely low thickness of the hafnia layer, delamination does not occur. However, significant delamination is observed during the cooling process, especially when the high temperature gradient is high.
{"title":"Investigation of thermal stress effects during annealing of hafnia-made thin film using molecular dynamics simulations","authors":"Kiran Raj, Yongwoo Kwon","doi":"10.1016/j.mee.2024.112158","DOIUrl":"10.1016/j.mee.2024.112158","url":null,"abstract":"<div><p>Hafnia or hafnium oxide is a high-<span><math><mi>κ</mi></math></span> dielectric material with paramount importance in the realm of semiconductor devices. Recent advancements in 3D device structures require a few nanometer-thick conformal films on non-planar substrates. During the fabrication stage, the annealing process of thin films has been discovered to mitigate delamination issues at the film-substrate interface. However, it has been observed that the residual stress, which emerges as the film cools to room temperature, may lead to delamination. In this study, we propose an idealized atomistic model to mimic the critical region of a 3D-NAND structure, to get insights into the effect of thermal stress and delamination during the annealing of hafnia-made thin film. We employ molecular dynamics simulation using charge-optimized many-body potential (COMB) to perform heating and cooling simulations for different thicknesses of the hafnia layer. Our results suggest that, during heating, as the annealing temperature increases, the severity of delamination decreases. At extremely low thickness of the hafnia layer, delamination does not occur. However, significant delamination is observed during the cooling process, especially when the high temperature gradient is high.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"288 ","pages":"Article 112158"},"PeriodicalIF":2.3,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139919945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16DOI: 10.1016/j.mee.2024.112157
Burak Sakacı, Deniz Özenli
In this work, a capacitor multiplier based on a Multiple Output-Voltage Difference Transconductance Amplifier (MO-VDTA) is built by using Arbel-Goldminz cells with extensive performance analysis. Considering the large chip area occupation of capacitors, capacitor multipliers are one of the most required analog building blocks in most of low frequency applications. In this respect, the obtained capacitor multiplier is tested in a 2nd order low-pass filter by changing the cut-off frequency from 2 kHz to around 12.4 kHz. The multiplication factor (denoted as “k”) of the proposed architecture can be adjusted electronically from 120 to 750 for approximately two decades, while the structure contains only a single active element with a base capacitance. Additionally, the multiplication factor can be safely increased by using additional transconductance stages in the MO-VDTA active block. In the performance analysis, post-layout results are provided in conjunction with process corners, Monte-Carlo analyses and experimental verifications on the basis of commercial off-the-shelf elements such as AD844 and LM13700s.
{"title":"A current mode capacitance multiplier employing a single active element based on Arbel-Goldminz cells for low frequency applications","authors":"Burak Sakacı, Deniz Özenli","doi":"10.1016/j.mee.2024.112157","DOIUrl":"10.1016/j.mee.2024.112157","url":null,"abstract":"<div><p>In this work, a capacitor multiplier based on a Multiple Output-Voltage Difference Transconductance Amplifier (MO-VDTA) is built by using Arbel-Goldminz cells with extensive performance analysis. Considering the large chip area occupation of capacitors, capacitor multipliers are one of the most required analog building blocks in most of low frequency applications. In this respect, the obtained capacitor multiplier is tested in a 2nd order low-pass filter by changing the cut-off frequency from 2 kHz to around 12.4 kHz. The multiplication factor (denoted as “k”) of the proposed architecture can be adjusted electronically from 120 to 750 for approximately two decades, while the structure contains only a single active element with a base capacitance. Additionally, the multiplication factor can be safely increased by using additional transconductance stages in the MO-VDTA active block. In the performance analysis, post-layout results are provided in conjunction with process corners, Monte-Carlo analyses and experimental verifications on the basis of commercial off-the-shelf elements such as AD844 and LM13700s.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"288 ","pages":"Article 112157"},"PeriodicalIF":2.3,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139920071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-09DOI: 10.1016/j.mee.2024.112156
Jiangang Zuo , Meng Wang , Jie Zhang
Medical images contain rich individual health information, making the protection of their privacy and security crucial. This study first proposes a novel multi-segment memristor based on a multi-segment linear function. Then, building upon the Sprott-B chaotic system, a mirror-symmetric memristor multi-scroll chaotic attractor (MMSCAs) is introduced by incorporating logic pulse signals and the novel multi-segment memristor. Dynamic analysis of MMSCAs is conducted from four aspects: equilibrium points, Lyapunov exponents and bifurcations, coexisting attractors, and complexity. Lyapunov exponents and bifurcation diagram analysis reveal rich dynamical behaviors in MMSCAs, including inverse period-doubling bifurcations, burst chaotic, transient chaotic, and offset boosting. MMSCAs exhibit periodic and chaotic attractors co-existing under different initial conditions, along with multi-stability and super multi-stability. Complexity analysis results indicate that MMSCAs possess higher complexity and better randomness compared to other memristor chaotic systems. The accuracy of the MMSCAs mathematical model is verified through circuit design and simulation, and the implementation of MMSCAs in the embedded domain is extended using the STM32 microcontroller. Finally, a new cryptographic system is designed by integrating MMSCAs with RNA computation and applied to medical image encryption. The security of the cryptographic system is evaluated through key space and sensitivity, histogram, and correlation, while its robustness is evaluated through resistance to cropping and noise. The analysis results demonstrate high security and strong robustness of the cryptographic system, offering a novel solution for the protection of medical image information.
{"title":"Design of multi-scroll chaotic attractor based on a novel multi-segmented memristor and its application in medical image encryption","authors":"Jiangang Zuo , Meng Wang , Jie Zhang","doi":"10.1016/j.mee.2024.112156","DOIUrl":"https://doi.org/10.1016/j.mee.2024.112156","url":null,"abstract":"<div><p>Medical images contain rich individual health information, making the protection of their privacy and security crucial. This study first proposes a novel multi-segment memristor based on a multi-segment linear function. Then, building upon the Sprott-B chaotic system, a mirror-symmetric memristor multi-scroll chaotic attractor (MMSCAs) is introduced by incorporating logic pulse signals and the novel multi-segment memristor. Dynamic analysis of MMSCAs is conducted from four aspects: equilibrium points, Lyapunov exponents and bifurcations, coexisting attractors, and complexity. Lyapunov exponents and bifurcation diagram analysis reveal rich dynamical behaviors in MMSCAs, including inverse period-doubling bifurcations, burst chaotic, transient chaotic, and offset boosting. MMSCAs exhibit periodic and chaotic attractors co-existing under different initial conditions, along with multi-stability and super multi-stability. Complexity analysis results indicate that MMSCAs possess higher complexity and better randomness compared to other memristor chaotic systems. The accuracy of the MMSCAs mathematical model is verified through circuit design and simulation, and the implementation of MMSCAs in the embedded domain is extended using the STM32 microcontroller. Finally, a new cryptographic system is designed by integrating MMSCAs with RNA computation and applied to medical image encryption. The security of the cryptographic system is evaluated through key space and sensitivity, histogram, and correlation, while its robustness is evaluated through resistance to cropping and noise. The analysis results demonstrate high security and strong robustness of the cryptographic system, offering a novel solution for the protection of medical image information.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"287 ","pages":"Article 112156"},"PeriodicalIF":2.3,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139738341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The characterization of the self-heating effect (SHE) has been an important research topic in advanced technology, but the existing characterizations are few and the characterization process is relatively complex. In this research, a SHE characterization model is established based on the relationship between output transconductance variation (), gate source voltage (VGS) and temperature variation () caused by SHE through machine learning, and then the model is validated by theoretical analyses and experimental simulation. The characterization model is capable of directly calculating the caused by SHE during I - V testing and simplifying the SHE characterization steps while ensuring characterization accuracy ( difference < 1 °C), thus saving costs. It is also found that the model can expand the characterization range (VGS: 0.3–0.7 V) of SHE and conducts quantitative characterization with model calculation under different VGS, realizing a high characterization resolution of VGS: 0.01 V. The circuit level application proves that the method can be effectively applied to the characterization of the SHE and solves the problem of the characterization of the circuit level SHE.
自热效应(SHE)的表征一直是先进技术领域的重要研究课题,但现有的表征方法较少,表征过程也相对复杂。本研究通过机器学习,根据 SHE 引起的输出跨导变化(Δgm)、栅源电压(VGS)和温度变化(ΔT)之间的关系建立了 SHE 表征模型,然后通过理论分析和实验仿真对模型进行了验证。该表征模型能够直接计算 I - V 测试期间由 SHE 引起的 ∆T 值,简化了 SHE 表征步骤,同时确保了表征精度(∆T 值相差 < 1 °C),从而节约了成本。研究还发现,该模型可以扩展 SHE 的表征范围(VGS:0.3-0.7 V),并在不同 VGS 下通过模型计算进行定量表征,实现了 VGS. 0.01 V 的高表征分辨率:电路级应用证明该方法可有效应用于 SHE 的表征,解决了电路级 SHE 表征的难题。
{"title":"A new characterization model of FinFET self-heating effect based on FinFET characteristic parameter","authors":"Yue Wang, Huaguo Liang, Hong Zhang, Danqing Li, Yingchun Lu, Maoxiang Yi, Zhengfeng Huang","doi":"10.1016/j.mee.2024.112155","DOIUrl":"https://doi.org/10.1016/j.mee.2024.112155","url":null,"abstract":"<div><p>The characterization of the self-heating effect (SHE) has been an important research topic in advanced technology, but the existing characterizations are few and the characterization process is relatively complex. In this research, a SHE characterization model is established based on the relationship between output transconductance variation (<span><math><mo>∆</mo><msub><mi>g</mi><mi>m</mi></msub></math></span>), gate source voltage (<em>V</em><sub><em>GS</em></sub>) and temperature variation (<span><math><mo>∆</mo><mi>T</mi></math></span>) caused by SHE through machine learning, and then the model is validated by theoretical analyses and experimental simulation. The characterization model is capable of directly calculating the <span><math><mo>∆</mo><mi>T</mi></math></span> caused by SHE during I - V testing and simplifying the SHE characterization steps while ensuring characterization accuracy (<span><math><mo>∆</mo><mi>T</mi></math></span> difference < 1 °C), thus saving costs. It is also found that the model can expand the characterization range (<em>V</em><sub><em>GS</em></sub>: 0.3–0.7 V) of SHE and conducts quantitative characterization with model calculation under different <em>V</em><sub><em>GS</em></sub>, realizing a high characterization resolution of <em>V</em><sub><em>GS</em></sub>: 0.01 V. The circuit level application proves that the method can be effectively applied to the characterization of the SHE and solves the problem of the characterization of the circuit level SHE.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"287 ","pages":"Article 112155"},"PeriodicalIF":2.3,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139718567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.1016/j.mee.2024.112154
G. Brunetti , A. De Pastina , C. Rotella , V. Usov , G. Villanueva , M. Hegner
We introduce a detailed design and fabrication process of Silicon microcantilever arrays for biomolecular detection in liquid environment, utilized with laser readout. We present typical fabrication problems and provide related solutions to obtain high quality resonators via a robust, reproducible and high-yield process. Sensors in these arrays are individually functionalized with self-assembled chemical monolayers exposing various pH-active end-groups into solution. Dynamic-mode controlled frequency measurements in varying pH solutions result in stress-induced change of the sensor spring constant. pH changes in the solution lead to deprotonation of exposed functional chemical groups at high pH and the repulsive charges induced strain is proportional to the quantity and confinement of charges at the sensor interface. These built-up strains that affect the mechanical stiffness can be reversibly relaxed when exposed again to low pH environments.
{"title":"Silicon microresonator arrays: A comprehensive study on fabrication techniques and pH-controlled stress-induced variations in cantilever stiffness","authors":"G. Brunetti , A. De Pastina , C. Rotella , V. Usov , G. Villanueva , M. Hegner","doi":"10.1016/j.mee.2024.112154","DOIUrl":"https://doi.org/10.1016/j.mee.2024.112154","url":null,"abstract":"<div><p>We introduce a detailed design and fabrication process of Silicon microcantilever arrays for biomolecular detection in liquid environment, utilized with laser readout. We present typical fabrication problems and provide related solutions to obtain high quality resonators via a robust, reproducible and high-yield process. Sensors in these arrays are individually functionalized with self-assembled chemical monolayers exposing various pH-active end-groups into solution. Dynamic-mode controlled frequency measurements in varying pH solutions result in stress-induced change of the sensor spring constant. pH changes in the solution lead to deprotonation of exposed functional chemical groups at high pH and the repulsive charges induced strain is proportional to the quantity and confinement of charges at the sensor interface. These built-up strains that affect the mechanical stiffness can be reversibly relaxed when exposed again to low pH environments.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"287 ","pages":"Article 112154"},"PeriodicalIF":2.3,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167931724000236/pdfft?md5=1183b305adb57154e812eb922407d6ba&pid=1-s2.0-S0167931724000236-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139709698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.mee.2024.112144
Zhaoyang Lu , Longlong Li , Wen Chen , Yuhao Xiao , Weilong You , Guoqiang Wu
In this work, a scandium-doped aluminum nitride (ScAlN)-based piezoelectric breathing mode dual-ring resonator with high temperature stability is presented. The designed resonator consists of two identical rings and a coupling straight beam in between. A combination of highly doped silicon and composite structure using silicon oxide is implemented to improve the frequency-temperature stability of the resonator. The dual-ring resonator is fabricated based on a ScAlN-based thin-film piezoelectric-on‑silicon (TPoS) platform. The measurement results show that the fabricated dual-ring resonator has a loaded quality factor () of 6889 and an insertion loss of 13.898 dB at its resonant frequency of 16.766 MHz, corresponding to a motional resistance of 395 , and an unloaded quality factor () of 8681. The resonator's is almost constant within the pressure range of less than 300 Pa, indicating a good process tolerance in the vacuum packaging process. With the aid of the passive temperature compensation, the reported resonator exhibits an overall frequency variation of less than ±70 ppm over the entire temperature range of 20 °C to 105 °C, which agrees well with the predicted value obtained by finite element method (FEM) analysis. Moreover, Allan deviations of the resonator-based oscillator frequency are collected.
本文介绍了一种基于掺钪氮化铝(ScAlN)的具有高温稳定性的压电呼吸模式双环谐振器。所设计的谐振器由两个相同的环和中间的耦合直梁组成。为提高谐振器的频率-温度稳定性,采用了高掺杂硅和使用氧化硅的复合结构。双环谐振器是基于硅基 ScAlN 薄膜压电(TPoS)平台制造的。测量结果表明,所制造的双环谐振器在其谐振频率 16.766 MHz 时的加载品质因数(Ql)为 6889,插入损耗为 13.898 dB,对应的运动电阻为 395 Ω,非加载品质因数(Qun)为 8681。谐振器的 Qun 在小于 300 Pa 的压力范围内几乎保持不变,这表明在真空包装过程中具有良好的工艺容差。在被动温度补偿的帮助下,报告的谐振器在 20 °C 至 105 °C 的整个温度范围内显示出小于 ±70 ppm 的整体频率变化,这与通过有限元法(FEM)分析获得的预测值十分吻合。此外,还收集了基于谐振器的振荡器频率的阿兰偏差。
{"title":"A ScAlN-based piezoelectric breathing mode dual-ring resonator with high temperature stability","authors":"Zhaoyang Lu , Longlong Li , Wen Chen , Yuhao Xiao , Weilong You , Guoqiang Wu","doi":"10.1016/j.mee.2024.112144","DOIUrl":"10.1016/j.mee.2024.112144","url":null,"abstract":"<div><p>In this work, a scandium-doped aluminum nitride (ScAlN)-based piezoelectric breathing mode dual-ring resonator with high temperature stability is presented. The designed resonator consists of two identical rings and a coupling straight beam in between. A combination of highly doped silicon and composite structure using silicon oxide is implemented to improve the frequency-temperature stability of the resonator. The dual-ring resonator is fabricated based on a ScAlN-based thin-film piezoelectric-on‑silicon (TPoS) platform. The measurement results show that the fabricated dual-ring resonator has a loaded quality factor (<span><math><msub><mi>Q</mi><mi>l</mi></msub></math></span>) of 6889 and an insertion loss of 13.898 dB at its resonant frequency of 16.766 MHz, corresponding to a motional resistance of 395 <span><math><mi>Ω</mi></math></span>, and an unloaded quality factor (<span><math><msub><mi>Q</mi><mi>un</mi></msub></math></span>) of 8681. The resonator's <span><math><msub><mi>Q</mi><mi>un</mi></msub></math></span> is almost constant within the pressure range of less than 300 Pa, indicating a good process tolerance in the vacuum packaging process. With the aid of the passive temperature compensation, the reported resonator exhibits an overall frequency variation of less than ±70 ppm over the entire temperature range of 20 °C to 105 °C, which agrees well with the predicted value obtained by finite element method (FEM) analysis. Moreover, Allan deviations of the resonator-based oscillator frequency are collected.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"287 ","pages":"Article 112144"},"PeriodicalIF":2.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139663612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-28DOI: 10.1016/j.mee.2024.112143
Tommaso Raveglia, Dario Crimella, Ali Gökhan Demir
Laser Induced Reverse Transfer (LIRT) is a versatile technique as a single-step deposition method allowing the localized transfer of a variety of different metals and polymers on transparent, ultra-thin and stretchable substrates. Also referred to as laser induced backward transfer (LIBT), the process can be manipulated to transfer material from bulk materials to transparent targets, providing a direct method potentially sustainable to generate microelectronic circuitry. In this work, a fs-pulsed UV laser (343 nm) was employed for the first time to transfer electrically conductive copper tracks and layers from bulk Cu in the form of sheet metal onto ultra-clear soda lime glass slides with sub-micrometric thickness. The process development started from the selection of the materials for adequate energy transfer between the beam source and the donor/receiver combination. In the single-track study, the effect of donor/receiver gap was analyzed while tracks ranges with 5 to 233 nm thickness and 7 to 41 μm average width were produced. Based on the results, multi-track layer deposition was assessed by varying the overlap between the tracks. Functional demonstrator cases were produced. The work confirms the suitability of LIRT as a direct approach to create microelectric circuitry by using readily available and sustainable bulk Cu material.
{"title":"Laser induced reverse transfer of bulk Cu with a fs-pulsed UV laser for microelectronics applications","authors":"Tommaso Raveglia, Dario Crimella, Ali Gökhan Demir","doi":"10.1016/j.mee.2024.112143","DOIUrl":"10.1016/j.mee.2024.112143","url":null,"abstract":"<div><p>Laser Induced Reverse Transfer (LIRT) is a versatile technique as a single-step deposition method allowing the localized transfer of a variety of different metals and polymers on transparent, ultra-thin and stretchable substrates. Also referred to as laser induced backward transfer (LIBT), the process can be manipulated to transfer material from bulk materials to transparent targets, providing a direct method potentially sustainable to generate microelectronic circuitry. In this work, a fs-pulsed UV laser (343 nm) was employed for the first time to transfer electrically conductive copper tracks and layers from bulk Cu in the form of sheet metal onto ultra-clear soda lime glass slides with sub-micrometric thickness. The process development started from the selection of the materials for adequate energy transfer between the beam source and the donor/receiver combination. In the single-track study, the effect of donor/receiver gap was analyzed while tracks ranges with 5 to 233 nm thickness and 7 to 41 μm average width were produced. Based on the results, multi-track layer deposition was assessed by varying the overlap between the tracks. Functional demonstrator cases were produced. The work confirms the suitability of LIRT as a direct approach to create microelectric circuitry by using readily available and sustainable bulk Cu material.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"288 ","pages":"Article 112143"},"PeriodicalIF":2.3,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167931724000121/pdfft?md5=69130f80789fb89b4663a57a0e391311&pid=1-s2.0-S0167931724000121-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139582088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-23DOI: 10.1016/j.mee.2024.112141
Jean-Philippe Soulié , Kiroubanand Sankaran , Valeria Founta , Karl Opsomer , Christophe Detavernier , Joris Van de Vondel , Geoffrey Pourtois , Zsolt Tőkei , Johan Swerts , Christoph Adelmann
AlxSc1-x thin films have been studied with compositions around Al3Sc (x = 0.75) for potential interconnect metallization applications. As-deposited 25 nm thick films were x-ray amorphous but crystallized at 190 °C, followed by recrystallization at 440 °C. After annealing at 500 °C, 24 nm thick stoichiometric Al3Sc showed a resistivity of 12.6 μΩcm, limited by a combination of grain boundary and point defect (disorder) scattering. Together with ab initio calculations that found a mean free path of the charge carriers of 7 nm for stoichiometric Al3Sc, these results indicate that Al3Sc bears promise for future interconnect metallization schemes. Challenges remain in minimizing the formation of secondary phases as well as in the control of the non-stoichiometric surface oxidation and interfacial reactions with underlying dielectrics.
我们研究了 AlxSc1-x 薄膜,其成分约为 Al3Sc (x = 0.75),具有潜在的互连金属化应用。沉积的 25 nm 厚的薄膜呈 X 射线无定形,但在 190 °C 时结晶,随后在 440 °C 时再结晶。在 500 ℃ 退火后,24 nm 厚的化学计量 Al3Sc 显示出 12.6 μΩcm 的电阻率,这是晶界和点缺陷(无序)散射共同作用的结果。这些结果表明,Al3Sc 在未来的互连金属化方案中大有可为。在尽量减少次生相的形成以及控制非化学计量的表面氧化和与底层电介质的界面反应方面仍存在挑战。
{"title":"Al3Sc thin films for advanced interconnect applications","authors":"Jean-Philippe Soulié , Kiroubanand Sankaran , Valeria Founta , Karl Opsomer , Christophe Detavernier , Joris Van de Vondel , Geoffrey Pourtois , Zsolt Tőkei , Johan Swerts , Christoph Adelmann","doi":"10.1016/j.mee.2024.112141","DOIUrl":"10.1016/j.mee.2024.112141","url":null,"abstract":"<div><p>Al<sub><em>x</em></sub>Sc<sub><em>1-x</em></sub><span> thin films have been studied with compositions around Al</span><sub>3</sub>Sc (<em>x</em><span> = 0.75) for potential interconnect metallization<span> applications. As-deposited 25 nm thick films<span> were x-ray amorphous but crystallized at 190 °C, followed by recrystallization at 440 °C. After annealing at 500 °C, 24 nm thick stoichiometric Al</span></span></span><sub>3</sub><span>Sc showed a resistivity of 12.6 μΩcm, limited by a combination of grain boundary and point defect (disorder) scattering. Together with </span><em>ab initio</em><span> calculations that found a mean free path of the charge carriers of 7 nm for stoichiometric Al</span><sub>3</sub>Sc, these results indicate that Al<sub>3</sub><span><span>Sc bears promise for future interconnect metallization schemes. Challenges remain in minimizing the formation of secondary phases as well as in the control of the non-stoichiometric surface oxidation and interfacial reactions with underlying </span>dielectrics.</span></p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"286 ","pages":"Article 112141"},"PeriodicalIF":2.3,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139560594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-22DOI: 10.1016/j.mee.2024.112142
Wenwu Li , Caifang Gao , Xifeng Li , Jiayan Yang , Jianhua Zhang , Junhao Chu
Device stability is one of the key parameters for transistor applications. To improve the stability of Indium oxide (In2O3) after a long-time gate bias, a synthetic solution of hafnium chloride (HfCl4) and indium nitrate (In(NO3)3∙xH2O) reagents were used to obtain 0% to 5-at.% Hf doped In2O3 thin-film transistors. With the increase of Hf doping concentration, oxygen vacancies and residual hydroxyl groups continue to decrease, suppressing the carrier concentration and influencing the trap state density of In2O3. The sub-threshold slope (SS) 0.78 V·dec−1 for the undoped In2O3 transistor in this work is a typical value. When the dopant dose is up to 5-at.%, SS decreases to 0.32 V·dec−1. According to the proportional relationship between SS and the density of trap states, it shows that the density of trap states in the dielectric layer and the semiconductor/dielectric interface SS is greatly reduced after 5-at.% Hf doping. The probability of the charge being trapped is dropped as well. At the same time, under the doping of Hf, the transistor exhibits a very small threshold voltage shift. Especially at the dopant dose of 5-at.%, the transfer characteristic curve hardly shifts. This work demonstrates an In2O3 transistor with high bias stability by doping method.
{"title":"High bias stability of Hf-doping-modulated indium oxide thin-film transistors","authors":"Wenwu Li , Caifang Gao , Xifeng Li , Jiayan Yang , Jianhua Zhang , Junhao Chu","doi":"10.1016/j.mee.2024.112142","DOIUrl":"10.1016/j.mee.2024.112142","url":null,"abstract":"<div><p><span>Device stability is one of the key parameters for transistor applications. To improve the stability of Indium oxide (In</span><sub>2</sub>O<sub>3</sub><span>) after a long-time gate bias, a synthetic solution of hafnium chloride (HfCl</span><sub>4</sub>) and indium nitrate (In(NO<sub>3</sub>)<sub>3</sub>∙xH<sub>2</sub>O) reagents were used to obtain 0% to 5-at.% Hf doped In<sub>2</sub>O<sub>3</sub><span><span> thin-film transistors. With the increase of Hf doping concentration, oxygen vacancies and residual hydroxyl groups continue to decrease, suppressing the carrier concentration and influencing the trap </span>state density of In</span><sub>2</sub>O<sub>3</sub>. The sub-threshold slope (SS) 0.78 V·dec<sup>−1</sup> for the undoped In<sub>2</sub>O<sub>3</sub><span> transistor in this work is a typical value. When the dopant dose is up to 5-at.%, SS decreases to 0.32 V·dec</span><sup>−1</sup><span>. According to the proportional relationship between SS and the density of trap states, it shows that the density of trap states in the dielectric layer<span> and the semiconductor/dielectric interface SS is greatly reduced after 5-at.% Hf doping. The probability of the charge being trapped is dropped as well. At the same time, under the doping of Hf, the transistor exhibits a very small threshold voltage shift. Especially at the dopant dose of 5-at.%, the transfer characteristic curve hardly shifts. This work demonstrates an In</span></span><sub>2</sub>O<sub>3</sub> transistor with high bias stability by doping method.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"286 ","pages":"Article 112142"},"PeriodicalIF":2.3,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139560492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-19DOI: 10.1016/j.mee.2024.112140
Obert Golim , Vesa Vuorinen , Tobias Wernicke , Marta Pawlak , Mervi Paulasto-Kröckel
This work demonstrates the potential use of Cu-Sn-In metallurgy for wafer-level low-temperature solid-liquid interdiffusion (LT-SLID) bonding process for microelectromechanical system (MEMS) packaging. Test structures containing seal-ring shaped SLID bonds were employed to bond silicon and glass wafers at temperatures as low as 170 °C. Scanning acoustic microscopy (SAM) was utilized to inspect the quality of as-bonded wafers. The package hermeticity was characterized by cap-deflection measurements and evaluated through finite element modelling. The results indicate the bonds are hermetic, but residual stresses limit the quantitative analysis of the hermeticity. The microstructural studies confirm the bonds contain a single-phase intermetallic Cu6(Sn,In)5 that remains thermally stable up to 500 °C. This work shows Cu-Sn-In based low-temperature bonding method as a viable packaging option for optical MEMS or other temperature-sensitive components.
{"title":"Low-Temperature Wafer-Level Bonding with Cu-Sn-In Solid Liquid Interdiffusion for Microsystem Packaging","authors":"Obert Golim , Vesa Vuorinen , Tobias Wernicke , Marta Pawlak , Mervi Paulasto-Kröckel","doi":"10.1016/j.mee.2024.112140","DOIUrl":"10.1016/j.mee.2024.112140","url":null,"abstract":"<div><p>This work demonstrates the potential use of Cu-Sn-In metallurgy for wafer-level low-temperature solid-liquid interdiffusion (LT-SLID) bonding process for microelectromechanical system (MEMS) packaging. Test structures containing seal-ring shaped SLID bonds were employed to bond silicon and glass wafers at temperatures as low as 170 °C. Scanning acoustic microscopy (SAM) was utilized to inspect the quality of as-bonded wafers. The package hermeticity was characterized by cap-deflection measurements and evaluated through finite element modelling. The results indicate the bonds are hermetic, but residual stresses limit the quantitative analysis of the hermeticity. The microstructural studies confirm the bonds contain a single-phase intermetallic Cu<sub>6</sub>(Sn,In)<sub>5</sub> that remains thermally stable up to 500 °C. This work shows Cu-Sn-In based low-temperature bonding method as a viable packaging option for optical MEMS or other temperature-sensitive components.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"286 ","pages":"Article 112140"},"PeriodicalIF":2.3,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167931724000091/pdfft?md5=0fe77f405f98dca2b39eb4fe43d13641&pid=1-s2.0-S0167931724000091-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139507284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}