首页 > 最新文献

Nature Plants最新文献

英文 中文
Loving salt 爱盐
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-17 DOI: 10.1038/s41477-024-01740-w
Guillaume Tena
{"title":"Loving salt","authors":"Guillaume Tena","doi":"10.1038/s41477-024-01740-w","DOIUrl":"10.1038/s41477-024-01740-w","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cleave and Rescue gamete killers create conditions for gene drive in plants 裂解和拯救配子杀手为植物基因驱动创造条件
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-17 DOI: 10.1038/s41477-024-01701-3
Georg Oberhofer, Michelle L. Johnson, Tobin Ivy, Igor Antoshechkin, Bruce A. Hay
Gene drive elements promote the spread of linked traits and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene and a recoded version of the essential gene resistant to cleavage. ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. Here we demonstrate the essential features of the ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61. Resistant alleles, which can slow or prevent drive, were not observed. Modelling shows plant ClvRs are robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications are discussed. Gene drive elements spread linked traits and can be used to change the composition or fate of populations. Here Oberhofer and colleagues engineer gene drive in the plant Arabidopsis thaliana. Applications include genetic biocontrol and conservation.
基因驱动元件可促进相关性状的传播,并可用于改变野生种群的组成或命运。裂解与拯救(ClvR)驱动元件位于固定的染色体位置,包括DNA序列修饰酶(如Cas9/gRNAs),可破坏重要基因的内源版本和重要基因的抗裂解重编码版本。ClvR 通过创造条件进行传播,在这种条件下,缺乏 ClvR 的生物会因为缺乏功能性的重要基因版本而死亡。在这里,我们通过杀死未能继承针对重要基因 YKT61 的 ClvR 的配子,证明了拟南芥中 ClvR 基因驱动的基本特征。没有观察到可减缓或阻止驱动的抗性等位基因。建模结果表明,植物的 ClvR 对某些失效模式具有稳健性,可用于快速驱动种群改变或抑制。本文讨论了可能的应用。
{"title":"Cleave and Rescue gamete killers create conditions for gene drive in plants","authors":"Georg Oberhofer, Michelle L. Johnson, Tobin Ivy, Igor Antoshechkin, Bruce A. Hay","doi":"10.1038/s41477-024-01701-3","DOIUrl":"10.1038/s41477-024-01701-3","url":null,"abstract":"Gene drive elements promote the spread of linked traits and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene and a recoded version of the essential gene resistant to cleavage. ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. Here we demonstrate the essential features of the ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61. Resistant alleles, which can slow or prevent drive, were not observed. Modelling shows plant ClvRs are robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications are discussed. Gene drive elements spread linked traits and can be used to change the composition or fate of populations. Here Oberhofer and colleagues engineer gene drive in the plant Arabidopsis thaliana. Applications include genetic biocontrol and conservation.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Driving evolution in wild plants 推动野生植物的进化
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-17 DOI: 10.1038/s41477-024-01723-x
Paul Neve, Luke Barrett
Two groups of scientists independently engineer gene drives in Arabidopsis thaliana, demonstrating the possibility for spreading fitness-reducing genetic modifications through wild populations of plants for population suppression.
两组科学家在拟南芥中独立完成了基因驱动工程,证明了在野生植物种群中传播降低适应性的基因修饰以抑制种群的可能性。
{"title":"Driving evolution in wild plants","authors":"Paul Neve, Luke Barrett","doi":"10.1038/s41477-024-01723-x","DOIUrl":"10.1038/s41477-024-01723-x","url":null,"abstract":"Two groups of scientists independently engineer gene drives in Arabidopsis thaliana, demonstrating the possibility for spreading fitness-reducing genetic modifications through wild populations of plants for population suppression.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overriding Mendelian inheritance in Arabidopsis with a CRISPR toxin–antidote gene drive that impairs pollen germination 用 CRISPR 毒素-抗毒素基因驱动技术超越拟南芥的孟德尔遗传,使花粉萌发受阻
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-17 DOI: 10.1038/s41477-024-01692-1
Yang Liu, Bingke Jiao, Jackson Champer, Wenfeng Qian
Synthetic gene drives, inspired by natural selfish genetic elements and transmitted to progeny at super-Mendelian (>50%) frequencies, present transformative potential for disseminating traits that benefit humans throughout wild populations, even facing potential fitness costs. Here we constructed a gene drive system in plants called CRISPR-Assisted Inheritance utilizing NPG1 (CAIN), which uses a toxin–antidote mechanism in the male germline to override Mendelian inheritance. Specifically, a guide RNA–Cas9 cassette targets the essential No Pollen Germination 1 (NPG1) gene, serving as the toxin to block pollen germination. A recoded, CRISPR-resistant copy of NPG1 serves as the antidote, providing rescue only in pollen cells that carry the drive. To limit potential consequences of inadvertent release, we used self-pollinating Arabidopsis thaliana as a model. The drive demonstrated a robust 88–99% transmission rate over two successive generations, producing minimal resistance alleles that are unlikely to inhibit drive spread. Our study provides a strong basis for rapid genetic modification or suppression of outcrossing plant populations. Researchers have developed a synthetic gene drive in Arabidopsis, demonstrating a proof of concept for biasing inheritance that could enable rapid genetic modifications or population suppression in wild plants.
合成基因驱动受到自然自私遗传因子的启发,并以超孟德尔(50%)频率传递给后代,为在野生种群中传播有益于人类的性状提供了变革潜力,即使面临潜在的适应性成本。在这里,我们构建了一个名为 "利用 NPG1 的 CRISPR 辅助遗传"(CRISPR-Assisted Inheritance utilizing NPG1,CAIN)的植物基因驱动系统,该系统利用雄性种系中的毒素-解毒剂机制来推翻孟德尔遗传。具体来说,一个引导 RNA-Cas9 盒针对重要的无花粉萌发 1(NPG1)基因,作为阻止花粉萌发的毒素。一个重新编码的、抗 CRISPR 的 NPG1 拷贝可作为解毒剂,仅在携带驱动基因的花粉细胞中提供解救。为了限制无意释放可能造成的后果,我们使用了自花授粉的拟南芥作为模型。驱动力在连续两代中的传播率高达 88-99%,产生的抗性等位基因极少,不太可能抑制驱动力的传播。我们的研究为快速改变或抑制杂交植物种群的基因提供了坚实的基础。
{"title":"Overriding Mendelian inheritance in Arabidopsis with a CRISPR toxin–antidote gene drive that impairs pollen germination","authors":"Yang Liu, Bingke Jiao, Jackson Champer, Wenfeng Qian","doi":"10.1038/s41477-024-01692-1","DOIUrl":"10.1038/s41477-024-01692-1","url":null,"abstract":"Synthetic gene drives, inspired by natural selfish genetic elements and transmitted to progeny at super-Mendelian (>50%) frequencies, present transformative potential for disseminating traits that benefit humans throughout wild populations, even facing potential fitness costs. Here we constructed a gene drive system in plants called CRISPR-Assisted Inheritance utilizing NPG1 (CAIN), which uses a toxin–antidote mechanism in the male germline to override Mendelian inheritance. Specifically, a guide RNA–Cas9 cassette targets the essential No Pollen Germination 1 (NPG1) gene, serving as the toxin to block pollen germination. A recoded, CRISPR-resistant copy of NPG1 serves as the antidote, providing rescue only in pollen cells that carry the drive. To limit potential consequences of inadvertent release, we used self-pollinating Arabidopsis thaliana as a model. The drive demonstrated a robust 88–99% transmission rate over two successive generations, producing minimal resistance alleles that are unlikely to inhibit drive spread. Our study provides a strong basis for rapid genetic modification or suppression of outcrossing plant populations. Researchers have developed a synthetic gene drive in Arabidopsis, demonstrating a proof of concept for biasing inheritance that could enable rapid genetic modifications or population suppression in wild plants.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phragmoplast expansion requires α-Aurora 膈细胞的扩展需要α-极光
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-13 DOI: 10.1038/s41477-024-01731-x
Raphael Trösch
{"title":"Phragmoplast expansion requires α-Aurora","authors":"Raphael Trösch","doi":"10.1038/s41477-024-01731-x","DOIUrl":"10.1038/s41477-024-01731-x","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Structure of plant photosystem I in a native assembly state defines PsaF as a regulatory checkpoint 作者更正:原生装配状态下植物光系统 I 的结构将 PsaF 定义为调控检查点。
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-10 DOI: 10.1038/s41477-024-01737-5
Andreas Naschberger, Mariia Fadeeva, Daniel Klaiman, Anna Borovikova-Sheinker, Ido Caspy, Nathan Nelson, Alexey Amunts
{"title":"Author Correction: Structure of plant photosystem I in a native assembly state defines PsaF as a regulatory checkpoint","authors":"Andreas Naschberger, Mariia Fadeeva, Daniel Klaiman, Anna Borovikova-Sheinker, Ido Caspy, Nathan Nelson, Alexey Amunts","doi":"10.1038/s41477-024-01737-5","DOIUrl":"10.1038/s41477-024-01737-5","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208144/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reply to: Critical comment on the assumptions leading to 24-chain microfibrils in wood 答复对导致木材中出现 24 链微纤维的假设的批判性评论
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-07 DOI: 10.1038/s41477-024-01727-7
Hwan-Ching Tai, Cheng-Si Tsao, Jer-Horng Lin
{"title":"Reply to: Critical comment on the assumptions leading to 24-chain microfibrils in wood","authors":"Hwan-Ching Tai, Cheng-Si Tsao, Jer-Horng Lin","doi":"10.1038/s41477-024-01727-7","DOIUrl":"10.1038/s41477-024-01727-7","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Designing a synthetic moss genome using GenoDesigner 作者更正:使用 GenoDesigner 设计合成苔藓基因组。
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-07 DOI: 10.1038/s41477-024-01734-8
Wenfei Yu, Shuo Zhang, Shijun Zhao, Lian-ge Chen, Jie Cao, Hao Ye, Jianbin Yan, Qiao Zhao, Beixin Mo, Ying Wang, Yuling Jiao, Yingxin Ma, Xiaoluo Huang, Wenfeng Qian, Junbiao Dai
{"title":"Author Correction: Designing a synthetic moss genome using GenoDesigner","authors":"Wenfei Yu, Shuo Zhang, Shijun Zhao, Lian-ge Chen, Jie Cao, Hao Ye, Jianbin Yan, Qiao Zhao, Beixin Mo, Ying Wang, Yuling Jiao, Yingxin Ma, Xiaoluo Huang, Wenfeng Qian, Junbiao Dai","doi":"10.1038/s41477-024-01734-8","DOIUrl":"10.1038/s41477-024-01734-8","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01734-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic editing of grain size genes enables fully mechanized hybrid rice breeding 谷粒大小基因的基因编辑实现了杂交水稻的全机械化育种
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-06 DOI: 10.1038/s41477-024-01722-y
Hybrid seed production is a labour-intensive manual process that limits fully mechanized hybrid rice breeding. We identify GSE3 as a gene that regulates grain size and demonstrate that fully mechanized hybrid seed production and increased seed number can be achieved using small-grain alleles of GSE3 in male sterile lines.
杂交种子生产是一个劳动密集型的手工过程,限制了全机械化杂交水稻育种。我们发现 GSE3 是一个调控籽粒大小的基因,并证明利用雄性不育系中 GSE3 的小粒等位基因可以实现完全机械化的杂交种子生产并增加种子数量。
{"title":"Genetic editing of grain size genes enables fully mechanized hybrid rice breeding","authors":"","doi":"10.1038/s41477-024-01722-y","DOIUrl":"10.1038/s41477-024-01722-y","url":null,"abstract":"Hybrid seed production is a labour-intensive manual process that limits fully mechanized hybrid rice breeding. We identify GSE3 as a gene that regulates grain size and demonstrate that fully mechanized hybrid seed production and increased seed number can be achieved using small-grain alleles of GSE3 in male sterile lines.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Local brassinosteroid biosynthesis enables optimal root growth 作者更正:局部铜绿素类固醇生物合成可实现最佳根系生长。
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-06-05 DOI: 10.1038/s41477-024-01732-w
Nemanja Vukašinović, Yaowei Wang, Isabelle Vanhoutte, Matyáš Fendrych, Boyu Guo, Miroslav Kvasnica, Petra Jiroutová, Jana Oklestkova, Miroslav Strnad, Eugenia Russinova
{"title":"Author Correction: Local brassinosteroid biosynthesis enables optimal root growth","authors":"Nemanja Vukašinović, Yaowei Wang, Isabelle Vanhoutte, Matyáš Fendrych, Boyu Guo, Miroslav Kvasnica, Petra Jiroutová, Jana Oklestkova, Miroslav Strnad, Eugenia Russinova","doi":"10.1038/s41477-024-01732-w","DOIUrl":"10.1038/s41477-024-01732-w","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01732-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Plants
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1