In subtropical regions, April to June represents a temporary moisture stress for mango trees, leading to huge economic loss. Although water is available in the deep root zone, the upper soil surface, which has fibrous roots, is dry, and the tree transpiration rate is high. Moisture stress causes an increased oxidation state, which is detrimental to fruit growth and development. Finding substitutes for moisture stress management is important for sustainable mango production. To manage this moisture stress in mango, we tested if foliar application of 20, 50, 100 and 150 μM melatonin helped to maintain a reduced oxidation state in the cells. Applications were made at three phenological stages of fruit development (marble, egg and mature fruit stages) in 16-year-old trees and the same plants for each treatment were followed over three years. Melatonin application indeed improved the fruit yield of mango. Moisture stress decreased yield by 55.94% compared to irrigated trees but only by 7.5% in melatonin treatment. Also, more 'A' grade fruits were harvested in irrigated and melatonin-treated conditions than in non-irrigated and non-treated conditions. Indeed, the total chlorophyll content in the leaves of moisture-stressed melatonin-treated trees (12.58 mg.g-1 fresh weight) was well above non-treated trees (6.77 mg.g-1) and similar to irrigated trees (12.50 mg.g-1). A dose-dependent increase in the chlorophyll content of melatonin-treated plants was found. Similarly, the activities of catalase, peroxidase, superoxidase dismutase enzymes in leaves of irrigated and melatonin-treated trees were lower than in non-irrigated condition, and superoxide free radial formation was lower in moisture-stressed melatonin-treated trees (0.77 nmol H2O2.mg-1 protein) and irrigated trees (0.65) than moisture-stressed non-treated trees (4.27). Significant variations was found in antioxidants (total, reduced and oxidized glutathione and ascorbate) content and antioxidant enzymes' activities (i.e., glutathione reductase and ascorbate peroxidase) in irrigated, melatonin-treated and non-irrigated conditions. Overall, 150 μM exogenous melatonin applied three times at different fruit development stages may be a sustainable and useful approach to manage transient moisture stress in mango trees thanks to its positive action on the antioxidant system.
{"title":"Exogenous Melatonin Enhances Moisture Stress Tolerance in Mango (Mangifera indica L.) through Alleviating Oxidative Damages.","authors":"Ajaya Kumar Trivedi, Sushil Kumar Shukla, Ghanshyam Pandey, Achal Singh","doi":"10.1111/ppl.14566","DOIUrl":"https://doi.org/10.1111/ppl.14566","url":null,"abstract":"<p><p>In subtropical regions, April to June represents a temporary moisture stress for mango trees, leading to huge economic loss. Although water is available in the deep root zone, the upper soil surface, which has fibrous roots, is dry, and the tree transpiration rate is high. Moisture stress causes an increased oxidation state, which is detrimental to fruit growth and development. Finding substitutes for moisture stress management is important for sustainable mango production. To manage this moisture stress in mango, we tested if foliar application of 20, 50, 100 and 150 μM melatonin helped to maintain a reduced oxidation state in the cells. Applications were made at three phenological stages of fruit development (marble, egg and mature fruit stages) in 16-year-old trees and the same plants for each treatment were followed over three years. Melatonin application indeed improved the fruit yield of mango. Moisture stress decreased yield by 55.94% compared to irrigated trees but only by 7.5% in melatonin treatment. Also, more 'A' grade fruits were harvested in irrigated and melatonin-treated conditions than in non-irrigated and non-treated conditions. Indeed, the total chlorophyll content in the leaves of moisture-stressed melatonin-treated trees (12.58 mg.g<sup>-1</sup> fresh weight) was well above non-treated trees (6.77 mg.g<sup>-1</sup>) and similar to irrigated trees (12.50 mg.g<sup>-1</sup>). A dose-dependent increase in the chlorophyll content of melatonin-treated plants was found. Similarly, the activities of catalase, peroxidase, superoxidase dismutase enzymes in leaves of irrigated and melatonin-treated trees were lower than in non-irrigated condition, and superoxide free radial formation was lower in moisture-stressed melatonin-treated trees (0.77 nmol H<sub>2</sub>O<sub>2</sub>.mg<sup>-1</sup> protein) and irrigated trees (0.65) than moisture-stressed non-treated trees (4.27). Significant variations was found in antioxidants (total, reduced and oxidized glutathione and ascorbate) content and antioxidant enzymes' activities (i.e., glutathione reductase and ascorbate peroxidase) in irrigated, melatonin-treated and non-irrigated conditions. Overall, 150 μM exogenous melatonin applied three times at different fruit development stages may be a sustainable and useful approach to manage transient moisture stress in mango trees thanks to its positive action on the antioxidant system.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14566"},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Litchi (Litchi chinensis Sonn.) has a desirable sweet taste and exotic aroma, making it popular in the markets. However, the biosynthesis of aroma volatiles in litchi fruit has rarely been investigated. In this study, the content and composition of volatile compounds were determined during litchi fruit ripening. In the mature green and mature red stages of litchi, 49 and 45 volatile compounds were detected, respectively. Monoterpenes were found to be the most abundant volatile compounds in mature red fruit, and their contents significantly increased compared to green fruit, mainly including citronellol, geraniol, myrcene, and D-limonene, which contributed to the aroma in litchi fruit. By comparing the expression profiles of the genes involved in the terpene synthesis pathway during fruit development, a terpene synthesis gene (LcTPS1-2) was identified and characterized as a major player in the synthesis of monoterpenes and sesquiterpenes. A subcellular localization analysis found LcTPS1-2 to be present in the plastid and cytoplasm. The recombinant LcTPS1-2 enzyme was able to catalyze the formation of three monoterpenes, myrcene, geraniol and citral, from geranyl pyrophosphate (GPP) and to convert farnesyl diphosphate (FPP) to a sesquiterpene, caryophyllene in vitro. Transgenic Arabidopsis thaliana plants overexpressing LcTPS1-2 exclusively released one monoterpene D-limonene, and three sesquiterpenes cis-thujopsene, (E)-β-famesene and trans-β-ionone. These results indicate that LcTPS1-2 plays an important role in the production of major volatile terpenes in litchi fruit and provides a basis for future investigations of terpenoid biosynthesis in litchi and other horticultural crops.
{"title":"Identification and characterization of a key LcTPS in the biosynthesis of volatile monoterpenes and sesquiterpenes in Litchi fruit.","authors":"Liyu Fu, Qiuzi Chen, Yawen Li, Yanlan Li, Xuequn Pang, Zhaoqi Zhang, Fang Fang","doi":"10.1111/ppl.14559","DOIUrl":"https://doi.org/10.1111/ppl.14559","url":null,"abstract":"<p><p>Litchi (Litchi chinensis Sonn.) has a desirable sweet taste and exotic aroma, making it popular in the markets. However, the biosynthesis of aroma volatiles in litchi fruit has rarely been investigated. In this study, the content and composition of volatile compounds were determined during litchi fruit ripening. In the mature green and mature red stages of litchi, 49 and 45 volatile compounds were detected, respectively. Monoterpenes were found to be the most abundant volatile compounds in mature red fruit, and their contents significantly increased compared to green fruit, mainly including citronellol, geraniol, myrcene, and D-limonene, which contributed to the aroma in litchi fruit. By comparing the expression profiles of the genes involved in the terpene synthesis pathway during fruit development, a terpene synthesis gene (LcTPS1-2) was identified and characterized as a major player in the synthesis of monoterpenes and sesquiterpenes. A subcellular localization analysis found LcTPS1-2 to be present in the plastid and cytoplasm. The recombinant LcTPS1-2 enzyme was able to catalyze the formation of three monoterpenes, myrcene, geraniol and citral, from geranyl pyrophosphate (GPP) and to convert farnesyl diphosphate (FPP) to a sesquiterpene, caryophyllene in vitro. Transgenic Arabidopsis thaliana plants overexpressing LcTPS1-2 exclusively released one monoterpene D-limonene, and three sesquiterpenes cis-thujopsene, (E)-β-famesene and trans-β-ionone. These results indicate that LcTPS1-2 plays an important role in the production of major volatile terpenes in litchi fruit and provides a basis for future investigations of terpenoid biosynthesis in litchi and other horticultural crops.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14559"},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanwu Lyu, Yaping Mao, Yi Zhang, Tianli Yu, Xuangang Yang, Hongbo Zhu, Shulin Deng
The plant U-box (PUB) proteins, a family of ubiquitin ligases (E3) enzymes, are pivotal in orchestrating many biological processes and facilitating plant responses to environmental stressors. Despite their critical roles, exploring the PUB gene family's characteristics and functional diversity in sweet potato (Ipomoea batatas (L.) Lam.) has been notably limited. There were 81 IbPUB genes identified within the sweet potato genome, and they were categorized into eight distinct groups based on domain architecture, revealing a non-uniform distribution across the 15 chromosomes of I. batatas. The investigation of cis-acting elements has shed light on the potential of PUBs to participate in a wide array of biological processes, particularly emphasizing their role in mediating responses to abiotic stresses. Transcriptome profiles revealed that IbPUB genes displayed a wide range of expression levels among different tissues and were regulated by salt or drought stress. IbPUB52 has emerged as a gene of significant interest due to its induction by salt and drought stresses. Localization studies have confirmed the presence of IbPUB52 in both the nucleus and the cytoplasm, and its ubiquitination activity has been validated through rigorous in vitro and in vivo assays. Intriguingly, the heterogeneous expression of IbPUB52 in Arabidopsis resulted in decreased drought tolerance. The virus-induced gene silencing (VIGS) of IbPUB52 in sweet potatoes led to enhanced resistance to drought. This evidence suggests that IbPUB52 negatively regulates the drought tolerance of plants. The findings of this study are instrumental in advancing our comprehension of the functional dynamics of PUB E3 ubiquitin ligases in sweet potatoes.
{"title":"Genome-wide identification of sweet potato U-Box E3 ubiquitin ligases and roles of IbPUB52 in negative regulation of drought stress.","authors":"Shanwu Lyu, Yaping Mao, Yi Zhang, Tianli Yu, Xuangang Yang, Hongbo Zhu, Shulin Deng","doi":"10.1111/ppl.14568","DOIUrl":"https://doi.org/10.1111/ppl.14568","url":null,"abstract":"<p><p>The plant U-box (PUB) proteins, a family of ubiquitin ligases (E3) enzymes, are pivotal in orchestrating many biological processes and facilitating plant responses to environmental stressors. Despite their critical roles, exploring the PUB gene family's characteristics and functional diversity in sweet potato (Ipomoea batatas (L.) Lam.) has been notably limited. There were 81 IbPUB genes identified within the sweet potato genome, and they were categorized into eight distinct groups based on domain architecture, revealing a non-uniform distribution across the 15 chromosomes of I. batatas. The investigation of cis-acting elements has shed light on the potential of PUBs to participate in a wide array of biological processes, particularly emphasizing their role in mediating responses to abiotic stresses. Transcriptome profiles revealed that IbPUB genes displayed a wide range of expression levels among different tissues and were regulated by salt or drought stress. IbPUB52 has emerged as a gene of significant interest due to its induction by salt and drought stresses. Localization studies have confirmed the presence of IbPUB52 in both the nucleus and the cytoplasm, and its ubiquitination activity has been validated through rigorous in vitro and in vivo assays. Intriguingly, the heterogeneous expression of IbPUB52 in Arabidopsis resulted in decreased drought tolerance. The virus-induced gene silencing (VIGS) of IbPUB52 in sweet potatoes led to enhanced resistance to drought. This evidence suggests that IbPUB52 negatively regulates the drought tolerance of plants. The findings of this study are instrumental in advancing our comprehension of the functional dynamics of PUB E3 ubiquitin ligases in sweet potatoes.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14568"},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salvia divinorum is a hallucinogenic plant native to the Oaxaca in Mexico. The active ingredient for psychotropic effects in this plant is salvinorin A, a potent and highly selective κ-opioid receptor agonist. Salvinorin A is distinct from other well-known opioids, such as morphine and codeine, in that it is a non-nitrogenous diterpenoid with no affinity for μ-opioid receptor, the prime receptor of alkaloidal opioids. A terpene opioid that selectively targets a new opioid receptor (κ-opioid receptor) can be instrumental in developing alternative analgesics. Elucidation of the salvinorin A biosynthetic pathway can help bio-manufacture diverse semi-synthetic derivatives of salvinorin A but, to date, only two enzymes in the Salvinorin A pathway have been identified. Here, we identify CYP728D26 that catalyzes a C18 oxygenation on crotonolide G, which bears a clerodane backbone. Biochemical identity of CYP728D26 was validated by in vivo reconstitution in yeast, 1H- and 13C-NMR analyses of the purified product, and kinetic analysis of CYP728D26 with a Km value of 13.9 μM. Beyond the single oxygenation on C18, collision-induced dissociation analysis suggested two additional oxygenations are catalyzed by CYP728D26 to form crotonoldie G acid, although this carboxylic acid form is a minor product. Its close homologue CYP728D25 exhibited a C1-hydroxylation on the clerodane backbone in a reconstituted yeast system. However, CYP728D25 showed no activity in in vitro assays. This result implies that catalytic activities observed from overexpression systems should be interpreted cautiously. This work identified a new CYP catalyst and advanced our knowledge of salvinorin A biosynthesis.
丹参是一种原产于墨西哥瓦哈卡的致幻植物。这种植物产生精神作用的活性成分是丹参素 A,它是一种强效、高选择性的κ-阿片受体激动剂。丹参素 A 与吗啡和可待因等其他众所周知的阿片类药物不同,它是一种非氮二萜类化合物,对生物碱类阿片的主要受体μ-阿片受体没有亲和力。萜类阿片选择性地靶向一种新的阿片受体(κ-阿片受体),有助于开发替代镇痛药。阐明丹皮酚 A 的生物合成途径有助于生物制造丹皮酚 A 的各种半合成衍生物,但迄今为止,丹皮酚 A 途径中只有两种酶被鉴定出来。在这里,我们确定了 CYP728D26,它能催化巴豆内酯 G 的 C18 氧合反应,巴豆内酯 G 具有一个烯丙基二烷骨架。通过酵母体内重组、纯化产物的 1H 和 13C-NMR 分析以及 CYP728D26 的动力学分析(Km 值为 13.9 μM),验证了 CYP728D26 的生化特性。除了 C18 上的一次加氧反应外,碰撞诱导解离分析表明,CYP728D26 还催化了另外两次加氧反应,形成巴豆苷 G 酸,尽管这种羧酸形式是次要产物。其近亲 CYP728D25 在重组酵母系统中表现出对缬草烷骨架的 C1-羟基化。然而,CYP728D25 在体外试验中没有表现出活性。这一结果表明,应谨慎解释从超表达系统中观察到的催化活性。这项工作鉴定了一种新的 CYP 催化剂,并增进了我们对丹参素 A 生物合成的了解。
{"title":"Identification of clerodane diterpene modifying cytochrome P450 (CYP728D26) in Salvia divinorum - en route to psychotropic salvinorin A biosynthesis.","authors":"Iris Ngo, Rahul Kumar, Liang Li, Seon-Won Kim, Moonhyuk Kwon, Dae-Kyun Ro","doi":"10.1111/ppl.14569","DOIUrl":"https://doi.org/10.1111/ppl.14569","url":null,"abstract":"<p><p>Salvia divinorum is a hallucinogenic plant native to the Oaxaca in Mexico. The active ingredient for psychotropic effects in this plant is salvinorin A, a potent and highly selective κ-opioid receptor agonist. Salvinorin A is distinct from other well-known opioids, such as morphine and codeine, in that it is a non-nitrogenous diterpenoid with no affinity for μ-opioid receptor, the prime receptor of alkaloidal opioids. A terpene opioid that selectively targets a new opioid receptor (κ-opioid receptor) can be instrumental in developing alternative analgesics. Elucidation of the salvinorin A biosynthetic pathway can help bio-manufacture diverse semi-synthetic derivatives of salvinorin A but, to date, only two enzymes in the Salvinorin A pathway have been identified. Here, we identify CYP728D26 that catalyzes a C18 oxygenation on crotonolide G, which bears a clerodane backbone. Biochemical identity of CYP728D26 was validated by in vivo reconstitution in yeast, <sup>1</sup>H- and <sup>13</sup>C-NMR analyses of the purified product, and kinetic analysis of CYP728D26 with a K<sub>m</sub> value of 13.9 μM. Beyond the single oxygenation on C18, collision-induced dissociation analysis suggested two additional oxygenations are catalyzed by CYP728D26 to form crotonoldie G acid, although this carboxylic acid form is a minor product. Its close homologue CYP728D25 exhibited a C1-hydroxylation on the clerodane backbone in a reconstituted yeast system. However, CYP728D25 showed no activity in in vitro assays. This result implies that catalytic activities observed from overexpression systems should be interpreted cautiously. This work identified a new CYP catalyst and advanced our knowledge of salvinorin A biosynthesis.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14569"},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In the Spotlight: The plant growth-defence dilemma: a hormonal balancing act.","authors":"Sokol Toçilla","doi":"10.1111/ppl.14557","DOIUrl":"https://doi.org/10.1111/ppl.14557","url":null,"abstract":"","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14557"},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roohollah Shamloo-Dashtpagerdi, Mohammad Jafar Tanin, Massume Aliakbari, Dinesh Kumar Saini
The coexistence of drought and salinity stresses in field conditions significantly hinders wheat (Triticum aestivum L.) productivity. Understanding the molecular mechanisms governing response and tolerance to these stresses is crucial for developing resilient wheat varieties. Our research, employing a combination of meta-QTL and meta-RNA-Seq transcriptome analyses, has uncovered the genome functional landscape of wheat in response to drought and salinity. We identified 118 meta-QTLs (MQTLs) distributed across all 21 wheat chromosomes, with ten designated as the most promising. Additionally, we found 690 meta-differentially expressed genes (mDEGs) shared between drought and salinity stress. Notably, our findings highlight the Early Responsive to Dehydration 15 (ERD15) gene, located in one of the most promising MQTLs, as a key gene in the shared gene network of drought and salinity stress. ERD15, differentially expressed between contrasting wheat genotypes under combined stress conditions, significantly regulates water relations, photosynthetic activity, antioxidant activity, and ion homeostasis. These findings not only provide valuable insights into the molecular genetic mechanisms underlying combined stress tolerance in wheat but also hold the potential to contribute significantly to the development of stress-resilient wheat varieties.
{"title":"Unveiling the role of the ERD15 gene in wheat's tolerance to combined drought and salinity stress: a meta-analysis of QTL and RNA-Seq data.","authors":"Roohollah Shamloo-Dashtpagerdi, Mohammad Jafar Tanin, Massume Aliakbari, Dinesh Kumar Saini","doi":"10.1111/ppl.14570","DOIUrl":"10.1111/ppl.14570","url":null,"abstract":"<p><p>The coexistence of drought and salinity stresses in field conditions significantly hinders wheat (Triticum aestivum L.) productivity. Understanding the molecular mechanisms governing response and tolerance to these stresses is crucial for developing resilient wheat varieties. Our research, employing a combination of meta-QTL and meta-RNA-Seq transcriptome analyses, has uncovered the genome functional landscape of wheat in response to drought and salinity. We identified 118 meta-QTLs (MQTLs) distributed across all 21 wheat chromosomes, with ten designated as the most promising. Additionally, we found 690 meta-differentially expressed genes (mDEGs) shared between drought and salinity stress. Notably, our findings highlight the Early Responsive to Dehydration 15 (ERD15) gene, located in one of the most promising MQTLs, as a key gene in the shared gene network of drought and salinity stress. ERD15, differentially expressed between contrasting wheat genotypes under combined stress conditions, significantly regulates water relations, photosynthetic activity, antioxidant activity, and ion homeostasis. These findings not only provide valuable insights into the molecular genetic mechanisms underlying combined stress tolerance in wheat but also hold the potential to contribute significantly to the development of stress-resilient wheat varieties.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14570"},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marianna Avramidou, Vasileios Balaktsis, Olga Tsiouri, Moez Maghrebi, Gianpiero Vigani, Antonios Sergiou, Nikolaos Ntelkis, Constantinos Ehaliotis, Kalliope K Papadopoulou
Microbial inocula are considered a promising and effective alternative solution to the use of chemical fertilizers to support plant growth and productivity since they play a key role in the availability and uptake of nutrients. Here, the effect of a beneficial of a fungal root endophyte, Fusarium solani strain K (FsK), on nutrient acquisition efficiency of the legume Lotus japonicus was studied, and putative mode-of-action of the endophyte at a molecular level was determined. Plant colonization with the endophyte resulted in increased shoot and root fresh weight under Fe deficiency compared to control nutrient conditions. Plant inoculation with FsK was associated with a significant increase in macro- and micronutrient concentration in leaves at an early stage of endophyte inoculation and a replenishment of Fe content under prolonged iron starvation. The mechanistic basis of the plant growth promotion capabilities of the endophyte is exerted at the transcriptional level since we recorded changes in the expression levels of genes related to iron uptake in FsK-colonized plants under stress conditions compared to uninoculated plants. In addition, the observed changes in the ethylene biosynthesis-related genes suggest a possible implication of ethylene in the mode of action used by FsK to enhance plant response to nutrient stress conditions. Finally, we demonstrated that the endophyte possesses a reductive high-affinity Fe uptake system and identified a ferric reductase that was induced in planta under Fe deficiency conditions, indicating that this fungal Fe homeostasis mechanism may result in a benefit in nutrient acquisition for the plant as well.
{"title":"A fungal endophyte increases plant resilience to low nutrient availabilities: a case of Fe acquisition in legumes.","authors":"Marianna Avramidou, Vasileios Balaktsis, Olga Tsiouri, Moez Maghrebi, Gianpiero Vigani, Antonios Sergiou, Nikolaos Ntelkis, Constantinos Ehaliotis, Kalliope K Papadopoulou","doi":"10.1111/ppl.14577","DOIUrl":"https://doi.org/10.1111/ppl.14577","url":null,"abstract":"<p><p>Microbial inocula are considered a promising and effective alternative solution to the use of chemical fertilizers to support plant growth and productivity since they play a key role in the availability and uptake of nutrients. Here, the effect of a beneficial of a fungal root endophyte, Fusarium solani strain K (FsK), on nutrient acquisition efficiency of the legume Lotus japonicus was studied, and putative mode-of-action of the endophyte at a molecular level was determined. Plant colonization with the endophyte resulted in increased shoot and root fresh weight under Fe deficiency compared to control nutrient conditions. Plant inoculation with FsK was associated with a significant increase in macro- and micronutrient concentration in leaves at an early stage of endophyte inoculation and a replenishment of Fe content under prolonged iron starvation. The mechanistic basis of the plant growth promotion capabilities of the endophyte is exerted at the transcriptional level since we recorded changes in the expression levels of genes related to iron uptake in FsK-colonized plants under stress conditions compared to uninoculated plants. In addition, the observed changes in the ethylene biosynthesis-related genes suggest a possible implication of ethylene in the mode of action used by FsK to enhance plant response to nutrient stress conditions. Finally, we demonstrated that the endophyte possesses a reductive high-affinity Fe uptake system and identified a ferric reductase that was induced in planta under Fe deficiency conditions, indicating that this fungal Fe homeostasis mechanism may result in a benefit in nutrient acquisition for the plant as well.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14577"},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi Zhu, Yasir Majeed, Ning Zhang, Wei Li, Huimin Duan, Xuemei Dou, Hui Jin, Zhuo Chen, Shu Chen, Jiannan Zhou, Qihua Wang, Jinghua Tang, Yu Zhang, Huaijun Si
Autophagy is a highly conserved method of recycling cytoplasm components in eukaryotes. It plays an important role in plant growth and development, as well as in response to biotic and abiotic stresses. Although autophagy-related genes (ATGs) have been identified in several crop species, their particular role in potato (Solanum tuberosum L.) remains unclear. Several transcription factors and signaling genes in the transgenic lines of the model plant Arabidopsis thaliana, such as AtTSPO, AtBES1, AtPIP2;7, AtCOST1 as well as AtATI1/2, ATG8f, GFP-ATG8F-HA, AtDSK2, AtNBR1, AtHKT1 play crucial functions under drought and salt stresses, respectively. In this study, a total of 29 putative StATGs from 15 different ATG subfamilies in the potato genome were identified. Their physicochemical properties, evolutionary connections, chromosomal distribution, gene duplication, protein-protein interaction network, conserved motifs, gene structure, interspecific collinearity relationship, and cis-regulatory elements were analyzed. The results of qRT-PCR detection of StATG expression showed that 29 StATGs were differentially expressed in potato's leaves, flowers, petiole, stem, stolon, tuber, and root. StATGs were dynamically modulated by salt and drought stresses and up-regulated under salt and drought conditions. Our results showed that the StATG8a localized in the cytoplasm and the nucleus. Potato cultivar "Atlantic" overexpressing or downregulating StATG8a were constructed. Based on physiological, biochemical, and photosynthesis parameters, potato lines overexpressing StATG8a exhibited 9 times higher drought and salt tolerance compared to non-transgenic plants. In contrast, the potato plants with knockdown expression showed a downtrend in drought and salt tolerance compared to non-transgenic potato lines. These results could provide new insights into the function of StATG8a in salt and drought response and its possible mechanisms.
{"title":"Identification of autophagy gene family in potato and the role of StATG8a in salt and drought stress.","authors":"Xi Zhu, Yasir Majeed, Ning Zhang, Wei Li, Huimin Duan, Xuemei Dou, Hui Jin, Zhuo Chen, Shu Chen, Jiannan Zhou, Qihua Wang, Jinghua Tang, Yu Zhang, Huaijun Si","doi":"10.1111/ppl.14584","DOIUrl":"https://doi.org/10.1111/ppl.14584","url":null,"abstract":"<p><p>Autophagy is a highly conserved method of recycling cytoplasm components in eukaryotes. It plays an important role in plant growth and development, as well as in response to biotic and abiotic stresses. Although autophagy-related genes (ATGs) have been identified in several crop species, their particular role in potato (Solanum tuberosum L.) remains unclear. Several transcription factors and signaling genes in the transgenic lines of the model plant Arabidopsis thaliana, such as AtTSPO, AtBES1, AtPIP2;7, AtCOST1 as well as AtATI1/2, ATG8f, GFP-ATG8F-HA, AtDSK2, AtNBR1, AtHKT1 play crucial functions under drought and salt stresses, respectively. In this study, a total of 29 putative StATGs from 15 different ATG subfamilies in the potato genome were identified. Their physicochemical properties, evolutionary connections, chromosomal distribution, gene duplication, protein-protein interaction network, conserved motifs, gene structure, interspecific collinearity relationship, and cis-regulatory elements were analyzed. The results of qRT-PCR detection of StATG expression showed that 29 StATGs were differentially expressed in potato's leaves, flowers, petiole, stem, stolon, tuber, and root. StATGs were dynamically modulated by salt and drought stresses and up-regulated under salt and drought conditions. Our results showed that the StATG8a localized in the cytoplasm and the nucleus. Potato cultivar \"Atlantic\" overexpressing or downregulating StATG8a were constructed. Based on physiological, biochemical, and photosynthesis parameters, potato lines overexpressing StATG8a exhibited 9 times higher drought and salt tolerance compared to non-transgenic plants. In contrast, the potato plants with knockdown expression showed a downtrend in drought and salt tolerance compared to non-transgenic potato lines. These results could provide new insights into the function of StATG8a in salt and drought response and its possible mechanisms.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14584"},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorenzo Mollo, Alessandra Petrucciani, Alessandra Norici
Due to the increasing production of wastewater from human activities, the use of algal consortia for phytoremediation has become well-established over the past decade. Understanding how interspecific interactions and cultivation modes (monocultures vs. polyculture) influence algal growth and behaviour is a cutting-edge topic in both fundamental and applied science. Ammonium-rich growth media were used to challenge the monocultures of Auxenochlorella protothecoides, Chlamydomonas reinhardtii and Tetradesmus obliquus, as well as their polyculture; NO3- was also used as the sole nitrogen chemical form in control cultures. The study primarily compared the growth, carbon and nitrogen metabolisms, and protein content of the green microalgae monocultures to those of their consortium. Overall, the cultivation mode significantly affected all the measured parameters. Notably, at 50 mM NH4+, the assimilation rates of carbon and nitrogen were at least twice as high as those in the monoculture counterparts, and the protein content was three times more abundant.Additionally, the consortium's response to NH4+ toxicity was investigated by observing a linear relationship between the indicator of tolerance to NH4+ nutrition and the N isotopic signature. The study highlighted a high degree of acclimation through metabolic flexibility and diversity, as well as species abundance plasticity in the consortium, resulting in a functional resilience that would otherwise have been unattainable by the respective monocultures.
{"title":"Monocultures vs. polyculture of microalgae: unveiling physiological changes to facilitate growth in ammonium rich-medium.","authors":"Lorenzo Mollo, Alessandra Petrucciani, Alessandra Norici","doi":"10.1111/ppl.14574","DOIUrl":"https://doi.org/10.1111/ppl.14574","url":null,"abstract":"<p><p>Due to the increasing production of wastewater from human activities, the use of algal consortia for phytoremediation has become well-established over the past decade. Understanding how interspecific interactions and cultivation modes (monocultures vs. polyculture) influence algal growth and behaviour is a cutting-edge topic in both fundamental and applied science. Ammonium-rich growth media were used to challenge the monocultures of Auxenochlorella protothecoides, Chlamydomonas reinhardtii and Tetradesmus obliquus, as well as their polyculture; NO<sub>3</sub> <sup>-</sup> was also used as the sole nitrogen chemical form in control cultures. The study primarily compared the growth, carbon and nitrogen metabolisms, and protein content of the green microalgae monocultures to those of their consortium. Overall, the cultivation mode significantly affected all the measured parameters. Notably, at 50 mM NH<sub>4</sub> <sup>+</sup>, the assimilation rates of carbon and nitrogen were at least twice as high as those in the monoculture counterparts, and the protein content was three times more abundant.Additionally, the consortium's response to NH<sub>4</sub> <sup>+</sup> toxicity was investigated by observing a linear relationship between the indicator of tolerance to NH<sub>4</sub> <sup>+</sup> nutrition and the N isotopic signature. The study highlighted a high degree of acclimation through metabolic flexibility and diversity, as well as species abundance plasticity in the consortium, resulting in a functional resilience that would otherwise have been unattainable by the respective monocultures.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14574"},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giulia Quagliata, Moez Maghrebi, Miriam Marín-Sanz, Samuela Palombieri, Francesco Sestili, Domenico Lafiandra, Francisco Barro, Gianpiero Vigani, Stefania Astolfi
The translocation of the short chromosome arm 1RS of rye onto the 1B chromosome of common wheat has been shown to improve resistance to stress and yield. Here, translocation was operated in durum wheat and its effects on drought tolerance were evaluated. Both the 1BL.1RS translocation line (Svevo 1BL.1RS) and the corresponding Svevo control were exposed to drought for 7 days. Significant differences were found in root morphology between Svevo and Svevo 1BL.1RS under control and drought conditions. Although Svevo 1BL.1RS experienced more severe growth inhibition due to drought than Svevo, it exhibited greater resilience to oxidative stress. Furthermore, several drought-responsive genes were upregulated in both shoots and roots only in the translocation line. Notably, in roots of Svevo 1BL.1RS, the expression of these genes was also higher in the control condition compared to Svevo, suggesting that these genes could be constitutively expressed at higher levels in the translocation line. Moreover, the 1BL.1RS translocation had a significant impact on the plant's ability to accumulate nutrients under drought. Overall, the impact on sulfate accumulation and the expression of genes associated with its assimilation pathways are particularly noteworthy, highlighting the involvement of sulfur in the plant response to water stress. Additionally, the genetic characterization of Svevo 1BL.1RS revealed variants extending beyond the translocation, located in drought stress-responsive genes.
{"title":"Rye-durum wheat 1BL.1RS translocation: implications for drought tolerance and nutritional status.","authors":"Giulia Quagliata, Moez Maghrebi, Miriam Marín-Sanz, Samuela Palombieri, Francesco Sestili, Domenico Lafiandra, Francisco Barro, Gianpiero Vigani, Stefania Astolfi","doi":"10.1111/ppl.14579","DOIUrl":"https://doi.org/10.1111/ppl.14579","url":null,"abstract":"<p><p>The translocation of the short chromosome arm 1RS of rye onto the 1B chromosome of common wheat has been shown to improve resistance to stress and yield. Here, translocation was operated in durum wheat and its effects on drought tolerance were evaluated. Both the 1BL.1RS translocation line (Svevo 1BL.1RS) and the corresponding Svevo control were exposed to drought for 7 days. Significant differences were found in root morphology between Svevo and Svevo 1BL.1RS under control and drought conditions. Although Svevo 1BL.1RS experienced more severe growth inhibition due to drought than Svevo, it exhibited greater resilience to oxidative stress. Furthermore, several drought-responsive genes were upregulated in both shoots and roots only in the translocation line. Notably, in roots of Svevo 1BL.1RS, the expression of these genes was also higher in the control condition compared to Svevo, suggesting that these genes could be constitutively expressed at higher levels in the translocation line. Moreover, the 1BL.1RS translocation had a significant impact on the plant's ability to accumulate nutrients under drought. Overall, the impact on sulfate accumulation and the expression of genes associated with its assimilation pathways are particularly noteworthy, highlighting the involvement of sulfur in the plant response to water stress. Additionally, the genetic characterization of Svevo 1BL.1RS revealed variants extending beyond the translocation, located in drought stress-responsive genes.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14579"},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}