首页 > 最新文献

Solid-state Electronics最新文献

英文 中文
Gold nanoparticles in P3HT: PCBM active layer: A simulation of new organic solar cell designs
IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-01-03 DOI: 10.1016/j.sse.2025.109056
Noureddine Benaya , Mohammed Madani Taouti , Khalid Bougnina , Bahri Deghfel , Abdelhalim Zoukel
This study investigates the effect of incorporating gold nanoparticles (Au NPs) into the poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) active layer of organic solar cells (OSCs). GPVDM simulation software was used to analyze the power conversion efficiency (PCE) along with other photovoltaic properties, including open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF), in both conventional and inverted architectures. The addition of a 5% concentration of Au NPs led to a significant increase in PCE, with a maximum value of 6.46% in specific buffer layer configurations, compared to 4.65% in devices without Au NPs. The effect of varying hole blocking layer (HBL) materials, such as BPhen, ZnO, and TiOx, was also examined, revealing improvements in device performance, with BPhen achieving the highest efficiency among the tested materials.
{"title":"Gold nanoparticles in P3HT: PCBM active layer: A simulation of new organic solar cell designs","authors":"Noureddine Benaya ,&nbsp;Mohammed Madani Taouti ,&nbsp;Khalid Bougnina ,&nbsp;Bahri Deghfel ,&nbsp;Abdelhalim Zoukel","doi":"10.1016/j.sse.2025.109056","DOIUrl":"10.1016/j.sse.2025.109056","url":null,"abstract":"<div><div>This study investigates the effect of incorporating gold nanoparticles (Au NPs) into the poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) active layer of organic solar cells (OSCs). GPVDM simulation software was used to analyze the power conversion efficiency (PCE) along with other photovoltaic properties, including open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF), in both conventional and inverted architectures. The addition of a 5% concentration of Au NPs led to a significant increase in PCE, with a maximum value of 6.46% in specific buffer layer configurations, compared to 4.65% in devices without Au NPs. The effect of varying hole blocking layer (HBL) materials, such as BPhen, ZnO, and TiOx, was also examined, revealing improvements in device performance, with BPhen achieving the highest efficiency among the tested materials.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"225 ","pages":"Article 109056"},"PeriodicalIF":1.4,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143131527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat-path layout technique for thermal mitigation in advanced CMOS technologies
IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-01-02 DOI: 10.1016/j.sse.2024.109054
Minhyun Jin
In this paper, heat-path layout technique to mitigate the self-heating effects in transistors are presented. As process nodes continue to shrink, managing heat dissipation becomes increasingly crucial. A heat-path layout technique is introduced to improve heat dissipation, which enhances thermal conductivity by stacking dummy metals and vias in the drain region which is a hot spot. This approach effectively reduces both thermal resistance and thermal capacitance. Experiments were conducted using various process nodes to evaluate the effects of different types and placements of heat paths on heat generation and mitigation. The results demonstrate that the proposed heat-path layout technique become increasingly effective as process nodes scale down, providing valuable insights for thermal and electrical optimization in circuit design using next-generation devices.
{"title":"Heat-path layout technique for thermal mitigation in advanced CMOS technologies","authors":"Minhyun Jin","doi":"10.1016/j.sse.2024.109054","DOIUrl":"10.1016/j.sse.2024.109054","url":null,"abstract":"<div><div>In this paper, heat-path layout technique to mitigate the self-heating effects in transistors are presented. As process nodes continue to shrink, managing heat dissipation becomes increasingly crucial. A heat-path layout technique is introduced to improve heat dissipation, which enhances thermal conductivity by stacking dummy metals and vias in the drain region which is a hot spot. This approach effectively reduces both thermal resistance and thermal capacitance. Experiments were conducted using various process nodes to evaluate the effects of different types and placements of heat paths on heat generation and mitigation. The results demonstrate that the proposed heat-path layout technique become increasingly effective as process nodes scale down, providing valuable insights for thermal and electrical optimization in circuit design using next-generation devices.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"225 ","pages":"Article 109054"},"PeriodicalIF":1.4,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143131528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the synaptic response of reactive Mn electrodes based TiO2 resistive switches 探索反应性Mn电极基TiO2电阻开关的突触反应
IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-26 DOI: 10.1016/j.sse.2024.109033
N. Ghenzi , C. Acha
Mn/TiO2/Mn devices, prepared by reactive sputtering and photolithography techniques, were characterized by analyzing their current–voltage (I-V) dependence, non-volatile memory properties, and artificial synapse behavior. The detailed study of its I-V characteristics allowed for highlighting the main conduction mechanisms involved in the electrical transport through the Mn-TiO2 junctions and determining an equivalent circuit model. These results show that the oxidation of metallic Mn electrodes and the application of electrical pulses produce a complex scenario associated with a highly inhomogeneous oxygen vacancy distribution. The resistance hysteresis switching loops were determined, as well as the synaptic-like weight depreciation and potentiation, revealing a linear dependence of the reset voltage as a function of the amplitude of the set voltage and a quasi-linear variation of the conductance with the number of applied pulses. Simulations based on spiking neural network architecture, considering different updates of the synaptic weights, were trained to learn handwriting patterns. Notably, those based on the linear learning rule of the Mn/TiO2/Mn devices outperformed others with increasing non-linear behavior, demonstrating both high recognition and noise tolerance factors, further highlighting the robustness of this approach.
通过反应溅射和光刻技术制备的Mn/TiO2/Mn器件,分析了其电流-电压依赖性、非易失性记忆性能和人工突触行为。通过对其I-V特性的详细研究,可以突出通过Mn-TiO2结的电传输所涉及的主要传导机制,并确定等效电路模型。这些结果表明,金属Mn电极的氧化和电脉冲的应用产生了与高度不均匀的氧空位分布相关的复杂场景。确定了电阻迟滞开关回路,以及类似突触的权重衰减和增强,揭示了复位电压作为设定电压幅值的函数的线性依赖关系,以及电导随施加脉冲数的准线性变化。基于脉冲神经网络架构的模拟,考虑不同的突触权重更新,训练学习手写模式。值得注意的是,基于Mn/TiO2/Mn器件的线性学习规则的算法在非线性行为增加的情况下优于其他算法,表现出较高的识别和噪声容忍系数,进一步突出了该方法的鲁棒性。
{"title":"Exploring the synaptic response of reactive Mn electrodes based TiO2 resistive switches","authors":"N. Ghenzi ,&nbsp;C. Acha","doi":"10.1016/j.sse.2024.109033","DOIUrl":"10.1016/j.sse.2024.109033","url":null,"abstract":"<div><div>Mn/TiO<sub>2</sub>/Mn devices, prepared by reactive sputtering and photolithography techniques, were characterized by analyzing their current–voltage (I-V) dependence, non-volatile memory properties, and artificial synapse behavior. The detailed study of its I-V characteristics allowed for highlighting the main conduction mechanisms involved in the electrical transport through the Mn-TiO<sub>2</sub> junctions and determining an equivalent circuit model. These results show that the oxidation of metallic Mn electrodes and the application of electrical pulses produce a complex scenario associated with a highly inhomogeneous oxygen vacancy distribution. The resistance hysteresis switching loops were determined, as well as the synaptic-like weight depreciation and potentiation, revealing a linear dependence of the reset voltage as a function of the amplitude of the set voltage and a quasi-linear variation of the conductance with the number of applied pulses. Simulations based on spiking neural network architecture, considering different updates of the synaptic weights, were trained to learn handwriting patterns. Notably, those based on the linear learning rule of the Mn/TiO<sub>2</sub>/Mn devices outperformed others with increasing non-linear behavior, demonstrating both high recognition and noise tolerance factors, further highlighting the robustness of this approach.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"223 ","pages":"Article 109033"},"PeriodicalIF":1.4,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of single-event effects under defocused laser irradiation: Analysis of charge collection in bipolar devices 离焦激光辐照下单事件效应的探索:双极器件电荷收集的分析
IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-24 DOI: 10.1016/j.sse.2024.109034
Hengbo Hou , Jiansong Yue , Zhankai Li , Ning Hu , Qiang Wei
Pulsed lasers are employed to simulate Single Event Effects (SEEs) on Earth, with their feasibility empirically validated. In practical applications, it is necessary to correlate laser test results with high-energy particle measurements to accurately predict spatial SEE rates. Most of the current methods rely on charge collection RPP models or nested RPP models for laser-energy particle correlation. These models have not yet accounted for the effect of ionization trace differences. In this paper, ionization traces with different radial dimensions are obtained at different depths inside a bipolar device operational amplifier LM324 by adjusting the defocusing amount of the laser. This study compares charge collection generated by the laser with different characteristic ionization traces and analyzes experimental error factors and the charge collection mechanism. The results indicate that the radial size of the ionization traces inside the device is the main factor affecting the charge collection. Larger radial size of ionization traces on the surface area of the device results in greater charge collection, while smaller radial size of ionization traces in the depletion area and the substrate layer leads to increased charge collection. Additionally, efforts should be made to minimize the effects of movement accuracy errors and off-axis angle errors on the quantitative characterization of the test.
利用脉冲激光模拟地球上的单事件效应,并对其可行性进行了实证验证。在实际应用中,有必要将激光测试结果与高能粒子测量相关联,以准确预测空间SEE率。目前的激光-能量-粒子关联方法大多依赖于电荷收集RPP模型或嵌套RPP模型。这些模型还没有考虑到电离痕量差异的影响。本文通过调节激光器的离焦量,在双极器件运算放大器LM324的不同深度处获得了具有不同径向尺寸的电离迹线。本研究比较了不同特征电离迹线激光器产生的电荷收集,分析了实验误差因素和电荷收集机理。结果表明,器件内部电离迹线的径向尺寸是影响电荷收集的主要因素。器件表面离子化迹线径向尺寸越大,电荷收集量越大,耗尽区和衬底层离子化迹线径向尺寸越小,电荷收集量越大。此外,应尽量减少运动精度误差和离轴角度误差对试验定量表征的影响。
{"title":"Exploration of single-event effects under defocused laser irradiation: Analysis of charge collection in bipolar devices","authors":"Hengbo Hou ,&nbsp;Jiansong Yue ,&nbsp;Zhankai Li ,&nbsp;Ning Hu ,&nbsp;Qiang Wei","doi":"10.1016/j.sse.2024.109034","DOIUrl":"10.1016/j.sse.2024.109034","url":null,"abstract":"<div><div>Pulsed lasers are employed to simulate Single Event Effects (SEEs) on Earth, with their feasibility empirically validated. In practical applications, it is necessary to correlate laser test results with high-energy particle measurements to accurately predict spatial SEE rates. Most of the current methods rely on charge collection RPP models or nested RPP models for laser-energy particle correlation. These models have not yet accounted for the effect of ionization trace differences. In this paper, ionization traces with different radial dimensions are obtained at different depths inside a bipolar device operational amplifier LM324 by adjusting the defocusing amount of the laser. This study compares charge collection generated by the laser with different characteristic ionization traces and analyzes experimental error factors and the charge collection mechanism. The results indicate that the radial size of the ionization traces inside the device is the main factor affecting the charge collection. Larger radial size of ionization traces on the surface area of the device results in greater charge collection, while smaller radial size of ionization traces in the depletion area and the substrate layer leads to increased charge collection. Additionally, efforts should be made to minimize the effects of movement accuracy errors and off-axis angle errors on the quantitative characterization of the test.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"223 ","pages":"Article 109034"},"PeriodicalIF":1.4,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of capacitorless DRAM performance according to stacked junctionless gate-all-around structures 基于堆叠无结栅全结构的无电容DRAM性能比较分析
IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-24 DOI: 10.1016/j.sse.2024.109036
Jihye Hwang, Ilgu Yun
The characteristic comparison of the capacitor-less DRAMs in the structural form variation is investigated. Based on the simulation results of the three basic structures, such as circular, square, and rectangular nanosheets, the gate length (Lg), channel thickness (Tsi), and width of the nanosheet (Wsi) are considered as the main factors in design and the characteristic variations are verified according to the junctionless (JL) gate-all-around (GAA) geometry factors. The channel thickness is a major factor that has a major influence on the sensing margin and the retention time, which are important characteristics of DRAM. The thinner the thickness, the more deteriorated the sensing margin is confirmed. Retention time is due to the influence of the electric field distribution of the JL GAA structure, resulting in differences in structure. Finally, the rectangular type nanosheet is implemented in the stacked structure. As the number of stacks increases, the effective channel width increases compared to the layout footprint. In addition, by stacking vertically, the area where holes can be stored increases. Therefore, the sensing margin tends to increase as the number of stacks increases. However, the difference in diffusion due to the difference in the initially stored hole density, the retention time deteriorates as the number of stacks increases.
研究了无电容dram在结构形式变化方面的特性比较。基于圆形、方形和矩形纳米片三种基本结构的仿真结果,将栅极长度(Lg)、沟道厚度(Tsi)和宽度(Wsi)作为设计的主要因素,并根据无结栅极全能(GAA)几何因素验证了其特性变化。通道厚度是影响感知裕度和保持时间的主要因素,而感知裕度和保持时间是DRAM的重要特性。厚度越薄,确认的感应裕度越差。保留时间是由于JL GAA结构电场分布的影响,导致结构上的差异。最后,在堆叠结构中实现了矩形型纳米片。随着堆栈数量的增加,有效通道宽度相对于布局占用空间增加。此外,通过垂直堆叠,可以存储孔洞的面积增加。因此,传感裕度随着堆栈数量的增加而增加。然而,由于初始存储孔密度的不同,扩散的差异,保留时间随着堆数的增加而恶化。
{"title":"Comparative analysis of capacitorless DRAM performance according to stacked junctionless gate-all-around structures","authors":"Jihye Hwang,&nbsp;Ilgu Yun","doi":"10.1016/j.sse.2024.109036","DOIUrl":"10.1016/j.sse.2024.109036","url":null,"abstract":"<div><div>The characteristic comparison of the capacitor-less DRAMs in the structural form variation is investigated. Based on the simulation results of the three basic structures, such as circular, square, and rectangular nanosheets, the gate length (L<sub>g</sub>), channel thickness (T<sub>si</sub>), and width of the nanosheet (W<sub>si</sub>) are considered as the main factors in design and the characteristic variations are verified according to the junctionless (JL) gate-all-around (GAA) geometry factors. The channel thickness is a major factor that has a major influence on the sensing margin and the retention time, which are important characteristics of DRAM. The thinner the thickness, the more deteriorated the sensing margin is confirmed. Retention time is due to the influence of the electric field distribution of the JL GAA structure, resulting in differences in structure. Finally, the rectangular type nanosheet is implemented in the stacked structure. As the number of stacks increases, the effective channel width increases compared to the layout footprint. In addition, by stacking vertically, the area where holes can be stored increases. Therefore, the sensing margin tends to increase as the number of stacks increases. However, the difference in diffusion due to the difference in the initially stored hole density, the retention time deteriorates as the number of stacks increases.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"223 ","pages":"Article 109036"},"PeriodicalIF":1.4,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defects in polysilicon channel: Insight from first principles and multi-scale modelling 多晶硅沟道缺陷:从第一性原理和多尺度建模的洞察
IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-24 DOI: 10.1016/j.sse.2024.109031
R. Maji , T. Rollo , S. Gangopadhyay , E. Luppi , E. Degoli , F. Nardi , L. Larcher , M. Pešić
With increasing demand for essential components in the field of electronic devices, enabling advancements in display technology, flexible electronics, and various industrial applications, thin-film transistors (TFTs) are significant. Their versatility and compatibility with low-temperature fabrication processes make them a vital element in advanced electronic systems. The use of polycrystalline silicon (Poly-Si) as the channel material is specific to TFT applications unlike single-crystal/epitaxial Si in high-performance integrated circuit transistors. Poly-Si is characterized by the presence of defects such as voids, grain boundaries (GBs), and dislocations, that exert detrimental influence on electrical conductivity and then on device performance. Understanding of these would help engineer the novel TFT devices with superior reliability. In this context, Fundamental properties of the GBs are calculated using density functional theory (DFT) and their impact on poly-Si TFTs performance and figures of merit is assessed using the Ginestra® simulation platform. To account the process contaminations, the impact of known lighter impurities on GBs is comprehensively studied. In this paper we show how material properties from DFT can be effectively virtualized to predict electronic device performance, enable fast and reliable evaluation of device sensitivity to material changes, and how outputs of this multi-scale modelling process agree with experiments.
随着电子器件领域对基本元件的需求不断增加,使得显示技术、柔性电子和各种工业应用的进步,薄膜晶体管(tft)具有重要意义。它们的多功能性和与低温制造工艺的兼容性使它们成为先进电子系统中的重要元素。多晶硅(Poly-Si)作为通道材料的使用是特定于TFT应用的,不像高性能集成电路晶体管中的单晶/外延硅。多晶硅的特点是存在缺陷,如空隙、晶界(GBs)和位错,这些缺陷会对电导率产生不利影响,进而影响器件性能。了解这些将有助于设计具有卓越可靠性的新型TFT器件。在这种情况下,使用密度泛函理论(DFT)计算了gb的基本特性,并使用Ginestra®仿真平台评估了它们对多晶硅tft性能和优点的影响。考虑到过程污染,已知的较轻杂质对gb的影响进行了全面研究。在本文中,我们展示了如何从DFT中有效地虚拟材料特性来预测电子器件性能,实现对器件对材料变化的敏感性的快速可靠评估,以及这种多尺度建模过程的输出如何与实验一致。
{"title":"Defects in polysilicon channel: Insight from first principles and multi-scale modelling","authors":"R. Maji ,&nbsp;T. Rollo ,&nbsp;S. Gangopadhyay ,&nbsp;E. Luppi ,&nbsp;E. Degoli ,&nbsp;F. Nardi ,&nbsp;L. Larcher ,&nbsp;M. Pešić","doi":"10.1016/j.sse.2024.109031","DOIUrl":"10.1016/j.sse.2024.109031","url":null,"abstract":"<div><div>With increasing demand for essential components in the field of electronic devices, enabling advancements in display technology, flexible electronics, and various industrial applications, thin-film transistors (TFTs) are significant. Their versatility and compatibility with low-temperature fabrication processes make them a vital element in advanced electronic systems. The use of polycrystalline silicon (Poly-Si) as the channel material is specific to TFT applications unlike single-crystal/epitaxial Si in high-performance integrated circuit transistors. Poly-Si is characterized by the presence of defects such as voids, grain boundaries (GBs), and dislocations, that exert detrimental influence on electrical conductivity and then on device performance. Understanding of these would help engineer the novel TFT devices with superior reliability. In this context, Fundamental properties of the GBs are calculated using density functional theory (DFT) and their impact on poly-Si TFTs performance and figures of merit is assessed using the Ginestra® simulation platform. To account the process contaminations, the impact of known lighter impurities on GBs is comprehensively studied. In this paper we show how material properties from DFT can be effectively virtualized to predict electronic device performance, enable fast and reliable evaluation of device sensitivity to material changes, and how outputs of this multi-scale modelling process agree with experiments.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"223 ","pages":"Article 109031"},"PeriodicalIF":1.4,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A computational study of AlScN-based ferroelectric tunnel junction 基于 AlScN 的铁电隧道结的计算研究
IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-23 DOI: 10.1016/j.sse.2024.109026
Ning Yang, Guoting Cheng, Jing Guo
Ferroelectric (FE) AlScN materials have been experimentally explored for memory and neuromorphic computing device applications. Here a computational study is performed to simulate the device characteristics and assess the performance potential of a ferroelectric tunnel junction (FTJ) based on AlScN. We parameterize an efficient kp Hamiltonian from the complex band structure of AlScN from ab initio density-functional theory calculations to enable efficient quantum transport simulations of the FTJ device. Using a metal–FE–graphene structure enhances the barrier height modulation and the tunneling electroresistance (TER) ratio, compared to a metal–FE–semiconductor FTJ device structure. The barrier height modulation between ON and OFF states can reach 0.7eV with a FE polarization of 25 μC/cm2. Reducing the AlScN tunnel layer thickness is important for increasing the device ON current and reducing the read latency. The results indicate the importance of contact designs and FE layer thickness in the design of AlScN-based FTJ devices, and highlight the potential of AlScN FTJ for future memory device technology applications.
铁电(FE)AlScN 材料已在存储器和神经形态计算设备应用方面进行了实验探索。在此,我们进行了一项计算研究,以模拟基于 AlScN 的铁电隧道结 (FTJ) 的器件特性并评估其性能潜力。我们根据原子序数密度泛函理论计算得出的 AlScN 复杂能带结构,为高效的 k⋅p 哈密顿参数设置了参数,从而实现了 FTJ 器件的高效量子输运模拟。与金属-FE-半导体 FTJ 器件结构相比,金属-FE-石墨烯结构增强了势垒高度调制和隧穿电阻(TER)比。在 25 μC/cm2 的 FE 极化条件下,导通态和关断态之间的势垒高度调制可达 0.7eV。减小 AlScN 隧道层厚度对于增加器件导通电流和减少读取延迟非常重要。这些结果表明了接触设计和 FE 层厚度在基于 AlScN 的 FTJ 器件设计中的重要性,并凸显了 AlScN FTJ 在未来存储器件技术应用中的潜力。
{"title":"A computational study of AlScN-based ferroelectric tunnel junction","authors":"Ning Yang,&nbsp;Guoting Cheng,&nbsp;Jing Guo","doi":"10.1016/j.sse.2024.109026","DOIUrl":"10.1016/j.sse.2024.109026","url":null,"abstract":"<div><div>Ferroelectric (FE) AlScN materials have been experimentally explored for memory and neuromorphic computing device applications. Here a computational study is performed to simulate the device characteristics and assess the performance potential of a ferroelectric tunnel junction (FTJ) based on AlScN. We parameterize an efficient k<span><math><mi>⋅</mi></math></span>p Hamiltonian from the complex band structure of AlScN from <em>ab initio</em> density-functional theory calculations to enable efficient quantum transport simulations of the FTJ device. Using a metal–FE–graphene structure enhances the barrier height modulation and the tunneling electroresistance (TER) ratio, compared to a metal–FE–semiconductor FTJ device structure. The barrier height modulation between ON and OFF states can reach <span><math><mo>∼</mo></math></span> 0.7eV with a FE polarization of 25 <span><math><mi>μ</mi></math></span>C/cm<sup>2</sup>. Reducing the AlScN tunnel layer thickness is important for increasing the device ON current and reducing the read latency. The results indicate the importance of contact designs and FE layer thickness in the design of AlScN-based FTJ devices, and highlight the potential of AlScN FTJ for future memory device technology applications.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"223 ","pages":"Article 109026"},"PeriodicalIF":1.4,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142719881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Al2O3 on the operation of SiNX-based MIS RRAMs Al2O3对sinx基MIS rram运行的影响
IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-22 DOI: 10.1016/j.sse.2024.109035
A.E. Mavropoulis , N. Vasileiadis , P. Normand , C. Theodorou , G. Ch. Sirakoulis , S. Kim , P. Dimitrakis
The role of a 3 nm Al2O3 layer on top of stoichiometric LPCVD SiNx MIS RRAM cells is investigated by using various electrical characterization techniques. The conductive filament formation is explained, and a compact model is used to fit the current–voltage curves and find its evolution during each operation cycle. The conduction in SiNx is also studied.
通过使用各种电表征技术,研究了化学计量LPCVD SiNx MIS RRAM电池上3nm Al2O3层的作用。解释了导电灯丝的形成过程,并建立了一个紧凑的模型来拟合电流-电压曲线,并求出其在每个运行周期内的演变。研究了SiNx中的传导。
{"title":"Effect of Al2O3 on the operation of SiNX-based MIS RRAMs","authors":"A.E. Mavropoulis ,&nbsp;N. Vasileiadis ,&nbsp;P. Normand ,&nbsp;C. Theodorou ,&nbsp;G. Ch. Sirakoulis ,&nbsp;S. Kim ,&nbsp;P. Dimitrakis","doi":"10.1016/j.sse.2024.109035","DOIUrl":"10.1016/j.sse.2024.109035","url":null,"abstract":"<div><div>The role of a 3 nm Al<sub>2</sub>O<sub>3</sub> layer on top of stoichiometric LPCVD SiN<sub>x</sub> MIS RRAM cells is investigated by using various electrical characterization techniques. The conductive filament formation is explained, and a compact model is used to fit the current–voltage curves and find its evolution during each operation cycle. The conduction in SiN<sub>x</sub> is also studied.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"223 ","pages":"Article 109035"},"PeriodicalIF":1.4,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of LDMOS down to cryogenic temperatures and modeling with PSPHV 低至低温的 LDMOS 特性及 PSPHV 建模
IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-19 DOI: 10.1016/j.sse.2024.109029
Yili Wang , Kejun Xia , Guofu Niu , Michael Hamilton , Xu Cheng
This article presents a detailed characterization and analysis of a 45 V LDMOS device from production technology across a wide temperature range from 33 to 385 K. For the first time, quasi-saturation behavior is consistently observed throughout the entire temperature range studied. Compared to prior published data, this device shows some notable differences, including a substantially higher saturation temperature of around 200 K for threshold voltage and subthreshold swing due to band tail and a typical low on-resistance down to 33 K, free of freezeout. To account for the observed temperature dependencies, we propose improved semi-empirical temperature scaling equations for the PSPHV model. We extend its applicable temperature range down to 33 K from the previous lower limit of 240 K. The enhancement models the temperature behaviors of key device parameters, including threshold voltage, subthreshold swing, mobility, velocity saturation, drift resistance, and quasi-saturation effects. These results provide new insights into the low-temperature behavior of LDMOS devices for cryogenic electronics applications.
本文详细描述和分析了采用生产技术的 45 V LDMOS 器件在 33 至 385 K 宽温度范围内的特性。与之前公布的数据相比,该器件显示出一些显著差异,包括由于带尾效应,阈值电压和阈下摆动的饱和温度大大高于 200 K 左右,以及典型的低导通电阻(低至 33 K),无冻结现象。为了解释观察到的温度依赖性,我们为 PSPHV 模型提出了改进的半经验温度比例方程。我们将其适用的温度范围从以前的下限 240 K 扩展到 33 K。改进后的模型可模拟关键器件参数的温度行为,包括阈值电压、亚阈值摆幅、迁移率、速度饱和、漂移电阻和准饱和效应。这些结果为低温电子应用中 LDMOS 器件的低温行为提供了新的见解。
{"title":"Characterization of LDMOS down to cryogenic temperatures and modeling with PSPHV","authors":"Yili Wang ,&nbsp;Kejun Xia ,&nbsp;Guofu Niu ,&nbsp;Michael Hamilton ,&nbsp;Xu Cheng","doi":"10.1016/j.sse.2024.109029","DOIUrl":"10.1016/j.sse.2024.109029","url":null,"abstract":"<div><div>This article presents a detailed characterization and analysis of a 45 V LDMOS device from production technology across a wide temperature range from 33 to 385 K. For the first time, quasi-saturation behavior is consistently observed throughout the entire temperature range studied. Compared to prior published data, this device shows some notable differences, including a substantially higher saturation temperature of around 200 K for threshold voltage and subthreshold swing due to band tail and a typical low on-resistance down to 33 K, free of freezeout. To account for the observed temperature dependencies, we propose improved semi-empirical temperature scaling equations for the PSPHV model. We extend its applicable temperature range down to 33 K from the previous lower limit of 240 K. The enhancement models the temperature behaviors of key device parameters, including threshold voltage, subthreshold swing, mobility, velocity saturation, drift resistance, and quasi-saturation effects. These results provide new insights into the low-temperature behavior of LDMOS devices for cryogenic electronics applications.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"223 ","pages":"Article 109029"},"PeriodicalIF":1.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multi-level cell for ultra-scaled STT-MRAM realized by back-hopping 通过后跳实现超大规模 STT-MRAM 的多级单元
IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-16 DOI: 10.1016/j.sse.2024.109027
M. Bendra , R.L. de Orio , S. Selberherr , W. Goes , V. Sverdlov
The development of advanced magnetic tunnel junctions with a footprint in the single-digit nanometer range can be achieved using structures with an elongated and composite ferromagnetic free layer. Using advanced modeling techniques, we investigated the back-hopping effect in ultra-scaled STT-MRAM devices, defined as the unintended switching of the last part of the free layer, leading to an undesired magnetization state of the free layer. To understand the switching of the free layer, the torque acting on both parts of the composite-free layer must be studied in detail. A reduction in the size of MRAM components to increase the memory density may lead to back-hopping. However, the observed back-hopping effect can also be exploited for the realization of multi-level cells. For this purpose, we have carefully investigated the switching behavior of a device with several tunnel barrier interfaces and a few nanometers in diameter. Our studies on ultra-scaled STT-MRAM devices highlight the significant back-hopping effect which, when harnessed, can enable multi-bit cells with four distinct states, enhancing storage and functionality. These insights are pivotal for the design and optimization of future miniaturized spintronics devices.
利用具有拉长和复合铁磁自由层的结构,可以开发出尺寸在个位数纳米范围内的先进磁隧道结。利用先进的建模技术,我们研究了超大规模 STT-MRAM 器件中的后跳效应,这种效应被定义为自由层最后部分的意外切换,导致自由层出现不希望的磁化状态。要了解自由层的切换,必须详细研究作用于无复合层两部分的扭矩。缩小 MRAM 元件尺寸以提高存储器密度可能会导致反跳现象。不过,观察到的反跳效应也可用于实现多级单元。为此,我们仔细研究了一个具有多个隧道势垒接口、直径只有几个纳米的器件的开关行为。我们对超尺度 STT-MRAM 器件的研究凸显了显著的后跳效应,利用这种效应可以实现具有四种不同状态的多位单元,从而增强存储和功能。这些见解对于未来微型化自旋电子器件的设计和优化至关重要。
{"title":"A multi-level cell for ultra-scaled STT-MRAM realized by back-hopping","authors":"M. Bendra ,&nbsp;R.L. de Orio ,&nbsp;S. Selberherr ,&nbsp;W. Goes ,&nbsp;V. Sverdlov","doi":"10.1016/j.sse.2024.109027","DOIUrl":"10.1016/j.sse.2024.109027","url":null,"abstract":"<div><div>The development of advanced magnetic tunnel junctions with a footprint in the single-digit nanometer range can be achieved using structures with an elongated and composite ferromagnetic free layer. Using advanced modeling techniques, we investigated the back-hopping effect in ultra-scaled STT-MRAM devices, defined as the unintended switching of the last part of the free layer, leading to an undesired magnetization state of the free layer. To understand the switching of the free layer, the torque acting on both parts of the composite-free layer must be studied in detail. A reduction in the size of MRAM components to increase the memory density may lead to back-hopping. However, the observed back-hopping effect can also be exploited for the realization of multi-level cells. For this purpose, we have carefully investigated the switching behavior of a device with several tunnel barrier interfaces and a few nanometers in diameter. Our studies on ultra-scaled STT-MRAM devices highlight the significant back-hopping effect which, when harnessed, can enable multi-bit cells with four distinct states, enhancing storage and functionality. These insights are pivotal for the design and optimization of future miniaturized spintronics devices.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"223 ","pages":"Article 109027"},"PeriodicalIF":1.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Solid-state Electronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1