Pub Date : 2024-02-01DOI: 10.1016/j.sse.2024.108865
Michelly de Souza , Antonio Cerdeira , Magali Estrada , Mikaël Cassé , Sylvain Barraud , Maud Vinet , Olivier Faynot , Marcelo A. Pavanello
This paper presents a comprehensive experimental analysis of the gate-induced drain leakage (GIDL) in two-level stacked nanowire SOI nMOSFETs for operating temperatures between 300 K and 580 K. Devices with different channel lengths and fin widths were measured. The results show that temperature rise increases the GIDL current for stacked nanowire transistors and its dependence on nanowire width. For a fixed gate voltage, the channel length reduction increases the GIDL current except in the presence of short-channel length. Three-dimensional TCAD simulations were performed, and the band-to-band generation was extracted for devices with different channel lengths, widths, and temperatures. The temperature rise increases valence and conduction energy levels, being more pronounced in the first, which causes the reduction of the lateral distance between the two levels, finally favoring the transversal band-to-band tunneling.
本文对工作温度介于 300 K 和 580 K 之间的两级堆叠纳米线 SOI nMOSFET 的栅极诱导漏电流(GIDL)进行了全面的实验分析。测量了不同沟道长度和鳍片宽度的器件。结果表明,温度升高会增大堆叠纳米线晶体管的 GIDL 电流,而且 GIDL 电流与纳米线宽度有关。在栅极电压固定的情况下,除短沟道长度外,沟道长度的减少会增加 GIDL 电流。我们进行了三维 TCAD 仿真,并提取了具有不同沟道长度、宽度和温度的器件的带到带发电量。温度升高会增加价能级和传导能级,前者更为明显,从而导致两个能级之间的横向距离减小,最终有利于横向带对带隧道。
{"title":"Comprehensive evaluation of gate-induced drain leakage in SOI stacked nanowire nMOSFETs operating in high-temperatures","authors":"Michelly de Souza , Antonio Cerdeira , Magali Estrada , Mikaël Cassé , Sylvain Barraud , Maud Vinet , Olivier Faynot , Marcelo A. Pavanello","doi":"10.1016/j.sse.2024.108865","DOIUrl":"10.1016/j.sse.2024.108865","url":null,"abstract":"<div><p>This paper presents a comprehensive experimental analysis of the gate-induced drain leakage (GIDL) in two-level stacked nanowire SOI nMOSFETs for operating temperatures between 300 K and 580 K. Devices with different channel lengths and fin widths were measured. The results show that temperature rise increases the GIDL current for stacked nanowire transistors and its dependence on nanowire width. For a fixed gate voltage, the channel length reduction increases the GIDL current except in the presence of short-channel length. Three-dimensional TCAD simulations were performed, and the band-to-band generation was extracted for devices with different channel lengths, widths, and temperatures. The temperature rise increases valence and conduction energy levels, being more pronounced in the first, which causes the reduction of the lateral distance between the two levels, finally favoring the transversal band-to-band tunneling.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"214 ","pages":"Article 108865"},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139662158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-30DOI: 10.1016/j.sse.2024.108868
L. Ghizzo , D. Trémouilles , F. Richardeau , G. Guibaud
The fluctuation of the threshold voltage (Vth) presents a challenge while monitoring electrical drift in reliability studies of GaN HEMTs. While technologies, such as ohmic p-GaN, may lessen Vth fluctuations, the issue of recoverable charge trapping still remains. Therefore, it is crucial to adopt novel characterization methods when conducting reliability studies, in order to measure intrinsic changes rather than the charge-trapping effects that exist even in non-degraded transistors. One method expounded in this paper allows for a reliable and replicable measurement of Vth for an ohmic p-GaN gate HEMT GaN. A dedicated gate-bias profile is introduced immediately prior to the threshold-voltage measurement to stabilize it. This preconditioning phase necessitates a negative bias voltage followed by a suitably high voltage to be effective. The novel protocol introduced is also shown to be applicable to other HEMT GaN structures.
在 GaN HEMT 可靠性研究中,阈值电压(Vth)的波动给监测电漂移带来了挑战。虽然欧姆 p-GaN 等技术可以减小 Vth 波动,但可恢复的电荷捕获问题依然存在。因此,在进行可靠性研究时,采用新颖的表征方法至关重要,以便测量内在变化,而不是即使在非降级晶体管中也存在的电荷捕获效应。本文阐述的一种方法可以可靠、可复制地测量欧姆 p-GaN 栅极 HEMT GaN 的 Vth。在阈值电压测量之前,会立即引入一个专用的栅极偏置曲线,以稳定测量结果。这一预处理阶段需要负偏置电压和适当的高电压才能有效。事实证明,引入的新协议也适用于其他 HEMT GaN 结构。
{"title":"Preconditioning of Ohmic p-GaN power HEMT for reproducible Vth measurements","authors":"L. Ghizzo , D. Trémouilles , F. Richardeau , G. Guibaud","doi":"10.1016/j.sse.2024.108868","DOIUrl":"10.1016/j.sse.2024.108868","url":null,"abstract":"<div><p>The fluctuation of the threshold voltage (<em>V<sub>th</sub></em>) presents a challenge while monitoring electrical drift in reliability studies of GaN HEMTs. While technologies, such as ohmic p-GaN, may lessen <em>V<sub>th</sub></em> fluctuations, the issue of recoverable charge trapping still remains. Therefore, it is crucial to adopt novel characterization methods when conducting reliability studies, in order to measure intrinsic changes rather than the charge-trapping effects that exist even in non-degraded transistors. One method expounded in this paper allows for a reliable and replicable measurement of <em>V<sub>th</sub></em> for an ohmic p-GaN gate HEMT GaN. A dedicated gate-bias profile is introduced immediately prior to the threshold-voltage measurement to stabilize it. This preconditioning phase necessitates a negative bias voltage followed by a suitably high voltage to be effective. The novel protocol introduced is also shown to be applicable to other HEMT GaN structures.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"214 ","pages":"Article 108868"},"PeriodicalIF":1.7,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-26DOI: 10.1016/j.sse.2024.108862
Changha Kim , Dong-Oh Kim , Woo Young Choi
The influences of gate-source/drain overlap on ferroelectric field-effect transistors (FeFETs) are investigated with various gate-source/drain overlap lengths (Lov’s) and doping concentrations of the gate-source/drain overlap region (Dov’s). In contrast to conventional metal-ferroelectric-insulator-semiconductor (MFIS) FeFETs, a metal layer between a ferroelectric and an insulator layer allows overlap capacitance to affect the entire ferroelectric layer in metal-ferroelectric-metal–insulator-semiconductor (MFMIS) FeFETs. As Lov and Dov increase, the effective channel length of both FeFETs decreases. In the case of MFMIS FeFETs, the gate-to-source/drain overlap capacitance (Cov,gate-S/D) increases, leading to a larger voltage drop across the ferroelectric layer. According to the simulation results, MFMIS FeFETs show a wider memory window (MW) and larger sensing margin than MFIS FeFETs.
{"title":"Influence of gate-source/drain overlap on FeFETs","authors":"Changha Kim , Dong-Oh Kim , Woo Young Choi","doi":"10.1016/j.sse.2024.108862","DOIUrl":"10.1016/j.sse.2024.108862","url":null,"abstract":"<div><p>The influences of gate-source/drain overlap on ferroelectric field-effect transistors (FeFETs) are investigated with various gate-source/drain overlap lengths (<em>L</em><sub>ov</sub>’s) and doping concentrations of the gate-source/drain overlap region (<em>D</em><sub>ov</sub>’s). In contrast to conventional metal-ferroelectric-insulator-semiconductor (MFIS) FeFETs, a metal layer between a ferroelectric and an insulator layer allows overlap capacitance to affect the entire ferroelectric layer in metal-ferroelectric-metal–insulator-semiconductor (MFMIS) FeFETs. As <em>L</em><sub>ov</sub> and <em>D</em><sub>ov</sub> increase, the effective channel length of both FeFETs decreases. In the case of MFMIS FeFETs, the gate-to-source/drain overlap capacitance (<em>C</em><sub>ov,gate-S/D</sub>) increases, leading to a larger voltage drop across the ferroelectric layer. According to the simulation results, MFMIS FeFETs show a wider memory window (MW) and larger sensing margin than MFIS FeFETs.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"214 ","pages":"Article 108862"},"PeriodicalIF":1.7,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139583903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-19DOI: 10.1016/j.sse.2024.108861
Siheng Chen , Peng Cui , Handoko Linewih , Kuan Yew Cheong , Mingsheng Xu , Xin Luo , Liu Wang , Jiuji Sun , Jiacheng Dai , Jisheng Han , Xiangang Xu
The surface electronic states and defects of gallium nitride based high-electron-mobility transistors (HEMTs) play a critical role affecting channel electron density, electron mobility, leakage current, radio frequency (RF) power output and power added efficiency of devices. This article demonstrates the improved surface properties of InAlN/GaN HEMTs through forming gas (FG) annealing, resulting in a significantly improved electrical properties. The X-ray photoelectron spectra reveals a reduction of surface native oxide after FG H2/N2 annealing whereby the amount of Ga–O bonds is decreased. Compared with N2 annealing, an on-resistance of 1.68 Ω·mm, a subthreshold swing of 118 mV/dec, a transconductance peak of 513 mS/mm, a gate diode breakdown voltage of surpassing 42 V, and a high current/power gain cutoff frequency (fT/fmax) of 165/165 GHz are achieved by the 50-nm InAlN/GaN HEMT on Si substrate.
{"title":"Improved electrical performance of InAlN/GaN high electron mobility transistors with forming gas annealing","authors":"Siheng Chen , Peng Cui , Handoko Linewih , Kuan Yew Cheong , Mingsheng Xu , Xin Luo , Liu Wang , Jiuji Sun , Jiacheng Dai , Jisheng Han , Xiangang Xu","doi":"10.1016/j.sse.2024.108861","DOIUrl":"10.1016/j.sse.2024.108861","url":null,"abstract":"<div><p>The surface electronic states and defects of gallium nitride based high-electron-mobility transistors (HEMTs) play a critical role affecting channel electron density, electron mobility, leakage current, radio frequency (RF) power output and power added efficiency of devices. This article demonstrates the improved surface properties of InAlN/GaN HEMTs through forming gas (FG) annealing, resulting in a significantly improved electrical properties. The X-ray photoelectron spectra reveals a reduction of surface native oxide after FG H<sub>2</sub>/N<sub>2</sub> annealing whereby the amount of Ga–O bonds is decreased. Compared with N<sub>2</sub> annealing, an on-resistance of 1.68 Ω·mm, a subthreshold swing of 118 mV/dec, a transconductance peak of 513 mS/mm, a gate diode breakdown voltage of surpassing 42 V, and a high current/power gain cutoff frequency (<em>f</em><sub>T</sub>/<em>f</em><sub>max</sub>) of 165/165 GHz are achieved by the 50-nm InAlN/GaN HEMT on Si substrate.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"213 ","pages":"Article 108861"},"PeriodicalIF":1.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139509548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-15DOI: 10.1016/j.sse.2024.108863
Ji-Hoon Kang, Hoon Ryu
Quantum bits (qubits) operations in electrically defined Silicon (Si) triple quantum dots (TQDs) are computationally investigated to elevate the potential of TQD structure as a platform for quantum information processing. Employing a realistic SiSi-germanium heterostructure as a target model, device simulations are conducted to secure an initialized qubit state. Basic programmability is verified through implementation of individual qubit operations and 2-qubit entangling operations between neighboring QDs. Constructing a gate sequence composed of 1-qubit and 2-qubit blocks, then, we not only generate three-qubit Greenberger–Horne–Zeilinger state, but also quantify the degradation of state fidelity under the inevitable inaccuracy which are incorporated in the dominant factors of spin-qubit Hamiltonian. Presenting engineering details that are hard to be carried by simulations based on the first principle theory, this work can be served as a practical guideline for designs of scalable quantum processors with electron spin-qubits in Si QD platforms.
{"title":"Quantum information processing in electrically defined Silicon triple quantum dot systems","authors":"Ji-Hoon Kang, Hoon Ryu","doi":"10.1016/j.sse.2024.108863","DOIUrl":"10.1016/j.sse.2024.108863","url":null,"abstract":"<div><p><span><span>Quantum bits (qubits) operations in electrically defined </span>Silicon<span> (Si) triple quantum dots (TQDs) are computationally investigated to elevate the potential of TQD structure as a platform for quantum information processing. Employing a realistic Si</span></span><span><math><mo>/</mo></math></span><span><span><span>Si-germanium heterostructure as a target model, device simulations are conducted to secure an initialized qubit state. Basic </span>programmability is verified through implementation of individual qubit operations and 2-qubit entangling operations between neighboring QDs. Constructing a gate sequence composed of 1-qubit and 2-qubit blocks, then, we not only generate three-qubit Greenberger–Horne–Zeilinger state, but also quantify the degradation of state fidelity under the inevitable inaccuracy which are incorporated in the dominant factors of spin-qubit </span>Hamiltonian<span>. Presenting engineering details that are hard to be carried by simulations based on the first principle theory, this work can be served as a practical guideline for designs of scalable quantum processors with electron spin-qubits in Si QD platforms.</span></span></p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"213 ","pages":"Article 108863"},"PeriodicalIF":1.7,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139470083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The reliability of an Al-doped HfO dielectric used in a high density 2.5D MIMCAP is investigated by constant voltage stress (CVS) and voltage ramp stress (VRS) measurements. The good agreement of the results from the two techniques allows to propose a model for lifetime prediction based on the breakdown characteristics. The extracted activation energy shows a voltage dependence associated with a change in the degradation characteristics of the high- material at high fields.
{"title":"Voltage ramp stress based lifetime-prediction model of advanced Al-doped HfO2 dielectric for 2.5D MIMCAPs","authors":"Corinna Fohn , Emmanuel Chery , Kristof Croes , Michele Stucchi , Valeri Afanas’ev","doi":"10.1016/j.sse.2024.108864","DOIUrl":"10.1016/j.sse.2024.108864","url":null,"abstract":"<div><p>The reliability of an Al-doped HfO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span><span><span> dielectric<span> used in a high density 2.5D MIMCAP is investigated by constant voltage stress (CVS) and voltage ramp stress (VRS) measurements. The good agreement of the results from the two techniques allows to propose a model for lifetime prediction based on the breakdown characteristics. The extracted </span></span>activation energy shows a voltage dependence associated with a change in the degradation characteristics of the high-</span><span><math><mi>κ</mi></math></span> material at high fields.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"213 ","pages":"Article 108864"},"PeriodicalIF":1.7,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139470080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-12DOI: 10.1016/j.sse.2024.108860
Sung Yun Woo , Sangyeon Pak , Sung-Tae Lee
Deep learning has shown impressive capabilities in tasks like speech recognition and image classification. However, modern deep neural networks often demand a significant number of weights and extensive computational resources, creating efficiency challenges for applications on edge devices. To address these issues, researchers have introduced deep spiking neural networks (DSNNs) that leverage specialized hardware for synapses and neurons. DSNNs offer a potential solution by improving efficiency in edge-device applications. In this paper, the hardware based DSNN with integrate and fire neuron using steep switching device was investigated. We propose integrate and fire neuron using steep switching device to implement rate coding as input encoding method. Because the steep switching device has double-gate, the threshold voltage of the neuron circuits can be adaptively controlled, which changes the rates of input pulse. Hence, the adjustment of the threshold of neuron can be employed to mitigate the accuracy deterioration resulting from the transformation from deep neural networks (DNNs) to DSNNs. In addition, the off-current of proposed integrate and fire neuron circuit decreases significantly as the steep switching device has steep subthreshold swing. A system simulation of a hardware based DSNN shows that the adjustable threshold of the neuron circuit can achieve a high inference accuracy of 98.36 % which is comparable to that obtained with software based DNN.
{"title":"Deep spiking neural networks with integrate and fire neuron using steep switching device","authors":"Sung Yun Woo , Sangyeon Pak , Sung-Tae Lee","doi":"10.1016/j.sse.2024.108860","DOIUrl":"10.1016/j.sse.2024.108860","url":null,"abstract":"<div><p>Deep learning has shown impressive capabilities in tasks like speech recognition and image classification. However, modern deep neural networks often demand a significant number of weights and extensive computational resources, creating efficiency challenges for applications on edge devices. To address these issues, researchers have introduced deep spiking neural networks (DSNNs) that leverage specialized hardware for synapses and neurons. DSNNs offer a potential solution by improving efficiency in edge-device applications. In this paper, the hardware based DSNN with integrate and fire neuron using steep switching device was investigated. We propose integrate and fire neuron using steep switching device to implement rate coding as input encoding method. Because the steep switching device has double-gate, the threshold voltage of the neuron circuits can be adaptively controlled, which changes the rates of input pulse. Hence, the adjustment of the threshold of neuron can be employed to mitigate the accuracy deterioration resulting from the transformation from deep neural networks (DNNs) to DSNNs. In addition, the off-current of proposed integrate and fire neuron circuit decreases significantly as the steep switching device has steep subthreshold swing. A system simulation of a hardware based DSNN shows that the adjustable threshold of the neuron circuit can achieve a high inference accuracy of 98.36 % which is comparable to that obtained with software based DNN.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"214 ","pages":"Article 108860"},"PeriodicalIF":1.7,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139470081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-09DOI: 10.1016/j.sse.2024.108859
Ning Yang, Jing Guo
Low-dimensional nanomaterials provide promising material platforms for aggressively scaled transistor technologies. We assess the performance potential of transistors based on an array of Tellurium nanowires (TNWs), by parameterizing a machine-learning (ML) tight-binding model with quantum transport device simulations. It has been shown that a transistor based on a parallel array of carbon nanotubes (CNTs) can have excellent on-state performance, but the small bandgap limits the transistor scalability and off-state performance. Our results indicate that compared to the CNT array FETs, the TNW array FETs have significantly suppressed ambipolar transport and improved subthreshold characteristics. The TNW array FET has the potential to achieve a near-ideal subthreshold swing (SS) close to 60 mV/dec, a very large on–off ratio (>109), and low source-drain leakage current at a 10 nm-scale channel length, due to its excellent gate electrostatics with a gate-all-around (GAA) structure, larger band gap and reduced quantum–mechanical tunneling. The TNW array FET also shows excellent scalability with a SS below 100 mV/dec when the channel length is further scaled down to 5 nm. Its larger bandgap and heavier effective mass significantly reduce quantum tunneling. This mechanism contributes to improved subthreshold and lower leakage but also highlights the need to develop low Schottky barrier contacts for TNWs.
{"title":"Performance potential of transistors based on tellurium nanowire arrays: A quantum transport study","authors":"Ning Yang, Jing Guo","doi":"10.1016/j.sse.2024.108859","DOIUrl":"10.1016/j.sse.2024.108859","url":null,"abstract":"<div><p>Low-dimensional nanomaterials provide promising material platforms for aggressively scaled transistor technologies. We assess the performance potential of transistors based on an array of Tellurium nanowires (TNWs), by parameterizing a machine-learning (ML) tight-binding model with quantum transport device simulations. It has been shown that a transistor based on a parallel array of carbon nanotubes (CNTs) can have excellent on-state performance, but the small bandgap limits the transistor scalability and off-state performance. Our results indicate that compared to the CNT array FETs, the TNW array FETs have significantly suppressed ambipolar transport and improved subthreshold characteristics. The TNW array FET has the potential to achieve a near-ideal subthreshold swing (SS) close to 60 mV/dec, a very large on–off ratio (>10<sup>9</sup>), and low source-drain leakage current at a 10 nm-scale channel length, due to its excellent gate electrostatics with a gate-all-around (GAA) structure, larger band gap and reduced quantum–mechanical tunneling. The TNW array FET also shows excellent scalability with a SS below 100 mV/dec when the channel length is further scaled down to 5 nm. Its larger bandgap and heavier effective mass significantly reduce quantum tunneling. This mechanism contributes to improved subthreshold and lower leakage but also highlights the need to develop low Schottky barrier contacts for TNWs.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"213 ","pages":"Article 108859"},"PeriodicalIF":1.7,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139421211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-03DOI: 10.1016/j.sse.2023.108851
A. Mavropoulis , N. Vasileiadis , C. Bonafos , P. Normand , V. Ioannou-Sougleridis , G. Ch. Sirakoulis , P. Dimitrakis
Stoichiometric SiNx layers (x = [N]/[Si] = 1.33) are doped with Si atoms by ultra-low energy ion implantation (ULE-II) and subsequently annealed at different temperatures in inert ambient conditions. Detailed material and memory cells characterization is performed to investigate the effect of Si dopants on the switching properties and performance of the fabricated resistive memory cells. In this context extensive dc current–voltage and impedance spectroscopy measurements are carried out systematically and the role of doping in dielectric properties of the nitride films is enlightened. The dc and ac conduction mechanisms are investigated in a comprehensive way. Room temperature retention characteristics of resistive states are also presented.
{"title":"Silicon nitride resistance switching MIS cells doped with silicon atoms","authors":"A. Mavropoulis , N. Vasileiadis , C. Bonafos , P. Normand , V. Ioannou-Sougleridis , G. Ch. Sirakoulis , P. Dimitrakis","doi":"10.1016/j.sse.2023.108851","DOIUrl":"10.1016/j.sse.2023.108851","url":null,"abstract":"<div><p>Stoichiometric SiN<sub>x</sub> layers (x = [N]/[Si] = 1.33) are doped with Si atoms by ultra-low energy ion implantation (ULE-II) and subsequently annealed at different temperatures in inert ambient conditions. Detailed material and memory cells characterization is performed to investigate the effect of Si dopants on the switching properties and performance of the fabricated resistive memory cells. In this context extensive dc current–voltage and impedance spectroscopy measurements are carried out systematically and the role of doping in dielectric properties of the nitride films is enlightened. The dc and ac conduction mechanisms are investigated in a comprehensive way. Room temperature retention characteristics of resistive states are also presented.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"213 ","pages":"Article 108851"},"PeriodicalIF":1.7,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139094399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.1016/j.sse.2023.108850
Zhongyuan Wu , Fengyu Luo , Xiaohong Zheng , Jin Liu
Nanostructured Bi2WO6 and Bi2W2O9 were synthesized using a hydrothermal method. The crystal structure, morphology, and specific surface area were analyzed via X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller and X-ray photoelectron spectroscopy (XPS) analysis, respectively. The characterization results show that Bi2WO6 has a higher specific surface area and a larger pore size than Bi2W2O9, which promote oxygen adsorption and surface reactions. Gas-sensitive tests show that both sensors have a lower detection limit of 2.5 ppm as well as short response and recovery times for detecting triethylamine (TEA). They also have excellent cycling and long-term stability at 180 °C and exhibit excellent gas-sensing performance. The Bi2WO6 sensor has a higher response and sensitivity, as well as better selectivity, than the Bi2W2O9 sensor, which is related to the uniformly layered structure of the former material. We have analyzed the mechanism that enables these sensors to detect TEA and have used the Temkin adsorption model to explain the linear relationship. We find that this model provides an excellent theoretical foundation for fitting the working curve of these semiconductor sensors.
{"title":"Bismuth tungstate nanosheets sensors based on Temkin adsorption model for triethylamine detection","authors":"Zhongyuan Wu , Fengyu Luo , Xiaohong Zheng , Jin Liu","doi":"10.1016/j.sse.2023.108850","DOIUrl":"10.1016/j.sse.2023.108850","url":null,"abstract":"<div><p>Nanostructured Bi<sub>2</sub>WO<sub>6</sub> and Bi<sub>2</sub>W<sub>2</sub>O<sub>9</sub> were synthesized using a hydrothermal method. The crystal structure, morphology, and specific surface area were analyzed via X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller and X-ray photoelectron spectroscopy (XPS) analysis, respectively. The characterization results show that Bi<sub>2</sub>WO<sub>6</sub> has a higher specific surface area and a larger pore size than Bi<sub>2</sub>W<sub>2</sub>O<sub>9</sub>, which promote oxygen adsorption and surface reactions. Gas-sensitive tests show that both sensors have a lower detection limit of 2.5 ppm as well as short response and recovery times for detecting triethylamine (TEA). They also have excellent cycling and long-term stability at 180 °C and exhibit excellent gas-sensing performance. The Bi<sub>2</sub>WO<sub>6</sub> sensor has a higher response and sensitivity, as well as better selectivity, than the Bi<sub>2</sub>W<sub>2</sub>O<sub>9</sub> sensor, which is related to the uniformly layered structure of the former material. We have analyzed the mechanism that enables these sensors to detect TEA and have used the Temkin adsorption model to explain the linear relationship. We find that this model provides an excellent theoretical foundation for fitting the working curve of these semiconductor sensors.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"213 ","pages":"Article 108850"},"PeriodicalIF":1.7,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}