Molecular dynamics simulations are used to study the boundary lubrication behaviors of squalane lubricant between two iron wall structures during shearing at different pressures and temperatures. Boundary lubrication models with a smooth iron wall and a nanostructured iron wall, respectively, are constructed, and the density distribution of the lubricating film and the velocity distribution in the shearing process are analyzed. The mechanical response of the solid wall is output, and the friction coefficient is calculated. A tribological test is performed with a UMT-2 tribometer under sliding conditions to evaluate the reliability of the simulation method. The results show that the surface nanostructure has a significant effect on the film thickness and delamination of the lubricating film but little effect on the velocity distribution of the lubricating film. The nano strip groove helps to reduce the friction coefficient of the boundary lubrication system.
{"title":"Effects of surface nanostructure on boundary lubrication using molecular dynamics","authors":"Ling Pan, Hui-Chia Yu, Shiping Lu, G. Lin","doi":"10.1063/10.0005222","DOIUrl":"https://doi.org/10.1063/10.0005222","url":null,"abstract":"Molecular dynamics simulations are used to study the boundary lubrication behaviors of squalane lubricant between two iron wall structures during shearing at different pressures and temperatures. Boundary lubrication models with a smooth iron wall and a nanostructured iron wall, respectively, are constructed, and the density distribution of the lubricating film and the velocity distribution in the shearing process are analyzed. The mechanical response of the solid wall is output, and the friction coefficient is calculated. A tribological test is performed with a UMT-2 tribometer under sliding conditions to evaluate the reliability of the simulation method. The results show that the surface nanostructure has a significant effect on the film thickness and delamination of the lubricating film but little effect on the velocity distribution of the lubricating film. The nano strip groove helps to reduce the friction coefficient of the boundary lubrication system.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/10.0005222","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42498813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xue Wang, Z. Yuan, P. Zhuang, Tianzheng Wu, S. Feng
An innovative method for high-speed micro-dicing of SiC has been proposed using two types of diamond dicing blades, a resin-bonded dicing blade and a metal-bonded dicing blade. The experimental research investigated the radial wear of the dicing blade, the maximum spindle current, the surface morphology of the SiC die, the number of chips longer than 10 µm, and the chipped area, which depend on the dicing process parameters such as spindle speed, feed speed, and cutting depth. The chipping fractures in the SiC had obvious brittle fracture characteristics. The performance of the metal-bonded dicing blade was inferior to that of the resin-bonded dicing blade. The cutting depth has the greatest influence on the radial wear of the dicing blade, the maximum spindle current, and the damage to the SiC wafer. The next most important parameter is the feed speed. The parameter with the least influence is the spindle speed. The main factor affecting the dicing quality is blade vibration caused by spindle vibration. The optimal SiC dicing was for a resin-bonded dicing blade with a spindle speed of 20 000 rpm, a feed speed of 4 mm/s, and a cutting depth of 0.1 mm. To improve dicing quality and tool performance, spindle vibrations should be reduced. This approach may enable high-speed dicing of SiC wafers with less dicing damage.
{"title":"Study on precision dicing process of SiC wafer with diamond dicing blades","authors":"Xue Wang, Z. Yuan, P. Zhuang, Tianzheng Wu, S. Feng","doi":"10.1063/10.0005152","DOIUrl":"https://doi.org/10.1063/10.0005152","url":null,"abstract":"An innovative method for high-speed micro-dicing of SiC has been proposed using two types of diamond dicing blades, a resin-bonded dicing blade and a metal-bonded dicing blade. The experimental research investigated the radial wear of the dicing blade, the maximum spindle current, the surface morphology of the SiC die, the number of chips longer than 10 µm, and the chipped area, which depend on the dicing process parameters such as spindle speed, feed speed, and cutting depth. The chipping fractures in the SiC had obvious brittle fracture characteristics. The performance of the metal-bonded dicing blade was inferior to that of the resin-bonded dicing blade. The cutting depth has the greatest influence on the radial wear of the dicing blade, the maximum spindle current, and the damage to the SiC wafer. The next most important parameter is the feed speed. The parameter with the least influence is the spindle speed. The main factor affecting the dicing quality is blade vibration caused by spindle vibration. The optimal SiC dicing was for a resin-bonded dicing blade with a spindle speed of 20 000 rpm, a feed speed of 4 mm/s, and a cutting depth of 0.1 mm. To improve dicing quality and tool performance, spindle vibrations should be reduced. This approach may enable high-speed dicing of SiC wafers with less dicing damage.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/10.0005152","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46977308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Environmental temperature effect on dimensional measurements of atomic force microscopy","authors":"Chengfu Ma, Yuhang Chen, Wenhao Huang","doi":"10.1063/10.0003939","DOIUrl":"https://doi.org/10.1063/10.0003939","url":null,"abstract":"","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/10.0003939","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44731895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The scratch test is used for quality control mostly in phenomenological ways, and whether fracture toughness can be obtained from this test is still a matter of debate requiring further elucidation. In this paper, values of the fracture toughness of copper obtained by different scratch-based approaches are compared in order to examine the applicability of scratch-based methodologies to characterize the fracture toughness of soft metals. The scratch response of copper to a Rockwell C diamond indenter is studied under a constant normal load condition. The variations of penetration depth, residual depth, and residual scratch width with applied normal load are quantified from spherical to sphero-conical contact regimes by piecewise functions. A newly proposed size effect law is found to be the most suitable for scratch-based approaches to characterizing the fracture toughness of soft metallic materials with significant plasticity. A simple expression relating the nominal stress to the penetration depth is proposed for the spherical contact regime and gives almost the same value of fracture toughness. The residual scratch width provides useful information on pile-up of material and on the spherical tip radius of the indenter. It is found that the values of the fracture toughness obtained from the microscratch test are influenced by the data range for analysis.
{"title":"Microscratch of copper by a Rockwell C diamond indenter under a constant load","authors":"Ming Liu","doi":"10.1063/10.0005065","DOIUrl":"https://doi.org/10.1063/10.0005065","url":null,"abstract":"The scratch test is used for quality control mostly in phenomenological ways, and whether fracture toughness can be obtained from this test is still a matter of debate requiring further elucidation. In this paper, values of the fracture toughness of copper obtained by different scratch-based approaches are compared in order to examine the applicability of scratch-based methodologies to characterize the fracture toughness of soft metals. The scratch response of copper to a Rockwell C diamond indenter is studied under a constant normal load condition. The variations of penetration depth, residual depth, and residual scratch width with applied normal load are quantified from spherical to sphero-conical contact regimes by piecewise functions. A newly proposed size effect law is found to be the most suitable for scratch-based approaches to characterizing the fracture toughness of soft metallic materials with significant plasticity. A simple expression relating the nominal stress to the penetration depth is proposed for the spherical contact regime and gives almost the same value of fracture toughness. The residual scratch width provides useful information on pile-up of material and on the spherical tip radius of the indenter. It is found that the values of the fracture toughness obtained from the microscratch test are influenced by the data range for analysis.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/10.0005065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41525768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A magnetic abrasive finishing process using an alternating magnetic field is proposed for the finishing of complex surfaces. In an alternating field, the periodic changes in current will cause the magnetic cluster used as a magnetic brush to fluctuate, which will not only continuously replace the abrasive particles in contact with the workpiece, but also periodically adjust the shape of the magnetic cluster to better fit the surface of the workpiece. In this paper, the influence of a combination of alternating and static magnetic fields on the magnetic field in the finishing area is analyzed. The feasibility of this process for finishing micro-grooves is investigated. Simulations and experimental measurements show that the combination of alternating and static magnetic fields can retain the advantages of the alternating field while increasing the magnetic flux density in the finishing area. The experimental results show that the process is feasible for finishing micro-grooves, with an excellent deburring effect on the groove edges.
{"title":"Investigation of the application of a magnetic abrasive finishing process using an alternating magnetic field for finishing micro-grooves","authors":"Huijun Xie, Y. Zou","doi":"10.1063/10.0005015","DOIUrl":"https://doi.org/10.1063/10.0005015","url":null,"abstract":"A magnetic abrasive finishing process using an alternating magnetic field is proposed for the finishing of complex surfaces. In an alternating field, the periodic changes in current will cause the magnetic cluster used as a magnetic brush to fluctuate, which will not only continuously replace the abrasive particles in contact with the workpiece, but also periodically adjust the shape of the magnetic cluster to better fit the surface of the workpiece. In this paper, the influence of a combination of alternating and static magnetic fields on the magnetic field in the finishing area is analyzed. The feasibility of this process for finishing micro-grooves is investigated. Simulations and experimental measurements show that the combination of alternating and static magnetic fields can retain the advantages of the alternating field while increasing the magnetic flux density in the finishing area. The experimental results show that the process is feasible for finishing micro-grooves, with an excellent deburring effect on the groove edges.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/10.0005015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47675715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
On the basis of ordinary plane magnetic abrasive finishing, a finishing method is proposed that can improve the flatness of a plane workpiece. In this method, the feed speed is varied during finishing according to the profile curve of the initial surface and the material removal efficiency, to control the effective finishing time in different areas and thereby improve the surface flatness. A small magnetic pole with an end face diameter of 1 mm is designed, and a ferromagnetic plate is placed under the workpiece to improve the uniformity of the magnetic field distribution near the magnetic pole. An experiment on an A5052 aluminum alloy plate workpiece shows that after 60 min of finishing using the proposed method, the extreme difference of the workpiece surface can be reduced from 14.317 μm to 2.18 μm, and the standard deviation can be reduced from 3.322 μm to 0.417 μm. At the same time, according to the measurement results, a similar flatness can be achieved at different positions on the finishing area. Thus, the proposed variable-speed finishing method leads to obvious improvements in flatness.
{"title":"Study of corrective abrasive finishing for plane surfaces using magnetic abrasive finishing processes","authors":"Yulong Zhang, Y. Zou","doi":"10.1063/10.0004961","DOIUrl":"https://doi.org/10.1063/10.0004961","url":null,"abstract":"On the basis of ordinary plane magnetic abrasive finishing, a finishing method is proposed that can improve the flatness of a plane workpiece. In this method, the feed speed is varied during finishing according to the profile curve of the initial surface and the material removal efficiency, to control the effective finishing time in different areas and thereby improve the surface flatness. A small magnetic pole with an end face diameter of 1 mm is designed, and a ferromagnetic plate is placed under the workpiece to improve the uniformity of the magnetic field distribution near the magnetic pole. An experiment on an A5052 aluminum alloy plate workpiece shows that after 60 min of finishing using the proposed method, the extreme difference of the workpiece surface can be reduced from 14.317 μm to 2.18 μm, and the standard deviation can be reduced from 3.322 μm to 0.417 μm. At the same time, according to the measurement results, a similar flatness can be achieved at different positions on the finishing area. Thus, the proposed variable-speed finishing method leads to obvious improvements in flatness.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/10.0004961","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46007068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To study the effect of micro-texture on the cutting performance of polycrystalline cubic boron nitride (PCBN) tools, five types of micro-textures (circular pits, elliptical grooves, transverse grooves, composite grooves, and wavy grooves) were applied to the rake surface of PCBN tools by an optical fiber laser marking machine. Through a combination of three-dimensional cutting simulations and experiments, the influences of micro-texture on chip–tool contact area, cutting force, chip morphology, shear angle, and surface roughness during the cutting process were analyzed. The results indicated that the chip–tool contact area and cutting force of both non-textured and micro-textured tools increased with increasing cutting speed, while the shear angle decreased with increasing cutting speed. The chip–tool contact area and cutting force of the five types of micro-textured tools were smaller than those of the non-textured tool. The chip–tool contact area and cutting force obtained by the wavy-groove micro-textured tool were the smallest. The chip radius produced by the five types of micro-textured tools was smaller than that produced by the non-textured tool, and the chip morphology was more stable. The transverse-groove micro-textured tool had a better chip breaking effect. The chip radius generated by the elliptical-groove micro-textured tool was 0.96 cm, while that generated by the wavy-groove tool varied from 0.55 cm to 1.26 cm. The presence of a micro-texture reduced the surface roughness of the workpiece by 11.73%–56.7%. Under the same cutting conditions, the five types of micro-textured tools gave a smaller chip–tool contact area, cutting force, chip radius, and surface roughness and a larger shear angle than the non-textured tool. In addition, the elliptical-groove and wavy-groove micro-textured tools had better cutting performance.
{"title":"Cutting performance of micro-textured PCBN tool","authors":"L. Fan, Zilong Deng, Xingjun Gao, Yan He","doi":"10.1063/10.0004372","DOIUrl":"https://doi.org/10.1063/10.0004372","url":null,"abstract":"To study the effect of micro-texture on the cutting performance of polycrystalline cubic boron nitride (PCBN) tools, five types of micro-textures (circular pits, elliptical grooves, transverse grooves, composite grooves, and wavy grooves) were applied to the rake surface of PCBN tools by an optical fiber laser marking machine. Through a combination of three-dimensional cutting simulations and experiments, the influences of micro-texture on chip–tool contact area, cutting force, chip morphology, shear angle, and surface roughness during the cutting process were analyzed. The results indicated that the chip–tool contact area and cutting force of both non-textured and micro-textured tools increased with increasing cutting speed, while the shear angle decreased with increasing cutting speed. The chip–tool contact area and cutting force of the five types of micro-textured tools were smaller than those of the non-textured tool. The chip–tool contact area and cutting force obtained by the wavy-groove micro-textured tool were the smallest. The chip radius produced by the five types of micro-textured tools was smaller than that produced by the non-textured tool, and the chip morphology was more stable. The transverse-groove micro-textured tool had a better chip breaking effect. The chip radius generated by the elliptical-groove micro-textured tool was 0.96 cm, while that generated by the wavy-groove tool varied from 0.55 cm to 1.26 cm. The presence of a micro-texture reduced the surface roughness of the workpiece by 11.73%–56.7%. Under the same cutting conditions, the five types of micro-textured tools gave a smaller chip–tool contact area, cutting force, chip radius, and surface roughness and a larger shear angle than the non-textured tool. In addition, the elliptical-groove and wavy-groove micro-textured tools had better cutting performance.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/10.0004372","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45224332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Today, the vast majority of microelectromechanical system (MEMS) sensors are mechanically rigid and therefore suffer from disadvantages when used in intimately wearable or bio-integrated applications. By applying new engineering strategies, mechanically bendable and stretchable MEMS devices have been successfully demonstrated. This article reviews recent progress in this area, focusing on high-performance flexible devices based on inorganic thin films. We start with the common design and fabrication strategies for flexibility and stretchability, summarize the recent application-oriented flexible devices, and conclude with criteria and opportunities for the future development of flexible MEMS sensors.
{"title":"Review of flexible microelectromechanical system sensors and devices","authors":"Xiaopeng Yang, Menglun Zhang","doi":"10.1063/10.0004301","DOIUrl":"https://doi.org/10.1063/10.0004301","url":null,"abstract":"Today, the vast majority of microelectromechanical system (MEMS) sensors are mechanically rigid and therefore suffer from disadvantages when used in intimately wearable or bio-integrated applications. By applying new engineering strategies, mechanically bendable and stretchable MEMS devices have been successfully demonstrated. This article reviews recent progress in this area, focusing on high-performance flexible devices based on inorganic thin films. We start with the common design and fabrication strategies for flexibility and stretchability, summarize the recent application-oriented flexible devices, and conclude with criteria and opportunities for the future development of flexible MEMS sensors.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/10.0004301","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42510906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zengqi Zhang, Zongwei Xu, Ying Song, Tao Liu, Bin Dong, J. Liu, H. Wang
As an important wide-bandgap semiconductor, gallium nitride (GaN) has attracted considerable attention. This paper describes the use of confocal Raman spectroscopy to characterize undoped GaN, n-type GaN, and p-type GaN through depth profiling using 405-, 532-, and 638-nm wavelength lasers. The Raman signal intensity of the sapphire substrate at different focal depths is studied to analyze the depth resolution. Based on the shift of the E2H mode of the GaN epitaxial layer, the interfacial stress for different types of GaN is characterized and calculated. The results show that the maximum interfacial stress appears approximately at the junction of the GaN and the sapphire substrate. Local interfacial stress analysis between the GaN epitaxial layer and the substrate will be very helpful in furthering the applications of GaN devices.
{"title":"Interfacial stress characterization of GaN epitaxial layer with sapphire substrate by confocal Raman spectroscopy","authors":"Zengqi Zhang, Zongwei Xu, Ying Song, Tao Liu, Bin Dong, J. Liu, H. Wang","doi":"10.1063/10.0003818","DOIUrl":"https://doi.org/10.1063/10.0003818","url":null,"abstract":"As an important wide-bandgap semiconductor, gallium nitride (GaN) has attracted considerable attention. This paper describes the use of confocal Raman spectroscopy to characterize undoped GaN, n-type GaN, and p-type GaN through depth profiling using 405-, 532-, and 638-nm wavelength lasers. The Raman signal intensity of the sapphire substrate at different focal depths is studied to analyze the depth resolution. Based on the shift of the E2H mode of the GaN epitaxial layer, the interfacial stress for different types of GaN is characterized and calculated. The results show that the maximum interfacial stress appears approximately at the junction of the GaN and the sapphire substrate. Local interfacial stress analysis between the GaN epitaxial layer and the substrate will be very helpful in furthering the applications of GaN devices.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/10.0003818","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41703388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziwei Zhou, He Weiwei, Zhang Zhenzhong, Sun Jun, A. Schöner, Zedong Zheng
Nickel is an excellent ohmic-contact metal on 4H-SiC. This paper discusses the formation mechanism of nickel ohmic contact on 4H-SiC by assessing the electrical properties and microstructural change. Under high-temperature annealing, the phase of nickel-silicon compound can be observed with X-ray diffraction, and the contact resistance also changes. A comparative experiment was designed to use X-ray diffraction and energy-dispersive spectroscopy to clarify the difference of ohmic-contact material composition and elemental analysis between samples prepared using pulsed laser annealing and rapid thermal annealing. It is found that more Ni2Si and carbon vacancies formed at the interface in the sample prepared using pulsed laser annealing, resulting in a better ohmic-contact characteristic.
{"title":"Characteristics of Ni-based ohmic contacts on n-type 4H-SiC using different annealing methods","authors":"Ziwei Zhou, He Weiwei, Zhang Zhenzhong, Sun Jun, A. Schöner, Zedong Zheng","doi":"10.1063/10.0003763","DOIUrl":"https://doi.org/10.1063/10.0003763","url":null,"abstract":"Nickel is an excellent ohmic-contact metal on 4H-SiC. This paper discusses the formation mechanism of nickel ohmic contact on 4H-SiC by assessing the electrical properties and microstructural change. Under high-temperature annealing, the phase of nickel-silicon compound can be observed with X-ray diffraction, and the contact resistance also changes. A comparative experiment was designed to use X-ray diffraction and energy-dispersive spectroscopy to clarify the difference of ohmic-contact material composition and elemental analysis between samples prepared using pulsed laser annealing and rapid thermal annealing. It is found that more Ni2Si and carbon vacancies formed at the interface in the sample prepared using pulsed laser annealing, resulting in a better ohmic-contact characteristic.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/10.0003763","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49580335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}