首页 > 最新文献

IEEE Transactions on Nanotechnology最新文献

英文 中文
Iron-Ion Nanoparticles for Smart and Cost-Effective Energy Storage Cell Electrode Integration Using Novel Nano-Sedimentation Method 新型纳米沉积法用于智能和经济高效储能电池电极集成的铁离子纳米颗粒
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-12-04 DOI: 10.1109/TNANO.2024.3510757
Himanshu Priyadarshi;Ashish Shrivastava;Dhaneshwar Mishra;Kulwant Singh
In this article, a cost-effective technique for the synthesis of gamma iron oxide nanoparticles has been proposed for intelligent maghemite electrode applications pitched in the context of smart and efficient energy storage solution. A facile process-optimized technique for synthesis of gamma iron oxide nanoparticles has been designed in order to investigate the optimum temperature, doping and pH of the sodium hydroxide. By dint of morphological investigation, it has been established that the samples have high surface area, crystalline structure, and size in the range of fifty to hundred angstrom. The linearity of the magnetization feature coupled with its doping sensitivity points towards its usage for state estimation technology of the energy storage device management. The nano-scaled samples witness an increase of 75%–110% in the direct bandgap in comparison to its bulk existence. This band gap modulation establishes that the conductivity can be improved for electrode application by doping. High surface area for the active material ingredient nano-particles has also been confirmed by BET surface area of up to 75 m2/g. Thermal analyses of the samples establish the fidelity of the samples’ constitution over a desirably wide temperature range. The cost-effectiveness of gamma-iron oxide batteries will be a crucial factor for faster adoption of indigenous renewable energy storage solutions.
在本文中,提出了一种具有成本效益的合成γ氧化铁纳米颗粒的技术,用于智能磁铁矿电极的应用,在智能和高效储能解决方案的背景下。为了研究氢氧化钠的最佳温度、掺杂和pH值,设计了一种简便的工艺优化合成纳米氧化铁的工艺。通过形态学研究,已经确定样品具有高表面积,晶体结构和尺寸在50至100埃范围内。磁化特性的线性特性及其掺杂灵敏度使其可用于储能设备管理的状态估计技术。纳米尺度样品的直接带隙比其块状样品的直接带隙增加了75%-110%。这种带隙调制确定了通过掺杂可以改善电极应用的电导率。活性材料成分纳米颗粒的高表面积也被证实,BET表面积可达75 m2/g。样品的热分析在理想的宽温度范围内建立了样品结构的保真度。伽马-氧化铁电池的成本效益将是更快采用本土可再生能源存储解决方案的关键因素。
{"title":"Iron-Ion Nanoparticles for Smart and Cost-Effective Energy Storage Cell Electrode Integration Using Novel Nano-Sedimentation Method","authors":"Himanshu Priyadarshi;Ashish Shrivastava;Dhaneshwar Mishra;Kulwant Singh","doi":"10.1109/TNANO.2024.3510757","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3510757","url":null,"abstract":"In this article, a cost-effective technique for the synthesis of gamma iron oxide nanoparticles has been proposed for intelligent maghemite electrode applications pitched in the context of smart and efficient energy storage solution. A facile process-optimized technique for synthesis of gamma iron oxide nanoparticles has been designed in order to investigate the optimum temperature, doping and pH of the sodium hydroxide. By dint of morphological investigation, it has been established that the samples have high surface area, crystalline structure, and size in the range of fifty to hundred angstrom. The linearity of the magnetization feature coupled with its doping sensitivity points towards its usage for state estimation technology of the energy storage device management. The nano-scaled samples witness an increase of 75%–110% in the direct bandgap in comparison to its bulk existence. This band gap modulation establishes that the conductivity can be improved for electrode application by doping. High surface area for the active material ingredient nano-particles has also been confirmed by BET surface area of up to 75 m\u0000<sup>2</sup>\u0000/g. Thermal analyses of the samples establish the fidelity of the samples’ constitution over a desirably wide temperature range. The cost-effectiveness of gamma-iron oxide batteries will be a crucial factor for faster adoption of indigenous renewable energy storage solutions.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"17-26"},"PeriodicalIF":2.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-High Quality Factor NOMS Device Incorporating Photonic Crystal Cavity for Femto-Gram Sensing 基于光子晶体腔的飞克传感超高质量因数NOMS器件
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-29 DOI: 10.1109/TNANO.2024.3509444
Saurabh Agarwal;Kurmendra;Chandra Prakash;Sumar Kumar Mitra;Amitesh Kumar
A label-free platform based on integration of cantilever and photonic crystal cavity resonator is reported with both high sensitivity and ultra-high quality factor for femto-gram detection of chemicals. The proposed chemical sensor shows sharp resonant frequency with quality factor of 12800, displacement and wavelength shift is obtained as 29.9425 μm and 7.15625 nm with chemical weight of 100 fg. The proposed sensor shows a high confinement factor of 62%, with an average sensitivity of 1.62 nm/fg manifested its promising applications for detection of various virus present in chemicals. The device shows capability to work in various fluids for chemical sensing purposes.
报道了一种基于悬臂和光子晶体腔谐振腔集成的无标签平台,该平台具有高灵敏度和超高质量因子,可用于化学物质的飞克检测。该传感器谐振频率高,质量因子为12800,位移和波长位移分别为29.9425 μm和7.15625 nm,化学质量为100 fg。该传感器具有62%的高约束因子,平均灵敏度为1.62 nm/fg,在检测化学品中存在的各种病毒方面具有广阔的应用前景。该装置显示出在各种流体中用于化学传感目的的能力。
{"title":"Ultra-High Quality Factor NOMS Device Incorporating Photonic Crystal Cavity for Femto-Gram Sensing","authors":"Saurabh Agarwal;Kurmendra;Chandra Prakash;Sumar Kumar Mitra;Amitesh Kumar","doi":"10.1109/TNANO.2024.3509444","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3509444","url":null,"abstract":"A label-free platform based on integration of cantilever and photonic crystal cavity resonator is reported with both high sensitivity and ultra-high quality factor for femto-gram detection of chemicals. The proposed chemical sensor shows sharp resonant frequency with quality factor of 12800, displacement and wavelength shift is obtained as 29.9425 μm and 7.15625 nm with chemical weight of 100 fg. The proposed sensor shows a high confinement factor of 62%, with an average sensitivity of 1.62 nm/fg manifested its promising applications for detection of various virus present in chemicals. The device shows capability to work in various fluids for chemical sensing purposes.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"1-7"},"PeriodicalIF":2.1,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Demonstration of a Ternary Inverter Based on the Novel TDDFET With Dual-Doped Source and Asymmetric Gates
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-25 DOI: 10.1109/TNANO.2024.3505985
Bin Lu;Hua Qiang;Xiaotao Liu;Dawei Wang;Yan Cui;Zhu Li;Jiale Sun;Hongliang Lu
In this paper, a novel tunneling-drift-diffusion field-effect transistor (TDDFET) is introduced with dual-doped source and asymmetric gates. In the TDDFET, the current is conducted by two mechanisms, namely the band-to-band tunneling and drift-diffusion, making the device can present an additional state between the on and off states, and very suitable for the ternary logic design. Additionally, a standard ternary inverter (STI) is also implemented based on the TDDFET and studied in detail by the aid of TCAD simulation. It turns out that the supply voltage VDD shows significant influence on the ternary inverter and the optimized value is about 3Vturn/2 in which Vturn is the transition voltage on the transfer curve. The influence of key device parameters are also studied in detail. Compared with other ternary inverters, our designed ternary inverter requiring no any immature material, passive device and multi-valued power supply, is more friendly with the CMOS platform and can make the most of the advantages of the ternary logic.
{"title":"Demonstration of a Ternary Inverter Based on the Novel TDDFET With Dual-Doped Source and Asymmetric Gates","authors":"Bin Lu;Hua Qiang;Xiaotao Liu;Dawei Wang;Yan Cui;Zhu Li;Jiale Sun;Hongliang Lu","doi":"10.1109/TNANO.2024.3505985","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3505985","url":null,"abstract":"In this paper, a novel tunneling-drift-diffusion field-effect transistor (TDDFET) is introduced with dual-doped source and asymmetric gates. In the TDDFET, the current is conducted by two mechanisms, namely the band-to-band tunneling and drift-diffusion, making the device can present an additional state between the on and off states, and very suitable for the ternary logic design. Additionally, a standard ternary inverter (STI) is also implemented based on the TDDFET and studied in detail by the aid of TCAD simulation. It turns out that the supply voltage V<sub>DD</sub> shows significant influence on the ternary inverter and the optimized value is about 3V<sub>turn</sub>/2 in which V<sub>turn</sub> is the transition voltage on the transfer curve. The influence of key device parameters are also studied in detail. Compared with other ternary inverters, our designed ternary inverter requiring no any immature material, passive device and multi-valued power supply, is more friendly with the CMOS platform and can make the most of the advantages of the ternary logic.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"59-66"},"PeriodicalIF":2.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Random Discrete Dopants Embedded Nanowire Resonant Tunnelling Diodes for Generation of Physically Unclonable Functions 嵌入纳米线共振隧道二极管的随机离散掺杂分析及其物理不可克隆功能的产生
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-22 DOI: 10.1109/TNANO.2024.3504963
Pranav Acharya;Ali Rezaei;Amretashis Sengupta;Tapas Dutta;Naveen Kumar;Patryk Maciazek;Asen Asenov;Vihar Georgiev
In this work, we have performed quantum mechanical simulations of current flow in double-barrier III-V (GaAs/AlGaAs) nanowire resonant tunneling diodes (RTDs). Our simulations are based on the non-equilibrium Green's function (NEGF) quantum transport formalism implemented within our in-house simulator called NESS (Nano-Electronics Simulation Software). The NEGF formalism allows us to capture the detailed physical picture of quantum mechanical effects such as electrostatic quantum confinement, resonant tunneling of electrons through barriers in such structures and negative differential resistance. Also, by using NESS capabilities, we have simulated RTDs with Random Discrete Dopants (RDDs) as a source of statistical variability in the device. Our work shows that there is a direct correlation between the positions and the numbers of RDDs and main device output characteristics such as resonant-peak voltage and current (V$_text{r}$ and I$_text{r}$) variations. Such V$_text{r}$ and I$_text{r}$ variability in RTDs is shown to be independent and yet also correlated. Hence, both parameters can be used together to encode information. This provides the opportunity and possibility for using a single or multiple RTDs as Physical Unclonable Functions (PUFs).
在这项工作中,我们对双势垒III-V (GaAs/AlGaAs)纳米线谐振隧道二极管(rtd)中的电流进行了量子力学模拟。我们的模拟基于非平衡格林函数(NEGF)量子输运形式,在我们的内部模拟器NESS(纳米电子模拟软件)中实现。NEGF的形式使我们能够捕捉到量子力学效应的详细物理图像,如静电量子约束、电子穿过这种结构中的势垒的共振隧道和负微分电阻。此外,通过使用NESS功能,我们用随机离散掺杂剂(rdd)模拟rtd,作为设备中统计变异性的来源。我们的工作表明,rdd的位置和数量与主要器件输出特性(如谐振峰值电压和电流(V$_text{r}$和I$_text{r}$)变化之间存在直接相关性。在rtd中,这种V$_text{r}$和I$_text{r}$的变异是独立的,但也是相关的。因此,这两个参数可以一起用于对信息进行编码。这为使用单个或多个rtd作为物理不可克隆功能(puf)提供了机会和可能性。
{"title":"Analysis of Random Discrete Dopants Embedded Nanowire Resonant Tunnelling Diodes for Generation of Physically Unclonable Functions","authors":"Pranav Acharya;Ali Rezaei;Amretashis Sengupta;Tapas Dutta;Naveen Kumar;Patryk Maciazek;Asen Asenov;Vihar Georgiev","doi":"10.1109/TNANO.2024.3504963","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3504963","url":null,"abstract":"In this work, we have performed quantum mechanical simulations of current flow in double-barrier III-V (GaAs/AlGaAs) nanowire resonant tunneling diodes (RTDs). Our simulations are based on the non-equilibrium Green's function (NEGF) quantum transport formalism implemented within our in-house simulator called NESS (Nano-Electronics Simulation Software). The NEGF formalism allows us to capture the detailed physical picture of quantum mechanical effects such as electrostatic quantum confinement, resonant tunneling of electrons through barriers in such structures and negative differential resistance. Also, by using NESS capabilities, we have simulated RTDs with Random Discrete Dopants (RDDs) as a source of statistical variability in the device. Our work shows that there is a direct correlation between the positions and the numbers of RDDs and main device output characteristics such as resonant-peak voltage and current (V\u0000<inline-formula><tex-math>$_text{r}$</tex-math></inline-formula>\u0000 and I\u0000<inline-formula><tex-math>$_text{r}$</tex-math></inline-formula>\u0000) variations. Such V\u0000<inline-formula><tex-math>$_text{r}$</tex-math></inline-formula>\u0000 and I\u0000<inline-formula><tex-math>$_text{r}$</tex-math></inline-formula>\u0000 variability in RTDs is shown to be independent and yet also correlated. Hence, both parameters can be used together to encode information. This provides the opportunity and possibility for using a single or multiple RTDs as Physical Unclonable Functions (PUFs).","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"815-821"},"PeriodicalIF":2.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Substitutionally Doped Zigzag Germanium Sulfide Nanoribbon for Interconnect Applications: DFT-NEGF Approach 互连应用的取代掺杂之字形硫化锗纳米带:DFT-NEGF方法
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-22 DOI: 10.1109/TNANO.2024.3504601
Banti Yadav;Pankaj Srivastava;Varun Sharma
Using the first-principles approach, we have probed the electronic, structural, and transport properties of n-doped zigzag germanium sulfide nanoribbons (ZGeSNR) for interconnect application. We have explored two possible cases of sulfur substitution, namely S-substitution at the top edge and S-substitution at the bottom edge. Our calculated formation energy suggests that both the phosphorus (P) and nitrogen (N) doped ZGeSNR configurations were thermodynamically stable. Further, with the $mathbf {E-k}$ diagram and DOS profile calculation, we also revealed that the doped structure possesses a metallic character in contrast to its pristine counterparts. Finally, two probe device model-based transport analysis were performed to comment on crucial small-signal dynamic parameters $mathbf {(R_{Q}, L_{K}, C_{Q})}$. The calculation of the transmission channels $mathbf {(N_{ch})}$ against the variable biased voltage was then investigated, which indicates the lowest and bias-insensitive value of $mathbf {R_{Q}}$ (6.45 Kohm), $mathbf {L_{K}}$ $mathbf {(6.42nH/mu m)}$, and $ mathbf {C_{Q}(6.16pF/cm)}$ for ZGeSNR doped with S-site-P (bottom), making it a promising contender for nanoscale interconnect.
我们采用第一原理方法,探究了用于互连应用的 n 掺杂人字形硫化锗纳米带(ZGeSNR)的电子、结构和传输特性。我们探讨了硫替代的两种可能情况,即顶边的 S 替代和底边的 S 替代。我们计算的形成能表明,掺磷(P)和掺氮(N)的 ZGeSNR 构型在热力学上都是稳定的。此外,通过 $mathbf {E-k}$ 图和 DOS 曲线计算,我们还发现掺杂结构与原始结构相比具有金属特性。最后,我们进行了基于两个探针器件模型的传输分析,对关键的小信号动态参数 $mathbf {(R_{Q}, L_{K}, C_{Q})}$ 进行了评论。然后研究了传输通道 $mathbf {(N_{ch})}$ 与可变偏置电压的关系,结果表明 $mathbf {R_{Q}}$ (6.45 Kohm)、$mathbf {L_{K}}$ $mathbf {(6.42nH/mu m)}$和$mathbf {C_{Q}(6.16pF/cm)}$ 为掺杂了 S-site-P的 ZGeSNR(底部),使其成为纳米级互连的有力竞争者。
{"title":"Substitutionally Doped Zigzag Germanium Sulfide Nanoribbon for Interconnect Applications: DFT-NEGF Approach","authors":"Banti Yadav;Pankaj Srivastava;Varun Sharma","doi":"10.1109/TNANO.2024.3504601","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3504601","url":null,"abstract":"Using the first-principles approach, we have probed the electronic, structural, and transport properties of n-doped zigzag germanium sulfide nanoribbons (ZGeSNR) for interconnect application. We have explored two possible cases of sulfur substitution, namely S-substitution at the top edge and S-substitution at the bottom edge. Our calculated formation energy suggests that both the phosphorus (P) and nitrogen (N) doped ZGeSNR configurations were thermodynamically stable. Further, with the \u0000<inline-formula><tex-math>$mathbf {E-k}$</tex-math></inline-formula>\u0000 diagram and DOS profile calculation, we also revealed that the doped structure possesses a metallic character in contrast to its pristine counterparts. Finally, two probe device model-based transport analysis were performed to comment on crucial small-signal dynamic parameters \u0000<inline-formula><tex-math>$mathbf {(R_{Q}, L_{K}, C_{Q})}$</tex-math></inline-formula>\u0000. The calculation of the transmission channels \u0000<inline-formula><tex-math>$mathbf {(N_{ch})}$</tex-math></inline-formula>\u0000 against the variable biased voltage was then investigated, which indicates the lowest and bias-insensitive value of \u0000<inline-formula><tex-math>$mathbf {R_{Q}}$</tex-math></inline-formula>\u0000 (6.45 Kohm), \u0000<inline-formula><tex-math>$mathbf {L_{K}}$</tex-math></inline-formula>\u0000 \u0000<inline-formula><tex-math>$mathbf {(6.42nH/mu m)}$</tex-math></inline-formula>\u0000, and \u0000<inline-formula><tex-math>$ mathbf {C_{Q}(6.16pF/cm)}$</tex-math></inline-formula>\u0000 for ZGeSNR doped with S-site-P (bottom), making it a promising contender for nanoscale interconnect.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"809-814"},"PeriodicalIF":2.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Efficient and Controlled Thermomechanical Transfer of Electrospun PVDF Nanofiber on Flexible and Transparent PDMS Substrate 静电纺PVDF纳米纤维在柔性透明PDMS基板上的高效可控热转印
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-12 DOI: 10.1109/TNANO.2024.3496487
Ariba Siddiqui;Mitradip Bhattacharjee
The growing interest in sensors and microdevices in different applications has led to the exploration of the most efficient and appropriate synthesis methods for flexible device development. In this direction, nanofibers have gained significant attention. However, in many cases, efficient and controlled transfer of nanofibers plays an important role in various device developments. In this study, thermomechanical i.e., temperature and pressure-induced transfer of poly(vinylidene fluoride) (PVDF) electrospun nanofibers on flexible poly(dimethylsiloxane) (PDMS) substrate has been explored. The average diameter of the transferred nanofibers is 169.78 nm. The d33 of PVDF nanofibers was 25 pC/N and F(β) was found to be 80.84%. The synthesized nanofibers have effectively been transferred onto a flexible PDMS substrate with more than 92% retention of optical transparency. It is observed that the transfer of the fibers depends on the applied pressure and adhesion between the materials. Further, it was found that fully cured PDMS substrate heated at 120 °C showed better transfer efficiency (12.544%) with higher stability. The use of PVDF nanofibers along with the inherent flexibility and transparency of PDMS, renders the produced substrate highly promising for the development of low-cost, lightweight, and easily constructed flexible sensors. Moreover, the fabricated nanofibrous mat generated a maximum voltage of 2.78 V on continuous tapping.
随着人们对传感器和微器件在不同应用领域的兴趣日益浓厚,人们开始探索最有效、最合适的柔性器件合成方法。在这个方向上,纳米纤维得到了极大的关注。然而,在许多情况下,高效和可控的纳米纤维转移在各种器件的发展中起着重要的作用。在本研究中,探讨了聚偏氟乙烯(PVDF)静电纺丝纳米纤维在柔性聚二甲基硅氧烷(PDMS)衬底上的热机械转移,即温度和压力诱导转移。转移的纳米纤维平均直径为169.78 nm。PVDF纳米纤维的d33为25 pC/N, F(β)为80.84%。合成的纳米纤维已有效地转移到柔性PDMS衬底上,光学透明度保持率超过92%。可以观察到,纤维的转移取决于施加的压力和材料之间的附着力。进一步发现,在120°C加热下完全固化的PDMS基材具有更好的转移效率(12.544%)和更高的稳定性。PVDF纳米纤维的使用以及PDMS固有的柔韧性和透明性,使得所生产的衬底在开发低成本、轻量化和易于构建的柔性传感器方面具有很大的前景。此外,制备的纳米纤维垫在连续攻丝时产生的最大电压为2.78 V。
{"title":"Highly Efficient and Controlled Thermomechanical Transfer of Electrospun PVDF Nanofiber on Flexible and Transparent PDMS Substrate","authors":"Ariba Siddiqui;Mitradip Bhattacharjee","doi":"10.1109/TNANO.2024.3496487","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3496487","url":null,"abstract":"The growing interest in sensors and microdevices in different applications has led to the exploration of the most efficient and appropriate synthesis methods for flexible device development. In this direction, nanofibers have gained significant attention. However, in many cases, efficient and controlled transfer of nanofibers plays an important role in various device developments. In this study, thermomechanical i.e., temperature and pressure-induced transfer of poly(vinylidene fluoride) (PVDF) electrospun nanofibers on flexible poly(dimethylsiloxane) (PDMS) substrate has been explored. The average diameter of the transferred nanofibers is 169.78 nm. The d\u0000<sub>33</sub>\u0000 of PVDF nanofibers was 25 pC/N and F(β) was found to be 80.84%. The synthesized nanofibers have effectively been transferred onto a flexible PDMS substrate with more than 92% retention of optical transparency. It is observed that the transfer of the fibers depends on the applied pressure and adhesion between the materials. Further, it was found that fully cured PDMS substrate heated at 120 °C showed better transfer efficiency (12.544%) with higher stability. The use of PVDF nanofibers along with the inherent flexibility and transparency of PDMS, renders the produced substrate highly promising for the development of low-cost, lightweight, and easily constructed flexible sensors. Moreover, the fabricated nanofibrous mat generated a maximum voltage of 2.78 V on continuous tapping.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"786-793"},"PeriodicalIF":2.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA-Based Nanonetwork for Abnormality Detection and Localization in the Human Body 基于 DNA 的纳米网络用于人体异常检测和定位
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-11 DOI: 10.1109/TNANO.2024.3495541
Jorge Torres Gómez;Bige Deniz Unluturk;Florian-Lennert Lau;Jennifer Simonjan;Regine Wendt;Stefan Fischer;Falko Dressler
This study introduces an innovative DNA-based nanonetwork designed to detect and localize abnormalities within the human body. The concept for the architecture integrates nanosensors, nanocollectors, and a gateway device, facilitating the detection and communication of disease indicators through molecular and intra-body links. Modeling DNA tiles for signal amplification and fusion rules (AND, OR, MAJORITY), the system enhances detection accuracy while enabling real-time localization of health anomalies via machine learning models. Extensive simulations demonstrate the efficacy of this approach in the dynamic environment of human vessels, showing promising detection probabilities and minimal false alarms. This research contributes to precision medicine by offering a scalable and efficient method for early disease detection and localization, paving the way for timely interventions and improved healthcare outcomes.
本研究介绍了一种基于 DNA 的创新型纳米网络,旨在检测和定位人体内的异常情况。该架构的概念整合了纳米传感器、纳米收集器和网关设备,通过分子和体内链接促进疾病指标的检测和通信。该系统利用 DNA 瓦片信号放大和融合规则(AND、OR、MAJORITY)建模,提高了检测精度,同时通过机器学习模型实现了健康异常的实时定位。大量模拟证明了这种方法在人体血管动态环境中的有效性,显示出良好的检测概率和最小的误报率。这项研究为早期疾病检测和定位提供了一种可扩展的高效方法,为及时干预和改善医疗效果铺平了道路,从而为精准医疗做出了贡献。
{"title":"DNA-Based Nanonetwork for Abnormality Detection and Localization in the Human Body","authors":"Jorge Torres Gómez;Bige Deniz Unluturk;Florian-Lennert Lau;Jennifer Simonjan;Regine Wendt;Stefan Fischer;Falko Dressler","doi":"10.1109/TNANO.2024.3495541","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3495541","url":null,"abstract":"This study introduces an innovative DNA-based nanonetwork designed to detect and localize abnormalities within the human body. The concept for the architecture integrates nanosensors, nanocollectors, and a gateway device, facilitating the detection and communication of disease indicators through molecular and intra-body links. Modeling DNA tiles for signal amplification and fusion rules (\u0000<monospace>AND</monospace>\u0000, OR, \u0000<monospace>MAJORITY</monospace>\u0000), the system enhances detection accuracy while enabling real-time localization of health anomalies via machine learning models. Extensive simulations demonstrate the efficacy of this approach in the dynamic environment of human vessels, showing promising detection probabilities and minimal false alarms. This research contributes to precision medicine by offering a scalable and efficient method for early disease detection and localization, paving the way for timely interventions and improved healthcare outcomes.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"794-808"},"PeriodicalIF":2.1,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Bidirectional Transition Between Threshold and Bipolar Switching in Ag/SiO$_{2}$/ITO Memristors Ag/SiO /ITO记忆电阻器阈值与双极开关双向转换研究
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-08 DOI: 10.1109/TNANO.2024.3494856
Zidu Li;Moin Diwan;Phil David Börner;Andreas Bablich;Heidemarie Schmidt;Peter Haring Bolívar;Bhaskar Choubey
An Ag/SiO$_{2}$/ITO thin-film memristor with a simple deposition technique that exhibits bidirectional threshold and bipolar memristive switching is presented. By applying adequate compliance currents, the switching mechanism of the memristor can be transitioned from threshold switching to bipolar switching. The reverse transition, from bipolar to threshold can be realized by applying a large negative current. This bidirectional switching is stable and reproducible, which has been proven by multiple experimental results. In addition, Verilog-A based modeling approach of this directional switching mechanism is also presented.
提出了一种具有双向阈值和双极忆阻开关的Ag/SiO /ITO薄膜忆阻器。通过施加足够的顺应电流,忆阻器的开关机制可以从阈值开关过渡到双极开关。从双极到阈值的反向转换可以通过施加大的负电流来实现。这种双向开关具有稳定性和可重复性,已被多个实验结果所证明。此外,还提出了基于Verilog-A的定向开关机制建模方法。
{"title":"On Bidirectional Transition Between Threshold and Bipolar Switching in Ag/SiO$_{2}$/ITO Memristors","authors":"Zidu Li;Moin Diwan;Phil David Börner;Andreas Bablich;Heidemarie Schmidt;Peter Haring Bolívar;Bhaskar Choubey","doi":"10.1109/TNANO.2024.3494856","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3494856","url":null,"abstract":"An Ag/SiO\u0000<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>\u0000/ITO thin-film memristor with a simple deposition technique that exhibits bidirectional threshold and bipolar memristive switching is presented. By applying adequate compliance currents, the switching mechanism of the memristor can be transitioned from threshold switching to bipolar switching. The reverse transition, from bipolar to threshold can be realized by applying a large negative current. This bidirectional switching is stable and reproducible, which has been proven by multiple experimental results. In addition, Verilog-A based modeling approach of this directional switching mechanism is also presented.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"771-777"},"PeriodicalIF":2.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual Metal Split Gate-Based Emulated Synaptic Device With Redacted Plasticity Utilizing Nanogranular Al2O3 Based Ion Conducting Electrolyte 利用纳米颗粒Al2O3离子导电电解质修饰可塑性的双金属裂栅模拟突触器件
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-05 DOI: 10.1109/TNANO.2024.3492021
Reetwik Bhadra;Ramesh Kumar;Amitesh Kumar
This study emphasizes the utilization of split-gate technology in designing a tunable artificial synapse with high energy efficiency. A split-gate dual metal synaptic transistor (SGDMST) is proposed in this work with an Indium-gallium-zinc-oxide (IGZO) channel and a proton-based nanogranular Al2O3 electrolyte working on an electric-double-layer (EDL) technique. The split gate, along with the dual metal used, allows precise gate control with high energy efficacy and also enhances the potentiation and depression synaptic strengths of the device. Furthermore, extensive studies have been conducted on the impact of scaling channel width and employing either single or dual metal gate electrodes on synaptic properties. The findings demonstrate precise simulations of synaptic processes, including paired-pulse facilitation, Short-Term Plasticity (STP), Long-Term Plasticity (LTP), and depression, and comparisons are drawn based on the variables examined. The results provide a concise overview of the split-gate synaptic device and its potential impact on developing neuromorphic computing systems.
本研究强调利用劈闸技术设计高能量效率的可调人工突触。本文提出了一种分栅双金属突触晶体管(SGDMST),该晶体管采用铟镓锌氧化物(IGZO)通道和基于质子的纳米颗粒Al2O3电解质在双电层(EDL)技术上工作。分门,以及使用的双金属,允许精确的栅极控制,具有高能量效率,也增强了设备的增强和抑制突触强度。此外,关于调节通道宽度和使用单或双金属栅电极对突触特性的影响已经进行了广泛的研究。研究结果显示了突触过程的精确模拟,包括成对脉冲促进、短期可塑性(STP)、长期可塑性(LTP)和抑郁,并根据所检查的变量进行了比较。研究结果提供了对劈门突触装置及其对发展神经形态计算系统的潜在影响的简要概述。
{"title":"Dual Metal Split Gate-Based Emulated Synaptic Device With Redacted Plasticity Utilizing Nanogranular Al2O3 Based Ion Conducting Electrolyte","authors":"Reetwik Bhadra;Ramesh Kumar;Amitesh Kumar","doi":"10.1109/TNANO.2024.3492021","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3492021","url":null,"abstract":"This study emphasizes the utilization of split-gate technology in designing a tunable artificial synapse with high energy efficiency. A split-gate dual metal synaptic transistor (SGDMST) is proposed in this work with an Indium-gallium-zinc-oxide (IGZO) channel and a proton-based nanogranular Al\u0000<sub>2</sub>\u0000O\u0000<sub>3</sub>\u0000 electrolyte working on an electric-double-layer (EDL) technique. The split gate, along with the dual metal used, allows precise gate control with high energy efficacy and also enhances the potentiation and depression synaptic strengths of the device. Furthermore, extensive studies have been conducted on the impact of scaling channel width and employing either single or dual metal gate electrodes on synaptic properties. The findings demonstrate precise simulations of synaptic processes, including paired-pulse facilitation, Short-Term Plasticity (STP), Long-Term Plasticity (LTP), and depression, and comparisons are drawn based on the variables examined. The results provide a concise overview of the split-gate synaptic device and its potential impact on developing neuromorphic computing systems.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"765-770"},"PeriodicalIF":2.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks 用于图像处理和神经网络的基于 IMPLY 的高速、高面积效率串行近似减法器和比较器
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-28 DOI: 10.1109/TNANO.2024.3487223
Nandit Kaushik;B. Srinivasu
In-Memory-Computing (IMC) through memristive architectures has recently gained traction owing to their capacity to perform logic operations within a crossbar, optimizing both area and speed constraints. This paper introduces two approximate serial IMPLY-based subtractor designs, denoted as Serial IMPLY-based Approximate Subtractor Design-1 (SIASD-1), Serial IMPLY-based Approximate Subtractor Design-2 (SIASD-2), with potential applications in image processing and deep neural networks. The proposed designs are implemented in MAGIC topology for comparison, named as Serial MAGIC-based Approximate Subtractor Design-1 (SMASD-1) and Serial MAGIC-based Approximate Subtractor Design-2 (SMASD-2). Moreover, these proposed subtractor designs are extended to design magnitude comparators. IMPLY-based approximate designs improve the overall latency up to 1.67× with energy savings in the range of 17.4% to 40.3% while occupying the same number of memristors for SIASD-1 and an increase of 3 to 5 memristors for SIASD-2, compared to the best existing exact 8-bit serial IMPLY subtractor. SMASD-1 and SMASD-2 improve the latency up to 1.43×, and energy efficiency are up by 77.6% compared to other MAGIC-based exact designs. Additionally, as comparators, the SIASD-1 and SIASD-2 are up to 4.93× faster with energy reduction up to 79.7% compared to their IMPLY-based equivalents. Similarly, the SMASD-1 and SMASD-2 reduce the latency up to 62% with area savings of 77%, compared to MAGIC-based equivalent designs. Furthermore, the proposed subtractor designs undergo analysis in an image processing application called Motion Detection, while the comparators are evaluated in Max Pooling operations. With Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) serving as assessment metrics, the proposed designs consistently demonstrate acceptable PSNR and SSIM values, affirming their suitability for these applications.
最近,通过忆阻器架构实现的内存计算(IMC)受到越来越多的关注,这是因为忆阻器架构能够在交叉条内执行逻辑运算,优化了面积和速度限制。本文介绍了两种基于 IMPLY 的近似串行减法器设计,分别称为基于 IMPLY 的近似串行减法器设计-1(SIASD-1)和基于 IMPLY 的近似串行减法器设计-2(SIASD-2),有望应用于图像处理和深度神经网络。为便于比较,建议的设计以 MAGIC 拓扑实现,命名为基于串行 MAGIC 的近似减法器设计-1(SMASD-1)和基于串行 MAGIC 的近似减法器设计-2(SMASD-2)。此外,这些拟议的减法器设计还可扩展用于设计幅度比较器。与现有的最佳精确 8 位串行 IMPLY 减法器相比,基于 IMPLY 的近似设计在占用相同数量的忆阻器(SIASD-1)和增加 3 到 5 个忆阻器(SIASD-2)的情况下,将总体延迟提高了 1.67 倍,节能范围在 17.4% 到 40.3% 之间。与其他基于 MAGIC 的精确设计相比,SMASD-1 和 SMASD-2 的延迟时间提高了 1.43 倍,能效提高了 77.6%。此外,作为比较器,SIASD-1 和 SIASD-2 与基于 IMPLY 的同类产品相比,速度提高了 4.93 倍,能耗降低了 79.7%。同样,与基于 MAGIC 的等效设计相比,SMASD-1 和 SMASD-2 的延迟时间缩短了 62%,面积节省了 77%。此外,还在名为 "运动检测 "的图像处理应用中对拟议的减法器设计进行了分析,并在最大池化操作中对比较器进行了评估。以峰值信噪比(PSNR)和结构相似性指数(SSIM)作为评估指标,所提出的设计始终显示出可接受的 PSNR 和 SSIM 值,从而肯定了它们在这些应用中的适用性。
{"title":"High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks","authors":"Nandit Kaushik;B. Srinivasu","doi":"10.1109/TNANO.2024.3487223","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3487223","url":null,"abstract":"In-Memory-Computing (IMC) through memristive architectures has recently gained traction owing to their capacity to perform logic operations within a crossbar, optimizing both area and speed constraints. This paper introduces two approximate serial IMPLY-based subtractor designs, denoted as Serial IMPLY-based Approximate Subtractor Design-1 (SIASD-1), Serial IMPLY-based Approximate Subtractor Design-2 (SIASD-2), with potential applications in image processing and deep neural networks. The proposed designs are implemented in MAGIC topology for comparison, named as Serial MAGIC-based Approximate Subtractor Design-1 (SMASD-1) and Serial MAGIC-based Approximate Subtractor Design-2 (SMASD-2). Moreover, these proposed subtractor designs are extended to design magnitude comparators. IMPLY-based approximate designs improve the overall latency up to 1.67× with energy savings in the range of 17.4% to 40.3% while occupying the same number of memristors for SIASD-1 and an increase of 3 to 5 memristors for SIASD-2, compared to the best existing exact 8-bit serial IMPLY subtractor. SMASD-1 and SMASD-2 improve the latency up to 1.43×, and energy efficiency are up by 77.6% compared to other MAGIC-based exact designs. Additionally, as comparators, the SIASD-1 and SIASD-2 are up to 4.93× faster with energy reduction up to 79.7% compared to their IMPLY-based equivalents. Similarly, the SMASD-1 and SMASD-2 reduce the latency up to 62% with area savings of 77%, compared to MAGIC-based equivalent designs. Furthermore, the proposed subtractor designs undergo analysis in an image processing application called Motion Detection, while the comparators are evaluated in Max Pooling operations. With Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) serving as assessment metrics, the proposed designs consistently demonstrate acceptable PSNR and SSIM values, affirming their suitability for these applications.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"748-757"},"PeriodicalIF":2.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Nanotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1