首页 > 最新文献

IEEE Transactions on Nanotechnology最新文献

英文 中文
Dual Metal Split Gate-Based Emulated Synaptic Device With Redacted Plasticity Utilizing Nanogranular Al2O3 Based Ion Conducting Electrolyte 利用纳米颗粒Al2O3离子导电电解质修饰可塑性的双金属裂栅模拟突触器件
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-05 DOI: 10.1109/TNANO.2024.3492021
Reetwik Bhadra;Ramesh Kumar;Amitesh Kumar
This study emphasizes the utilization of split-gate technology in designing a tunable artificial synapse with high energy efficiency. A split-gate dual metal synaptic transistor (SGDMST) is proposed in this work with an Indium-gallium-zinc-oxide (IGZO) channel and a proton-based nanogranular Al2O3 electrolyte working on an electric-double-layer (EDL) technique. The split gate, along with the dual metal used, allows precise gate control with high energy efficacy and also enhances the potentiation and depression synaptic strengths of the device. Furthermore, extensive studies have been conducted on the impact of scaling channel width and employing either single or dual metal gate electrodes on synaptic properties. The findings demonstrate precise simulations of synaptic processes, including paired-pulse facilitation, Short-Term Plasticity (STP), Long-Term Plasticity (LTP), and depression, and comparisons are drawn based on the variables examined. The results provide a concise overview of the split-gate synaptic device and its potential impact on developing neuromorphic computing systems.
本研究强调利用劈闸技术设计高能量效率的可调人工突触。本文提出了一种分栅双金属突触晶体管(SGDMST),该晶体管采用铟镓锌氧化物(IGZO)通道和基于质子的纳米颗粒Al2O3电解质在双电层(EDL)技术上工作。分门,以及使用的双金属,允许精确的栅极控制,具有高能量效率,也增强了设备的增强和抑制突触强度。此外,关于调节通道宽度和使用单或双金属栅电极对突触特性的影响已经进行了广泛的研究。研究结果显示了突触过程的精确模拟,包括成对脉冲促进、短期可塑性(STP)、长期可塑性(LTP)和抑郁,并根据所检查的变量进行了比较。研究结果提供了对劈门突触装置及其对发展神经形态计算系统的潜在影响的简要概述。
{"title":"Dual Metal Split Gate-Based Emulated Synaptic Device With Redacted Plasticity Utilizing Nanogranular Al2O3 Based Ion Conducting Electrolyte","authors":"Reetwik Bhadra;Ramesh Kumar;Amitesh Kumar","doi":"10.1109/TNANO.2024.3492021","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3492021","url":null,"abstract":"This study emphasizes the utilization of split-gate technology in designing a tunable artificial synapse with high energy efficiency. A split-gate dual metal synaptic transistor (SGDMST) is proposed in this work with an Indium-gallium-zinc-oxide (IGZO) channel and a proton-based nanogranular Al\u0000<sub>2</sub>\u0000O\u0000<sub>3</sub>\u0000 electrolyte working on an electric-double-layer (EDL) technique. The split gate, along with the dual metal used, allows precise gate control with high energy efficacy and also enhances the potentiation and depression synaptic strengths of the device. Furthermore, extensive studies have been conducted on the impact of scaling channel width and employing either single or dual metal gate electrodes on synaptic properties. The findings demonstrate precise simulations of synaptic processes, including paired-pulse facilitation, Short-Term Plasticity (STP), Long-Term Plasticity (LTP), and depression, and comparisons are drawn based on the variables examined. The results provide a concise overview of the split-gate synaptic device and its potential impact on developing neuromorphic computing systems.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"765-770"},"PeriodicalIF":2.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks 用于图像处理和神经网络的基于 IMPLY 的高速、高面积效率串行近似减法器和比较器
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-28 DOI: 10.1109/TNANO.2024.3487223
Nandit Kaushik;B. Srinivasu
In-Memory-Computing (IMC) through memristive architectures has recently gained traction owing to their capacity to perform logic operations within a crossbar, optimizing both area and speed constraints. This paper introduces two approximate serial IMPLY-based subtractor designs, denoted as Serial IMPLY-based Approximate Subtractor Design-1 (SIASD-1), Serial IMPLY-based Approximate Subtractor Design-2 (SIASD-2), with potential applications in image processing and deep neural networks. The proposed designs are implemented in MAGIC topology for comparison, named as Serial MAGIC-based Approximate Subtractor Design-1 (SMASD-1) and Serial MAGIC-based Approximate Subtractor Design-2 (SMASD-2). Moreover, these proposed subtractor designs are extended to design magnitude comparators. IMPLY-based approximate designs improve the overall latency up to 1.67× with energy savings in the range of 17.4% to 40.3% while occupying the same number of memristors for SIASD-1 and an increase of 3 to 5 memristors for SIASD-2, compared to the best existing exact 8-bit serial IMPLY subtractor. SMASD-1 and SMASD-2 improve the latency up to 1.43×, and energy efficiency are up by 77.6% compared to other MAGIC-based exact designs. Additionally, as comparators, the SIASD-1 and SIASD-2 are up to 4.93× faster with energy reduction up to 79.7% compared to their IMPLY-based equivalents. Similarly, the SMASD-1 and SMASD-2 reduce the latency up to 62% with area savings of 77%, compared to MAGIC-based equivalent designs. Furthermore, the proposed subtractor designs undergo analysis in an image processing application called Motion Detection, while the comparators are evaluated in Max Pooling operations. With Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) serving as assessment metrics, the proposed designs consistently demonstrate acceptable PSNR and SSIM values, affirming their suitability for these applications.
最近,通过忆阻器架构实现的内存计算(IMC)受到越来越多的关注,这是因为忆阻器架构能够在交叉条内执行逻辑运算,优化了面积和速度限制。本文介绍了两种基于 IMPLY 的近似串行减法器设计,分别称为基于 IMPLY 的近似串行减法器设计-1(SIASD-1)和基于 IMPLY 的近似串行减法器设计-2(SIASD-2),有望应用于图像处理和深度神经网络。为便于比较,建议的设计以 MAGIC 拓扑实现,命名为基于串行 MAGIC 的近似减法器设计-1(SMASD-1)和基于串行 MAGIC 的近似减法器设计-2(SMASD-2)。此外,这些拟议的减法器设计还可扩展用于设计幅度比较器。与现有的最佳精确 8 位串行 IMPLY 减法器相比,基于 IMPLY 的近似设计在占用相同数量的忆阻器(SIASD-1)和增加 3 到 5 个忆阻器(SIASD-2)的情况下,将总体延迟提高了 1.67 倍,节能范围在 17.4% 到 40.3% 之间。与其他基于 MAGIC 的精确设计相比,SMASD-1 和 SMASD-2 的延迟时间提高了 1.43 倍,能效提高了 77.6%。此外,作为比较器,SIASD-1 和 SIASD-2 与基于 IMPLY 的同类产品相比,速度提高了 4.93 倍,能耗降低了 79.7%。同样,与基于 MAGIC 的等效设计相比,SMASD-1 和 SMASD-2 的延迟时间缩短了 62%,面积节省了 77%。此外,还在名为 "运动检测 "的图像处理应用中对拟议的减法器设计进行了分析,并在最大池化操作中对比较器进行了评估。以峰值信噪比(PSNR)和结构相似性指数(SSIM)作为评估指标,所提出的设计始终显示出可接受的 PSNR 和 SSIM 值,从而肯定了它们在这些应用中的适用性。
{"title":"High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks","authors":"Nandit Kaushik;B. Srinivasu","doi":"10.1109/TNANO.2024.3487223","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3487223","url":null,"abstract":"In-Memory-Computing (IMC) through memristive architectures has recently gained traction owing to their capacity to perform logic operations within a crossbar, optimizing both area and speed constraints. This paper introduces two approximate serial IMPLY-based subtractor designs, denoted as Serial IMPLY-based Approximate Subtractor Design-1 (SIASD-1), Serial IMPLY-based Approximate Subtractor Design-2 (SIASD-2), with potential applications in image processing and deep neural networks. The proposed designs are implemented in MAGIC topology for comparison, named as Serial MAGIC-based Approximate Subtractor Design-1 (SMASD-1) and Serial MAGIC-based Approximate Subtractor Design-2 (SMASD-2). Moreover, these proposed subtractor designs are extended to design magnitude comparators. IMPLY-based approximate designs improve the overall latency up to 1.67× with energy savings in the range of 17.4% to 40.3% while occupying the same number of memristors for SIASD-1 and an increase of 3 to 5 memristors for SIASD-2, compared to the best existing exact 8-bit serial IMPLY subtractor. SMASD-1 and SMASD-2 improve the latency up to 1.43×, and energy efficiency are up by 77.6% compared to other MAGIC-based exact designs. Additionally, as comparators, the SIASD-1 and SIASD-2 are up to 4.93× faster with energy reduction up to 79.7% compared to their IMPLY-based equivalents. Similarly, the SMASD-1 and SMASD-2 reduce the latency up to 62% with area savings of 77%, compared to MAGIC-based equivalent designs. Furthermore, the proposed subtractor designs undergo analysis in an image processing application called Motion Detection, while the comparators are evaluated in Max Pooling operations. With Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) serving as assessment metrics, the proposed designs consistently demonstrate acceptable PSNR and SSIM values, affirming their suitability for these applications.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"748-757"},"PeriodicalIF":2.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a Graphene Based Terahertz Perfect Metamaterial Absorber With Multiple Sensing Performance 设计具有多重传感性能的石墨烯基太赫兹完美超材料吸收器
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-23 DOI: 10.1109/TNANO.2024.3485758
Leila Shakiba;Mohammad Reza Salehi;Farzin Emami
In this article, the graphene-based metamaterial perfect absorber was investigated in the terahertz region. Due to the geometrical symmetry of the proposed absorber structure, it is insensitive to changes in polarization and its angle, and the absorption value is almost the same over angles from 0 to 90 degrees. According to the configuration of the proposed structure, it is sensitive to changes in the refractive index. Placing graphene on top of the structure improves important sensing parameters, including sensitivity, due to good interaction with the analyte. The proposed structure is being investigated for medical applications including the diagnosis of malaria infection, cancer cells, and hemoglobin identification. The obtained results show the values of sensitivity, figure of merit, and quality coefficient as 2.63(THz/RIU), 175.3(1/RIU), and 523.35, respectively. The accuracy and correctness of the simulation results are checked using the method of equivalent circuit model and transfer matrix method, and there is good agreement between the simulation results and the mentioned methods.
本文研究了太赫兹区域的石墨烯基超材料完美吸收器。由于所提吸收器结构的几何对称性,它对极化及其角度的变化不敏感,在 0 至 90 度角范围内吸收值几乎相同。根据拟议结构的配置,它对折射率的变化很敏感。由于与分析物的良好相互作用,在该结构顶部放置石墨烯可提高包括灵敏度在内的重要传感参数。目前正在对所提出的结构进行医学应用研究,包括疟疾感染诊断、癌细胞和血红蛋白识别。结果显示,灵敏度、优点系数和质量系数分别为 2.63(太赫兹/RIU)、175.3(1/RIU)和 523.35。利用等效电路模型法和传递矩阵法检验了仿真结果的准确性和正确性,仿真结果与上述方法的一致性良好。
{"title":"Design of a Graphene Based Terahertz Perfect Metamaterial Absorber With Multiple Sensing Performance","authors":"Leila Shakiba;Mohammad Reza Salehi;Farzin Emami","doi":"10.1109/TNANO.2024.3485758","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3485758","url":null,"abstract":"In this article, the graphene-based metamaterial perfect absorber was investigated in the terahertz region. Due to the geometrical symmetry of the proposed absorber structure, it is insensitive to changes in polarization and its angle, and the absorption value is almost the same over angles from 0 to 90 degrees. According to the configuration of the proposed structure, it is sensitive to changes in the refractive index. Placing graphene on top of the structure improves important sensing parameters, including sensitivity, due to good interaction with the analyte. The proposed structure is being investigated for medical applications including the diagnosis of malaria infection, cancer cells, and hemoglobin identification. The obtained results show the values of sensitivity, figure of merit, and quality coefficient as 2.63(THz/RIU), 175.3(1/RIU), and 523.35, respectively. The accuracy and correctness of the simulation results are checked using the method of equivalent circuit model and transfer matrix method, and there is good agreement between the simulation results and the mentioned methods.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"741-747"},"PeriodicalIF":2.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and Simulation of Correlated Cycle-to- Cycle Variability in the Current-Voltage Hysteresis Loops of RRAM Devices RRAM 器件电流-电压滞后环中相关周期变化的建模与仿真
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-23 DOI: 10.1109/TNANO.2024.3485213
E. Salvador;M.B. Gonzalez;F. Campabadal;R. Rodriguez;E. Miranda
Resistive RAMs or memristors are nowadays considered serious candidates for the implementation of energy efficient and scalable neuromorphic computing systems. However, a major drawback of this technology is the instability of the device current-voltage (I-V) characteristic as is clearly revealed by the so-called cycle-to-cycle (C2C) variability. This lack of complete reproducibility is a consequence of the spontaneous or induced morphological changes of the filamentary conducting structure occurring at atomic level. Variability is an essential issue any compact model for the conduction characteristics of RRAM devices should be able to cope with to be considered realistic. In this work, a thorough investigation of the C2C variability in the I-V loops of HfO2-based memristive structures was carried out with the aim of incorporating this information into the equations of the Dynamic Memdiode Model. From the compact modeling viewpoint, C2C correlation effects are achieved using model parameters expressed as mean-reverting stochastic processes driven by Wiener noise (Ornstein-Uhlenbeck process). The direct and indirect links between the random behavior of the model parameters and the observable magnitudes (high and low resistance states, set and reset voltages, etc.) are discussed. The agreement between simulation and experimental results is statistically assessed using the Wasserstein's distance metric.
电阻式 RAM 或忆阻器如今被认为是实现高能效、可扩展神经形态计算系统的重要候选器件。然而,这种技术的一个主要缺点是器件电流-电压(I-V)特性不稳定,所谓的周期-周期(C2C)可变性清楚地揭示了这一点。这种缺乏完全再现性的现象是由于丝状导电结构在原子层面上发生自发或诱导形态变化的结果。变异性是 RRAM 器件传导特性的一个基本问题,任何紧凑型模型都应能够应对这一问题,才能被认为是现实的。在这项工作中,我们对基于 HfO2 的忆阻结构 I-V 环节中的 C2C 变异性进行了深入研究,目的是将这一信息纳入动态忆阻器模型的方程中。从紧凑建模的角度来看,C2C 相关效应是利用由维纳噪声(Ornstein-Uhlenbeck 过程)驱动的均值回复随机过程表示的模型参数来实现的。讨论了模型参数的随机行为与可观测量级(高低电阻状态、设定和复位电压等)之间的直接和间接联系。仿真结果与实验结果之间的一致性使用 Wasserstein 的距离度量进行统计评估。
{"title":"Modeling and Simulation of Correlated Cycle-to- Cycle Variability in the Current-Voltage Hysteresis Loops of RRAM Devices","authors":"E. Salvador;M.B. Gonzalez;F. Campabadal;R. Rodriguez;E. Miranda","doi":"10.1109/TNANO.2024.3485213","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3485213","url":null,"abstract":"Resistive RAMs or memristors are nowadays considered serious candidates for the implementation of energy efficient and scalable neuromorphic computing systems. However, a major drawback of this technology is the instability of the device current-voltage (I-V) characteristic as is clearly revealed by the so-called cycle-to-cycle (C2C) variability. This lack of complete reproducibility is a consequence of the spontaneous or induced morphological changes of the filamentary conducting structure occurring at atomic level. Variability is an essential issue any compact model for the conduction characteristics of RRAM devices should be able to cope with to be considered realistic. In this work, a thorough investigation of the C2C variability in the I-V loops of HfO\u0000<sub>2</sub>\u0000-based memristive structures was carried out with the aim of incorporating this information into the equations of the Dynamic Memdiode Model. From the compact modeling viewpoint, C2C correlation effects are achieved using model parameters expressed as mean-reverting stochastic processes driven by Wiener noise (Ornstein-Uhlenbeck process). The direct and indirect links between the random behavior of the model parameters and the observable magnitudes (high and low resistance states, set and reset voltages, etc.) are discussed. The agreement between simulation and experimental results is statistically assessed using the Wasserstein's distance metric.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"758-764"},"PeriodicalIF":2.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10730782","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Electron and Hole Trap Profiles in BE-TOX on Retention Characteristics of 3D NAND Flash Memory BE-TOX 中的电子和空穴陷阱剖面对 3D NAND 闪存保持特性的影响
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-16 DOI: 10.1109/TNANO.2024.3481392
Gilsang Yoon;Donghyun Go;Jounghun Park;Donghwi Kim;Jongwoo Kim;Ukju An;Jungsik Kim;Jeong-Soo Lee;Byoung Don Kong
Trap profiles in the bandgap-engineered tunneling oxide (BE-TOX) layer of a 3D NAND flash memory were investigated using a transient current trap spectroscopy technique. A new pulse scheme was introduced to generate channel holes and subsequently analyze the hole traps in the BE-TOX layer. In the fresh cell, the hole traps were primarily located at a trap energy level (ET) of 1.1 eV, whereas the electron traps exhibited two distinct peaks at ET = 0.75 and 1.25 eV. With increasing program/erase (P/E) cycling operations, the peak ET associated with hole traps shifted toward shallower levels. Conversely, the electron traps remained unchanged, although their intensities increased. The extracted trap generation exhibited the power-law characteristics.
利用瞬态电流陷阱光谱技术研究了三维 NAND 闪存带隙工程隧道氧化物(BE-TOX)层中的陷阱剖面。研究采用了一种新的脉冲方案来产生沟道空穴,然后分析 BE-TOX 层中的空穴陷阱。在新电池中,空穴陷阱主要位于 1.1 eV 的陷阱能级 (ET),而电子陷阱则在 ET = 0.75 和 1.25 eV 处显示出两个明显的峰值。随着编程/擦除(P/E)循环操作的增加,与空穴阱相关的峰值 ET 向更浅的水平移动。相反,电子陷阱保持不变,但其强度有所增加。提取的陷阱生成呈现出幂律特性。
{"title":"Impact of Electron and Hole Trap Profiles in BE-TOX on Retention Characteristics of 3D NAND Flash Memory","authors":"Gilsang Yoon;Donghyun Go;Jounghun Park;Donghwi Kim;Jongwoo Kim;Ukju An;Jungsik Kim;Jeong-Soo Lee;Byoung Don Kong","doi":"10.1109/TNANO.2024.3481392","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3481392","url":null,"abstract":"Trap profiles in the bandgap-engineered tunneling oxide (BE-TOX) layer of a 3D NAND flash memory were investigated using a transient current trap spectroscopy technique. A new pulse scheme was introduced to generate channel holes and subsequently analyze the hole traps in the BE-TOX layer. In the fresh cell, the hole traps were primarily located at a trap energy level (\u0000<italic>E<sub>T</sub></i>\u0000) of 1.1 eV, whereas the electron traps exhibited two distinct peaks at \u0000<italic>E<sub>T</sub></i>\u0000 = 0.75 and 1.25 eV. With increasing program/erase (P/E) cycling operations, the peak \u0000<italic>E<sub>T</sub></i>\u0000 associated with hole traps shifted toward shallower levels. Conversely, the electron traps remained unchanged, although their intensities increased. The extracted trap generation exhibited the power-law characteristics.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"733-740"},"PeriodicalIF":2.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full 3-D Monte Carlo Simulation of Coupled Electron-Phonon Transport: Self-Heating in a Nanoscale FinFET 电子-鹭鸶耦合传输的全三维蒙特卡罗模拟:纳米级 FinFET 中的自加热
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-03 DOI: 10.1109/TNANO.2024.3473931
Mohammad Zunaidur Rashid;Shaikh Shahid Ahmed
To study coupled electro-thermal transport processes in nanoscale electronic devices, continuum models are no longer sufficient. In this work, we present an effort to couple a three-dimensional (3-D) Monte Carlo Phonon Transport (MCPT) kernel with a 3-D Monte Carlo Electron Transport (MCET) simulator. The phonon-phonon scattering is modeled in relaxation time approximation (RTA) using Holland's formalism. Diffusive boundary collisions for phonons is modeled using the Beckmann-Kirchhoff (B-K) surface roughness scattering formalism considering the effects of phonon wavelength, incident angles and degree of surface roughness. In the electron-phonon coupled platform, acoustic and intervalley g and f type electron-phonon scattering mechanisms are considered and the resulting local temperature modification has been used to bridge the electron and phonon transport paths. The simulator has been validated by modeling the self-heating effect in a nanoscale FinFET device. Here, phonon transport at the oxide-silicon interface has been treated using the Diffuse Mismatch (DM) model, whereas, the phonons in the oxide have been described using the Debye model and temperature and frequency dependent relaxation time. For a FinFET with a gate length of 18 nm, channel width of 4 nm, and a fin height of 8 nm, simulation results show an ON current degradation of as high as ∼7% due to self-heating. The temperature rise in the channel region is found to be ∼30 K.
要研究纳米级电子器件中的电热耦合传输过程,连续模型已不再足够。在这项工作中,我们努力将三维(3-D)蒙特卡洛声子传输(MCPT)核与三维蒙特卡洛电子传输(MCET)模拟器结合起来。声子-声子散射采用霍兰形式主义的弛豫时间近似(RTA)建模。声子的扩散边界碰撞采用贝克曼-基尔霍夫(B-K)表面粗糙度散射形式主义建模,考虑了声子波长、入射角和表面粗糙度的影响。在电子-声子耦合平台中,考虑了声学和间隙 g 和 f 型电子-声子散射机制,并利用由此产生的局部温度修正来连接电子和声子传输路径。通过对纳米级 FinFET 器件中的自热效应建模,该模拟器得到了验证。在这里,氧化物-硅界面上的声子传输采用扩散错配(DM)模型进行处理,而氧化物中的声子则采用德拜模型以及与温度和频率相关的弛豫时间进行描述。对于栅极长度为 18 nm、沟道宽度为 4 nm、鳍片高度为 8 nm 的 FinFET,模拟结果显示,由于自发热,导通电流衰减高达 ∼ 7%。沟道区域的温升为 30 K。
{"title":"Full 3-D Monte Carlo Simulation of Coupled Electron-Phonon Transport: Self-Heating in a Nanoscale FinFET","authors":"Mohammad Zunaidur Rashid;Shaikh Shahid Ahmed","doi":"10.1109/TNANO.2024.3473931","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3473931","url":null,"abstract":"To study coupled electro-thermal transport processes in nanoscale electronic devices, continuum models are no longer sufficient. In this work, we present an effort to couple a three-dimensional (3-D) Monte Carlo Phonon Transport (MCPT) kernel with a 3-D Monte Carlo Electron Transport (MCET) simulator. The phonon-phonon scattering is modeled in relaxation time approximation (RTA) using Holland's formalism. Diffusive boundary collisions for phonons is modeled using the Beckmann-Kirchhoff (B-K) surface roughness scattering formalism considering the effects of phonon wavelength, incident angles and degree of surface roughness. In the electron-phonon coupled platform, acoustic and intervalley \u0000<italic>g</i>\u0000 and \u0000<italic>f</i>\u0000 type electron-phonon scattering mechanisms are considered and the resulting local temperature modification has been used to bridge the electron and phonon transport paths. The simulator has been validated by modeling the self-heating effect in a nanoscale FinFET device. Here, phonon transport at the oxide-silicon interface has been treated using the Diffuse Mismatch (DM) model, whereas, the phonons in the oxide have been described using the Debye model and temperature and frequency dependent relaxation time. For a FinFET with a gate length of 18 nm, channel width of 4 nm, and a fin height of 8 nm, simulation results show an ON current degradation of as high as ∼7% due to self-heating. The temperature rise in the channel region is found to be ∼30 K.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"696-703"},"PeriodicalIF":2.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Investigations and Characterization of Surfactant Activated Mixed Metal Oxide (MMO) Nanomaterial 表面活性剂活化混合金属氧化物 (MMO) 纳米材料的实验研究与表征
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-02 DOI: 10.1109/TNANO.2024.3472728
Poundoss Chellamuthu;Kirubaveni Savarimuthu;Mohammed Gulam Nabi Alsath;Govindaraj Rajamanickam
A wide range of industrial, environmental, and biomedical applications depend greatly on the development of sensitive and reliable humidity sensors. This work reports an extensive investigation of a nanostructured surfactant such as Sodium Dodecyl Sulfate (SDS) and Cetyltrimethyl Ammonium Bromide (CTAB) activated mixed metal oxide (Zinc Oxide / Nickel Oxide) nanomaterial. The crystal study demonstrates an increase in the ZnO/NiO characteristic peaks (101) and (200), due to surface reactive agents. The increment of CTAB molar ratio has significantly increased the crystallite size, such that the bandgap of ZnO/NiO composite is reduced from 3.37eV to 2.80 eV. Brunauer-Emmitt-Teller (BET) surface area study revealed the production of a mesoporous ZnO with an improvement in the specific surface area from 7.82 to 52.01 m2g−1 with a mean diameter reducing from 22.28 to 18.94 nm for the CTAB molar concentration range of 0.0, 0.5, 1.0, 1.5 and 2.0 M namely SC-1, SC-2, SC-3, SC-4, and SC-5 respectively. The internal resistance achieved for the 2M sample is 1 KΩ, which is suitable for better humidity and gas sensing properties. Hence, the proposed ZnO/NiO metal oxide material is more sensitive to a plurality of analytes by providing an increased BET surface area.
广泛的工业、环境和生物医学应用在很大程度上依赖于灵敏可靠的湿度传感器的开发。本研究报告对十二烷基硫酸钠(SDS)和十六烷基三甲基溴化铵(CTAB)等纳米结构表面活性剂激活的混合金属氧化物(氧化锌/氧化镍)纳米材料进行了广泛研究。晶体研究表明,由于表面活性剂的作用,氧化锌/氧化镍特征峰(101)和(200)有所增加。CTAB 摩尔比的增加显著增大了晶粒尺寸,从而使氧化锌/氧化镍复合材料的带隙从 3.37eV 减小到 2.80eV。布鲁瑙尔-艾美特-泰勒(BET)表面积研究表明,在 CTAB 摩尔浓度分别为 0.0、0.5、1.0、1.5 和 2.0 M(即 SC-1、SC-2、SC-3、SC-4 和 SC-5)的范围内,产生了介孔 ZnO,比表面积从 7.82 m2g-1 增加到 52.01 m2g-1,平均直径从 22.28 nm 减小到 18.94 nm。2M 样品的内阻为 1 KΩ,适用于更好的湿度和气体传感特性。因此,拟议的 ZnO/NiO 金属氧化物材料通过提供更大的 BET 表面积,对多种分析物更加敏感。
{"title":"Experimental Investigations and Characterization of Surfactant Activated Mixed Metal Oxide (MMO) Nanomaterial","authors":"Poundoss Chellamuthu;Kirubaveni Savarimuthu;Mohammed Gulam Nabi Alsath;Govindaraj Rajamanickam","doi":"10.1109/TNANO.2024.3472728","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3472728","url":null,"abstract":"A wide range of industrial, environmental, and biomedical applications depend greatly on the development of sensitive and reliable humidity sensors. This work reports an extensive investigation of a nanostructured surfactant such as Sodium Dodecyl Sulfate (SDS) and Cetyltrimethyl Ammonium Bromide (CTAB) activated mixed metal oxide (Zinc Oxide / Nickel Oxide) nanomaterial. The crystal study demonstrates an increase in the ZnO/NiO characteristic peaks (101) and (200), due to surface reactive agents. The increment of CTAB molar ratio has significantly increased the crystallite size, such that the bandgap of ZnO/NiO composite is reduced from 3.37eV to 2.80 eV. Brunauer-Emmitt-Teller (BET) surface area study revealed the production of a mesoporous ZnO with an improvement in the specific surface area from 7.82 to 52.01 m\u0000<sup>2</sup>\u0000g\u0000<sup>−1</sup>\u0000 with a mean diameter reducing from 22.28 to 18.94 nm for the CTAB molar concentration range of 0.0, 0.5, 1.0, 1.5 and 2.0 M namely SC-1, SC-2, SC-3, SC-4, and SC-5 respectively. The internal resistance achieved for the 2M sample is 1 KΩ, which is suitable for better humidity and gas sensing properties. Hence, the proposed ZnO/NiO metal oxide material is more sensitive to a plurality of analytes by providing an increased BET surface area.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"727-732"},"PeriodicalIF":2.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low Temperature One-Pot Synthesis of rGO Nanorod-PVDF Composite and Fabrication of a Thin Film Solid-State Fractional Order Device rGO 纳米棒-PVDF 复合材料的低温一锅合成及薄膜固态分数阶器件的制作
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-27 DOI: 10.1109/TNANO.2024.3469973
Manas R. Samantaray;Agniv Tapadar;Santanu Das;Nikhil Chander;Avishek Adhikary
This work proposes a novel, cost-effective, and simplified method to fabricate(reduced graphene oxide (rGO) nanorods. It is demonstrated that when a composite film made of polyvinylidene fluoride (PVDF) and the fabricated rGO is formed on a silver substrate, a unique structural morphology appears. This structure is unlike the general morphological structures of PVDF and rGO. The fabricated rGO has a nanorod-shapes of 0.54 nm to 1.15 $mu$m length and diameter in the 51$-$ 64 nm range. The presence of $alpha$ and $beta$ phase PVDF and rGO in the composite has been confirmed using both X-ray diffractometer and Raman spectroscopy. Impedance characterization of the fabricated device shows constant phase characteristics in the frequency range of 126 kHz to 2 MHz with a constant phase angle at $-63^{circ }$ to $-78^{circ }$. This indicates that the proposed rGO Nanorod-PVDF composite is suitable for the fabrication of a thin film fractor (fractional order device) with fractional order $eta$ = 0.70 to 0.88 and fractance value 0.08 to 3.08 nF$s^{eta }$.
本研究提出了一种新颖、经济、简化的还原氧化石墨烯(rGO)纳米棒制造方法。研究表明,当在银基底上形成由聚偏氟乙烯(PVDF)和所制备的 rGO 组成的复合薄膜时,会出现一种独特的结构形态。这种结构不同于 PVDF 和 rGO 的一般形态结构。制备的 rGO 具有长度为 0.54 纳米到 1.15 英寸的纳米棒形状,直径在 51 纳米到 64 纳米之间。X 射线衍射仪和拉曼光谱都证实了复合材料中存在 PVDF 和 rGO 相。所制造器件的阻抗表征显示,在 126 kHz 至 2 MHz 的频率范围内,相位特性恒定,相位角在 $-63^{circ }$ 至 $-78^{circ }$。这表明所提出的 rGO 纳米棒-PVDF 复合材料适用于制造薄膜分形器(分数阶器件),其分数阶为 $eta$ = 0.70 至 0.88,分数值为 0.08 至 3.08 nF$s^{eta }$。
{"title":"Low Temperature One-Pot Synthesis of rGO Nanorod-PVDF Composite and Fabrication of a Thin Film Solid-State Fractional Order Device","authors":"Manas R. Samantaray;Agniv Tapadar;Santanu Das;Nikhil Chander;Avishek Adhikary","doi":"10.1109/TNANO.2024.3469973","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3469973","url":null,"abstract":"This work proposes a novel, cost-effective, and simplified method to fabricate(reduced graphene oxide (rGO) nanorods. It is demonstrated that when a composite film made of polyvinylidene fluoride (PVDF) and the fabricated rGO is formed on a silver substrate, a unique structural morphology appears. This structure is unlike the general morphological structures of PVDF and rGO. The fabricated rGO has a nanorod-shapes of 0.54 nm to 1.15 \u0000<inline-formula><tex-math>$mu$</tex-math></inline-formula>\u0000m length and diameter in the 51\u0000<inline-formula><tex-math>$-$</tex-math></inline-formula>\u0000 64 nm range. The presence of \u0000<inline-formula><tex-math>$alpha$</tex-math></inline-formula>\u0000 and \u0000<inline-formula><tex-math>$beta$</tex-math></inline-formula>\u0000 phase PVDF and rGO in the composite has been confirmed using both X-ray diffractometer and Raman spectroscopy. Impedance characterization of the fabricated device shows constant phase characteristics in the frequency range of 126 kHz to 2 MHz with a constant phase angle at \u0000<inline-formula><tex-math>$-63^{circ }$</tex-math></inline-formula>\u0000 to \u0000<inline-formula><tex-math>$-78^{circ }$</tex-math></inline-formula>\u0000. This indicates that the proposed rGO Nanorod-PVDF composite is suitable for the fabrication of a thin film fractor (fractional order device) with fractional order \u0000<inline-formula><tex-math>$eta$</tex-math></inline-formula>\u0000 = 0.70 to 0.88 and fractance value 0.08 to 3.08 nF\u0000<inline-formula><tex-math>$s^{eta }$</tex-math></inline-formula>\u0000.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"692-695"},"PeriodicalIF":2.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First Realization of Batch Normalization in Flash-Based Binary Neural Networks Using a Single Voltage Shifter 使用单电压变换器首次实现基于闪存的二进制神经网络批量归一化
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-23 DOI: 10.1109/TNANO.2024.3466128
Sungmin Hwang;Wangjoo Lee;Jeong Woo Park;Dongwoo Suh
Batch normalization (BN) is a technique used to enhance training speed and generalization performance by mitigating internal covariate shifts. However, implementing BN in hardware presents challenges due to the need for an additional complex circuit to normalize, scale and shift activations. We proposed a hardware binary neural network (BNN) system capable of BN in hardware, which is consist of an AND-type flash memory array as a synapse and a voltage sense amplifier (VSA) as a neuron. In this system, hardware BN was implemented using a voltage shifter by adjusting the threshold of the binary neuron. To validate the effectiveness of the proposed hardware-based BNN system, we fabricated a charge trap flash with a gate stack of SiO2/Si3N4/SiO2. The electrical characteristics were modelled by using BSIM3 model parameters so that the proposed circuit was successfully demonstrated by a SPICE simulation. Moreover, variation effects of the voltage shifter were also analyzed using Monte Carlo simulation. Finally, the performance of the proposed system was proved by incorporating the SPICE results into a high-level simulation of binary LeNet-5 for MNIST pattern recognition, resulting in the improvement of the proposed system in terms of power and area, compared to the previous studies.
批量归一化(BN)是一种通过减轻内部协变量偏移来提高训练速度和泛化性能的技术。然而,由于需要额外的复杂电路来对激活进行归一化、缩放和移位,在硬件中实现 BN 存在挑战。我们提出了一种能够在硬件中实现 BNN 的硬件二元神经网络(BNN)系统,该系统由一个作为突触的 AND 型闪存阵列和一个作为神经元的电压感应放大器(VSA)组成。在该系统中,通过调整二进制神经元的阈值,使用电压移位器实现了硬件 BN。为了验证所提出的基于硬件的 BNN 系统的有效性,我们制作了一个电荷阱闪存,栅极堆叠为 SiO2/Si3N4/SiO2。我们使用 BSIM3 模型参数对其电气特性进行了建模,并通过 SPICE 仿真成功演示了所提出的电路。此外,还利用蒙特卡罗仿真分析了电压变换器的变化效应。最后,通过将 SPICE 结果纳入用于 MNIST 模式识别的二进制 LeNet-5 高级仿真,证明了所提系统的性能,与之前的研究相比,所提系统在功耗和面积方面都有所改进。
{"title":"First Realization of Batch Normalization in Flash-Based Binary Neural Networks Using a Single Voltage Shifter","authors":"Sungmin Hwang;Wangjoo Lee;Jeong Woo Park;Dongwoo Suh","doi":"10.1109/TNANO.2024.3466128","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3466128","url":null,"abstract":"Batch normalization (BN) is a technique used to enhance training speed and generalization performance by mitigating internal covariate shifts. However, implementing BN in hardware presents challenges due to the need for an additional complex circuit to normalize, scale and shift activations. We proposed a hardware binary neural network (BNN) system capable of BN in hardware, which is consist of an AND-type flash memory array as a synapse and a voltage sense amplifier (VSA) as a neuron. In this system, hardware BN was implemented using a voltage shifter by adjusting the threshold of the binary neuron. To validate the effectiveness of the proposed hardware-based BNN system, we fabricated a charge trap flash with a gate stack of SiO\u0000<sub>2</sub>\u0000/Si\u0000<sub>3</sub>\u0000N\u0000<sub>4</sub>\u0000/SiO\u0000<sub>2</sub>\u0000. The electrical characteristics were modelled by using BSIM3 model parameters so that the proposed circuit was successfully demonstrated by a SPICE simulation. Moreover, variation effects of the voltage shifter were also analyzed using Monte Carlo simulation. Finally, the performance of the proposed system was proved by incorporating the SPICE results into a high-level simulation of binary \u0000<italic>LeNet-5</i>\u0000 for MNIST pattern recognition, resulting in the improvement of the proposed system in terms of power and area, compared to the previous studies.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"677-683"},"PeriodicalIF":2.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pioneering Multi-Functionality through VO2-Infused Polarization Insensitive Conformal Meta-Structures in Terahertz Regime 通过注入 VO2 的极化不敏感共形元结构,率先实现太赫兹波段的多功能性
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-17 DOI: 10.1109/TNANO.2024.3462802
Aks Raj;Ravi Kumar Gangwar;Raghvendra Kumar Chaudhary
This letter introduces a conformal multifunctional Terahertz Metamaterial-Resonator (TMR) that achieves ultra-wideband absorption (4.6–9.3 THz) without extra circuit components. Its isotropic design ensures angular and polarization stability on flat and curved surfaces. Utilizing phase-changing Vanadium Oxide (VO2), the TMR reconfigures as an absorber, reflector, or transmissive structure, with simulation results aligning with the derived equivalent circuit model.
这封信介绍了一种共形多功能太赫兹超材料谐振器(TMR),它无需额外的电路元件即可实现超宽带吸收(4.6-9.3 太赫兹)。其各向同性设计确保了平面和曲面上的角度和偏振稳定性。利用相变氧化钒(VO2),TMR 可重新配置为吸收器、反射器或透射结构,仿真结果与推导出的等效电路模型一致。
{"title":"Pioneering Multi-Functionality through VO2-Infused Polarization Insensitive Conformal Meta-Structures in Terahertz Regime","authors":"Aks Raj;Ravi Kumar Gangwar;Raghvendra Kumar Chaudhary","doi":"10.1109/TNANO.2024.3462802","DOIUrl":"10.1109/TNANO.2024.3462802","url":null,"abstract":"This letter introduces a conformal multifunctional Terahertz Metamaterial-Resonator (TMR) that achieves ultra-wideband absorption (4.6–9.3 THz) without extra circuit components. Its isotropic design ensures angular and polarization stability on flat and curved surfaces. Utilizing phase-changing Vanadium Oxide (VO\u0000<sub>2</sub>\u0000), the TMR reconfigures as an absorber, reflector, or transmissive structure, with simulation results aligning with the derived equivalent circuit model.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"673-676"},"PeriodicalIF":2.1,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Nanotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1