Pub Date : 2019-12-31DOI: 10.1186/s42649-019-0015-3
Jeong Eun Chae, Ji-Soo Kim, Sang-Yeol Nam, Min Su Kim, Jucheol Park
Electron energy loss spectroscopy (EELS) is an analytical technique that can provide the structural, physical and chemical information of materials. The EELS spectra can be obtained by combining with TEM at sub-nanometer spatial resolution. However, EELS spectral information can’t be obtained easily because in order to interpret EELS spectra, we need to refer to and/or compare many reference data with each other. And in addition to that, we should consider the different experimental variables used to produce each data. Therefore, reliable and easily interpretable EELS standard reference data are needed.
Our Electron Energy Loss Data Center (EELDC) has been designated as National Standard Electron Energy Loss Data Center No. 34 to develop EELS standard reference (SR) data and to play a role in dissemination and diffusion of the SR data to users. EELDC has developed and collected EEL SR data for the materials required by major industries and has a total of 82 EEL SR data. Also, we have created an online platform that provides a one-stop-place to help users interpret quickly EELS spectra and get various spectral information. In this paper, we introduce EEL SR data, the homepage of EELDC and how to use them.
{"title":"Introduction to the standard reference data of electron energy loss spectra and their database: eel.geri.re.kr","authors":"Jeong Eun Chae, Ji-Soo Kim, Sang-Yeol Nam, Min Su Kim, Jucheol Park","doi":"10.1186/s42649-019-0015-3","DOIUrl":"https://doi.org/10.1186/s42649-019-0015-3","url":null,"abstract":"<p>Electron energy loss spectroscopy (EELS) is an analytical technique that can provide the structural, physical and chemical information of materials. The EELS spectra can be obtained by combining with TEM at sub-nanometer spatial resolution. However, EELS spectral information can’t be obtained easily because in order to interpret EELS spectra, we need to refer to and/or compare many reference data with each other. And in addition to that, we should consider the different experimental variables used to produce each data. Therefore, reliable and easily interpretable EELS standard reference data are needed.</p><p>Our Electron Energy Loss Data Center (EELDC) has been designated as National Standard Electron Energy Loss Data Center No. 34 to develop EELS standard reference (SR) data and to play a role in dissemination and diffusion of the SR data to users. EELDC has developed and collected EEL SR data for the materials required by major industries and has a total of 82 EEL SR data. Also, we have created an online platform that provides a one-stop-place to help users interpret quickly EELS spectra and get various spectral information. In this paper, we introduce EEL SR data, the homepage of EELDC and how to use them.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-019-0015-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5172509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-31DOI: 10.1186/s42649-019-0018-0
Giriraj Tailor, Jyoti Chaudhay, Deepshikha Verma, Bhupendra Kr. Sarma
The present study reports the novel synthesis of Zinc nanoparticles (Zn NPs) by thermal decomposition method and its characterisation by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and X-ray Diffraction Measurements (XRD). Synthesis of Zn NPs was achieved by using thermosetting polymer and zinc salts as precursor. Zn NPs were obtained on calcination at 850?°C for 30?min. SEM study reveals that synthesized nanoparticles are spherical in shape. XRD analysis shows that the Zn NPs formed are low crystalline in nature.
{"title":"Microscopic study of zinc nanoparticles synthesised using thermosetting polymer","authors":"Giriraj Tailor, Jyoti Chaudhay, Deepshikha Verma, Bhupendra Kr. Sarma","doi":"10.1186/s42649-019-0018-0","DOIUrl":"https://doi.org/10.1186/s42649-019-0018-0","url":null,"abstract":"<p>The present study reports the novel synthesis of Zinc nanoparticles (Zn NPs) by thermal decomposition method and its characterisation by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and X-ray Diffraction Measurements (XRD). Synthesis of Zn NPs was achieved by using thermosetting polymer and zinc salts as precursor. Zn NPs were obtained on calcination at 850?°C for 30?min. SEM study reveals that synthesized nanoparticles are spherical in shape. XRD analysis shows that the Zn NPs formed are low crystalline in nature.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-019-0018-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5173576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-24DOI: 10.1186/s42649-019-0022-4
Ki Woo Kim
Two distinct layers in terms of texture and electron density were observed in the leaf cuticle of Ficus elastica using transmission electron microscopy. As depicted in a model, an inner polysaccharide-rich layer and an outer cutin (or cutan)-rich layer may support the composite, heterogeneous concept of the leaf cuticle.
{"title":"Composite cuticle with heterogeneous layers in the leaf epidermis of Ficus elastica","authors":"Ki Woo Kim","doi":"10.1186/s42649-019-0022-4","DOIUrl":"https://doi.org/10.1186/s42649-019-0022-4","url":null,"abstract":"<p>Two distinct layers in terms of texture and electron density were observed in the leaf cuticle of <i>Ficus elastica</i> using transmission electron microscopy. As depicted in a model, an inner polysaccharide-rich layer and an outer cutin (or cutan)-rich layer may support the composite, heterogeneous concept of the leaf cuticle.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-019-0022-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4925385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-23DOI: 10.1186/s42649-019-0023-3
Hyun Tae Kim, Seung Woon Yun, Jong Young Park
The detailed anatomy, ultrastructure and histology of the olfactory organ of Micropterus salmoides were investigated by a stereo microscope, a light microscope, and a scanning electron microscope. Its external structure shows a tube-like anterior nostril to stick out and a posterior nostril flat to the skin surface. Meanwhile, its internal structure, the olfactory chamber, contains a fan-shaped rosette structure with 9 to 11 lamellae in adult fish over 35?cm in standard length (SL) and two accessory nasal sacs (ethmoidal and lacrimal sacs) were found. Interestingly, the rosette in young fish under 15?cm in SL was a longitudinal structure in parallel with each of 4–5 lamellae. Histologically, the sensory epithelium (SE) on the olfactory chamber consists of 5 types of cells: olfactory receptor neurons, supporting cells, basal cells, lymphatic cells and mucous cells. In contrast, the non-sensory epithelium (NSE) has stratified epithelial cells, lymphatic cells and mucous cells. The mucous cells of the SE are abundant and distributed densely in one row on the outermost superficial surface, but the one of the NSE are less than the SE. From these results, the olfactory characters of M. salmoides may be related with its ecological habit spending in the middle layer of stagnant water contaminated, more or less.
{"title":"Anatomy, ultrastructure and histology of the olfactory organ of the largemouth bass Micropterus salmoides, Centrarchidae","authors":"Hyun Tae Kim, Seung Woon Yun, Jong Young Park","doi":"10.1186/s42649-019-0023-3","DOIUrl":"https://doi.org/10.1186/s42649-019-0023-3","url":null,"abstract":"<p>The detailed anatomy, ultrastructure and histology of the olfactory organ of <i>Micropterus salmoides</i> were investigated by a stereo microscope, a light microscope, and a scanning electron microscope. Its external structure shows a tube-like anterior nostril to stick out and a posterior nostril flat to the skin surface. Meanwhile, its internal structure, the olfactory chamber, contains a fan-shaped rosette structure with 9 to 11 lamellae in adult fish over 35?cm in standard length (SL) and two accessory nasal sacs (ethmoidal and lacrimal sacs) were found. Interestingly, the rosette in young fish under 15?cm in SL was a longitudinal structure in parallel with each of 4–5 lamellae. Histologically, the sensory epithelium (SE) on the olfactory chamber consists of 5 types of cells: olfactory receptor neurons, supporting cells, basal cells, lymphatic cells and mucous cells. In contrast, the non-sensory epithelium (NSE) has stratified epithelial cells, lymphatic cells and mucous cells. The mucous cells of the SE are abundant and distributed densely in one row on the outermost superficial surface, but the one of the NSE are less than the SE. From these results, the olfactory characters of <i>M. salmoides</i> may be related with its ecological habit spending in the middle layer of stagnant water contaminated, more or less.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-019-0023-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5189630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-17DOI: 10.1186/s42649-019-0020-6
Aram Yoon, Zonghoon Lee
Oxidation of two-dimensional (2D) transition metal dichalcogenides have received great interests because it significantly influences their electrical, optical, and catalytic properties. Monoclinic MoO2 nanowires grow along the zigzag direction of 2D MoS2 via thermal annealing at a high temperature with a low oxygen partial pressure. The hybrids of semiconducting 2D MoS2 and metallic 1D MoO2 nanowires have potential to be applied to various devices such as electrical devices, gas sensors, photodetectors, and catalysts.
{"title":"Formation of two-dimensional MoS2 and one-dimensional MoO2 nanowire hybrids","authors":"Aram Yoon, Zonghoon Lee","doi":"10.1186/s42649-019-0020-6","DOIUrl":"https://doi.org/10.1186/s42649-019-0020-6","url":null,"abstract":"<p>Oxidation of two-dimensional (2D) transition metal dichalcogenides have received great interests because it significantly influences their electrical, optical, and catalytic properties. Monoclinic MoO<sub>2</sub> nanowires grow along the zigzag direction of 2D MoS<sub>2</sub> via thermal annealing at a high temperature with a low oxygen partial pressure. The hybrids of semiconducting 2D MoS<sub>2</sub> and metallic 1D MoO<sub>2</sub> nanowires have potential to be applied to various devices such as electrical devices, gas sensors, photodetectors, and catalysts.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-019-0020-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4671633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-17DOI: 10.1186/s42649-019-0021-5
Byeong-Seon An
The crystallization of amorphous Ge2Sb2Te5 phase change material induced by electron beam irradiation was investigated by in-situ transmission electron microscopy (TEM). Amorphous matrix transformed into a partially crystalline state after being irradiated with a 200-keV electron beam for a long time. Real-time observation revealed that the crystallization of amorphous Ge2Sb2Te5 film occurs through a nucleation and growth mechanism under electron beam irradiation in TEM. While uncertainty from the 2D projection remains, the nuclei have been observed to grow preferentially along the <?100> direction.
{"title":"Electron beam irradiation induced crystallization behavior of amorphous Ge2Sb2Te5 chalcogenide material","authors":"Byeong-Seon An","doi":"10.1186/s42649-019-0021-5","DOIUrl":"https://doi.org/10.1186/s42649-019-0021-5","url":null,"abstract":"<p>The crystallization of amorphous Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> phase change material induced by electron beam irradiation was investigated by in-situ transmission electron microscopy (TEM). Amorphous matrix transformed into a partially crystalline state after being irradiated with a 200-keV electron beam for a long time. Real-time observation revealed that the crystallization of amorphous Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> film occurs through a nucleation and growth mechanism under electron beam irradiation in TEM. While uncertainty from the 2D projection remains, the nuclei have been observed to grow preferentially along the <?100> direction.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-019-0021-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4672090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-16DOI: 10.1186/s42649-019-0019-z
Na Yeon Kim
Structural evolution of copper oxide nanoparticles is examined, especially with respect to Ostwald ripening under electron beam irradiation. Dissolution of the smaller particles into the larger one was clearly observed at the atomic scale using advanced transmission electron microscope.
{"title":"Dynamic imaging of Ostwald ripening in copper oxide nanoparticles by atomic resolution transmission Electron microscope","authors":"Na Yeon Kim","doi":"10.1186/s42649-019-0019-z","DOIUrl":"https://doi.org/10.1186/s42649-019-0019-z","url":null,"abstract":"<p>Structural evolution of copper oxide nanoparticles is examined, especially with respect to Ostwald ripening under electron beam irradiation. Dissolution of the smaller particles into the larger one was clearly observed at the atomic scale using advanced transmission electron microscope.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-019-0019-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4931396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-18DOI: 10.1186/s42649-019-0017-1
Akimitsu Okamoto
Fluorescence imaging of nucleic acids is a very important technique necessary to understand gene expression and the resulting changes in cell function. This mini-review focuses on sequence-specific fluorescence imaging of intracellular RNA and methylated DNA using fluorescent nucleic acid probes. A couple of functional fluorescent nucleic acid probes developed by our laboratory are introduced and the examples of their application to fluorescence imaging of intracellular nucleic acids are described.
{"title":"Next-generation fluorescent nucleic acids probes for microscopic analysis of intracellular nucleic acids","authors":"Akimitsu Okamoto","doi":"10.1186/s42649-019-0017-1","DOIUrl":"https://doi.org/10.1186/s42649-019-0017-1","url":null,"abstract":"<p>Fluorescence imaging of nucleic acids is a very important technique necessary to understand gene expression and the resulting changes in cell function. This mini-review focuses on sequence-specific fluorescence imaging of intracellular RNA and methylated DNA using fluorescent nucleic acid probes. A couple of functional fluorescent nucleic acid probes developed by our laboratory are introduced and the examples of their application to fluorescence imaging of intracellular nucleic acids are described.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-019-0017-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4734084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-14DOI: 10.1186/s42649-019-0014-4
Jun-Yun Kang, Heon-Young Ha, Sung-Dae Kim, Jun Young Park, Min-Ho Jang, Tae-Ho Lee
As more W replaced Mo in alumina-forming austenitic stainless steels, weight gain by oxidation decreased after 336?h at 1053?K. Electron microscopy revealed slower growth of scale in the presence of more numerous second phases by W addition. The retardation of oxidation was attributed to the necessary partitioning of W in front of the metal-oxide interface. The W-rich second phases interacted with growing oxides and finally transformed to fine particles of metallic W alloy within the scale.
{"title":"Effect of tungsten on the oxidation of alumina-forming austenitic stainless steel","authors":"Jun-Yun Kang, Heon-Young Ha, Sung-Dae Kim, Jun Young Park, Min-Ho Jang, Tae-Ho Lee","doi":"10.1186/s42649-019-0014-4","DOIUrl":"https://doi.org/10.1186/s42649-019-0014-4","url":null,"abstract":"<p>As more W replaced Mo in alumina-forming austenitic stainless steels, weight gain by oxidation decreased after 336?h at 1053?K. Electron microscopy revealed slower growth of scale in the presence of more numerous second phases by W addition. The retardation of oxidation was attributed to the necessary partitioning of W in front of the metal-oxide interface. The W-rich second phases interacted with growing oxides and finally transformed to fine particles of metallic W alloy within the scale.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-019-0014-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4880952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}