Pub Date : 2023-10-26DOI: 10.1109/JETCAS.2023.3327748
Abhiroop Bhattacharjee;Abhishek Moitra;Priyadarshini Panda
Today, there are a plethora of In-Memory Computing (IMC) devices- SRAMs, PCMs & FeFETs, that emulate convolutions on crossbar-arrays with high throughput. Each IMC device offers its own pros & cons during inference of Deep Neural Networks (DNNs) on crossbars in terms of area overhead, programming energy and non-idealities. A design-space exploration is, therefore, imperative to derive a hybrid-device architecture optimized for accurate DNN inference under the impact of non-idealities from multiple devices, while maintaining competitive area & energy-efficiencies. We propose a two-phase search framework (HyDe) that exploits the best of all worlds offered by multiple devices to determine an optimal hybrid-device architecture for a given DNN topology. Our hybrid models achieve upto $2.30-2.74times $