Supervised machine learning techniques are being pursued for delayered Integrated Circuit (IC) image analysis. However, repetitive data labelling and model training are required for every image set with the supervised techniques. In view of the large scale of IC image set being analysed, techniques that require less human intervention are desired. In this paper, we propose a template-based Tanimoto Convolution and Morphological Decision (TCMD) model for transistor interconnection retrieval in delayered ICs, that is, poly line segmentation, with minimal human intervention. In our proposed TCMD model, prior domain knowledge on the IC images is incorporated into the proposed Tanimoto convolution for generating input feature maps, eliminating the need of filter learning. We further propose morphological decision to process the input feature maps for higher accuracy and robustness on determining poly line positions. With experiments on a delayered IC @90 nm process, our proposed TCMD model achieves 3%∼6% higher accuracy than the reported template-based techniques. Our proposed TCMD model also achieves competitive accuracy with the reported deep U-net while requiring 13× shorter training/validation time. To further improve the pixel-wise precision of the retrieved poly lines, which is important for applications such as analog circuit analysis, we propose a deep learning-based TCMD-PL model. The proposed TCMD-PL model utilises the output of TCMD model as the pseudo labels for training a deep convolutional neural network in supervised manner, and it is able to achieve further performance improvement of ∼4% in comparison to TCMD model without extra data labelling.
{"title":"Delayered IC image analysis with template-based Tanimoto Convolution and Morphological Decision","authors":"Deruo Cheng, Yiqiong Shi, Tong Lin, Bah-Hwee Gwee, Kar-Ann Toh","doi":"10.1049/cds2.12093","DOIUrl":"10.1049/cds2.12093","url":null,"abstract":"<p>Supervised machine learning techniques are being pursued for delayered Integrated Circuit (IC) image analysis. However, repetitive data labelling and model training are required for every image set with the supervised techniques. In view of the large scale of IC image set being analysed, techniques that require less human intervention are desired. In this paper, we propose a template-based Tanimoto Convolution and Morphological Decision (TCMD) model for transistor interconnection retrieval in delayered ICs, that is, poly line segmentation, with minimal human intervention. In our proposed TCMD model, prior domain knowledge on the IC images is incorporated into the proposed Tanimoto convolution for generating input feature maps, eliminating the need of filter learning. We further propose morphological decision to process the input feature maps for higher accuracy and robustness on determining poly line positions. With experiments on a delayered IC @90 nm process, our proposed TCMD model achieves 3%∼6% higher accuracy than the reported template-based techniques. Our proposed TCMD model also achieves competitive accuracy with the reported deep U-net while requiring 13× shorter training/validation time. To further improve the pixel-wise precision of the retrieved poly lines, which is important for applications such as analog circuit analysis, we propose a deep learning-based TCMD-PL model. The proposed TCMD-PL model utilises the output of TCMD model as the pseudo labels for training a deep convolutional neural network in supervised manner, and it is able to achieve further performance improvement of ∼4% in comparison to TCMD model without extra data labelling.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 2","pages":"169-177"},"PeriodicalIF":1.3,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12093","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125680594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samira Shamsir, Laila Parvin Poly, Rajat Chakraborty, Samia Subrina
This work presents a simplified analytical model of a p-n junction diode based on a graphene nanoribbon (GNR) and a unique type of Schottky diode based on metallic graphene and semi-conducting GNRs. Due to the one-dimensional nature of GNRs, their electrostatic analyses need to be quite different from that of bulk devices. Two approaches have been taken to model the charge distribution in this depletion region, namely, the point charge approximation for the GNR p-n junction diode and the line charge approximation for the graphene/GNR Schottky diode. Analytical expressions for the spatial distribution of electric field and potential have been derived and the results are quite distinct from their bulk counterparts. The current-voltage relation of each diode has been investigated within the approximation of Shockley's law of junctions. The width dependency of the currents for these diodes has also been modelled and it has been found that the current density of both the diodes decreases with decreasing width. Such an analysis can encourage the modelling of next-generation GNR-based high-speed electronic devices.
{"title":"Current-voltage model of a graphene nanoribbon p-n junction and Schottky junction diode","authors":"Samira Shamsir, Laila Parvin Poly, Rajat Chakraborty, Samia Subrina","doi":"10.1049/cds2.12092","DOIUrl":"10.1049/cds2.12092","url":null,"abstract":"<p>This work presents a simplified analytical model of a p-n junction diode based on a graphene nanoribbon (GNR) and a unique type of Schottky diode based on metallic graphene and semi-conducting GNRs. Due to the one-dimensional nature of GNRs, their electrostatic analyses need to be quite different from that of bulk devices. Two approaches have been taken to model the charge distribution in this depletion region, namely, the point charge approximation for the GNR p-n junction diode and the line charge approximation for the graphene/GNR Schottky diode. Analytical expressions for the spatial distribution of electric field and potential have been derived and the results are quite distinct from their bulk counterparts. The current-voltage relation of each diode has been investigated within the approximation of Shockley's law of junctions. The width dependency of the currents for these diodes has also been modelled and it has been found that the current density of both the diodes decreases with decreasing width. Such an analysis can encourage the modelling of next-generation GNR-based high-speed electronic devices.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 2","pages":"157-168"},"PeriodicalIF":1.3,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12092","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114647404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Convolutional neural networks (CNNs) have been widely applied in the field of computer vision due to their inherent advantages in image feature extraction. However, it is difficult to implement CNNs directly on embedded platforms owing to excessive calculations of CNNs. Field Programmable Gate Arrays have been popular in CNN accelerators because of their configurability and high energy efficiency. Given the highly parallel workloads of the CNN, a CNN accelerator with a 14 × 16 processing element array is designed in this study to accelerate the CNN inference. Besides, a loop tiling strategy for convolutional layers is proposed to efficiently transmit feature maps. Additionally, the roofline model is employed to explore the best tiling parameters for optimal performance. Finally, the accelerator written in Verilog-HDL language is implemented on the Xilinx Zynq-7045 evaluation platform. At an operating frequency of 200 MHz, the proposed accelerator can achieve a performance of 57.24 giga operations per second on You Only Look Once v2-tiny and 78.39 GOPS on Visual Geometry Group-16. The accelerator only consumes 224 DSPs, demonstrating a better performance compared with the previous works.
卷积神经网络(Convolutional neural network, cnn)由于其在图像特征提取方面的固有优势,在计算机视觉领域得到了广泛的应用。然而,由于cnn的计算量过大,直接在嵌入式平台上实现cnn很困难。现场可编程门阵列由于其可配置性和高能效在CNN加速器中得到了广泛的应用。考虑到CNN的高度并行工作负载,本研究设计了一个14 × 16处理单元阵列的CNN加速器来加速CNN的推理。此外,提出了一种卷积层的循环平铺策略,以有效地传输特征映射。此外,采用屋顶线模型来探索最佳平铺参数以获得最佳性能。最后,在Xilinx Zynq-7045评估平台上实现了Verilog-HDL语言编写的加速器。在200 MHz的工作频率下,所提出的加速器在You Only Look Once v2-tiny上可以实现每秒57.24千兆的运算性能,在Visual Geometry Group-16上可以实现78.39 GOPS。该加速器仅消耗224个dsp,与以往的工作相比,性能更好。
{"title":"An efficient loop tiling framework for convolutional neural network inference accelerators","authors":"Hongmin Huang, Xianghong Hu, Xueming Li, Xiaoming Xiong","doi":"10.1049/cds2.12091","DOIUrl":"10.1049/cds2.12091","url":null,"abstract":"<p>Convolutional neural networks (CNNs) have been widely applied in the field of computer vision due to their inherent advantages in image feature extraction. However, it is difficult to implement CNNs directly on embedded platforms owing to excessive calculations of CNNs. Field Programmable Gate Arrays have been popular in CNN accelerators because of their configurability and high energy efficiency. Given the highly parallel workloads of the CNN, a CNN accelerator with a 14 × 16 processing element array is designed in this study to accelerate the CNN inference. Besides, a loop tiling strategy for convolutional layers is proposed to efficiently transmit feature maps. Additionally, the roofline model is employed to explore the best tiling parameters for optimal performance. Finally, the accelerator written in Verilog-HDL language is implemented on the Xilinx Zynq-7045 evaluation platform. At an operating frequency of 200 MHz, the proposed accelerator can achieve a performance of 57.24 giga operations per second on You Only Look Once v2-tiny and 78.39 GOPS on Visual Geometry Group-16. The accelerator only consumes 224 DSPs, demonstrating a better performance compared with the previous works.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 1","pages":"116-123"},"PeriodicalIF":1.3,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117310869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to meet the need for more experimental content for students with strong active learning ability and to solve the problem of students’ different needs for experimental content and depth, a teaching method of adding selective experiments is proposed in this study on the basis of basic experiments. The method is also aimed at achieving the need for multi-level teaching. In the experimental course, the teacher arranges all the students in the class and makes them perform the basic circuit experiment. The teacher then adds the selective experiments on the basis of the basic experimental circuit so that the students can freely select the experiment they want to complete and meet the need for expanding the experimental needs of students with strong active learning ability. In this study, the voltage regulating circuit experiment is taken as an example to carry out practical teaching. The basic experimental content is a single-phase voltage regulating circuit experiment, and the selective experiment is a three-phase voltage regulating circuit experiment. The final examination scores of the students who have performed the selective experiments are higher than the average score of the class, which shows that the students who have performed the selective experiments are good students with a strong need for active learning. The curriculum of this study meets their need for active learning. With the help of the realisation rate of the circuit function, the correct answer rate of thinking questions and the experimental time of students who have performed the selective experiments, it is shown that the method of multi-level teaching and differentiated experimental teaching is feasible. Through the questionnaire survey of students, it can be seen that the teaching method proposed in this study can meet the students’ need for active learning, improve students’ interest in the course, and increase the opportunities for training students’ practical ability.
{"title":"Effect analysis of adding selective experiments in power electronics course to encourage students’ active learning","authors":"Guopeng Zhao","doi":"10.1049/cds2.12090","DOIUrl":"10.1049/cds2.12090","url":null,"abstract":"<p>In order to meet the need for more experimental content for students with strong active learning ability and to solve the problem of students’ different needs for experimental content and depth, a teaching method of adding selective experiments is proposed in this study on the basis of basic experiments. The method is also aimed at achieving the need for multi-level teaching. In the experimental course, the teacher arranges all the students in the class and makes them perform the basic circuit experiment. The teacher then adds the selective experiments on the basis of the basic experimental circuit so that the students can freely select the experiment they want to complete and meet the need for expanding the experimental needs of students with strong active learning ability. In this study, the voltage regulating circuit experiment is taken as an example to carry out practical teaching. The basic experimental content is a single-phase voltage regulating circuit experiment, and the selective experiment is a three-phase voltage regulating circuit experiment. The final examination scores of the students who have performed the selective experiments are higher than the average score of the class, which shows that the students who have performed the selective experiments are good students with a strong need for active learning. The curriculum of this study meets their need for active learning. With the help of the realisation rate of the circuit function, the correct answer rate of thinking questions and the experimental time of students who have performed the selective experiments, it is shown that the method of multi-level teaching and differentiated experimental teaching is feasible. Through the questionnaire survey of students, it can be seen that the teaching method proposed in this study can meet the students’ need for active learning, improve students’ interest in the course, and increase the opportunities for training students’ practical ability.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 2","pages":"147-156"},"PeriodicalIF":1.3,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12090","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115525978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study proposes a high step-down DC-DC converter with minimum elements. In the proposed converter, soft switching condition is provided with only one auxiliary switch, which simplifies the structure of the converter. Leakage inductor energy is used to create a zero voltage condition; so the mutations created by this inductor are neutralised. The control of the auxiliary switch is complementary to the main switch, which does not require a new and complex control circuit. Due to low voltage gain, the proposed converter is suitable for use in voltage regulator modules. The proposed converter is completely analysed. To confirm the theoretical analysis, an experimental sample is made and tested at 15 W and the results are presented. Also, the efficiency of the proposed converter at full load is 97.5%.
{"title":"A new soft-switching high step-down DC-DC converter for voltage regular module application","authors":"Mahmood Vesali, Hosein Ranjbar, Farhad Ghafoorian","doi":"10.1049/cds2.12089","DOIUrl":"10.1049/cds2.12089","url":null,"abstract":"<p>This study proposes a high step-down DC-DC converter with minimum elements. In the proposed converter, soft switching condition is provided with only one auxiliary switch, which simplifies the structure of the converter. Leakage inductor energy is used to create a zero voltage condition; so the mutations created by this inductor are neutralised. The control of the auxiliary switch is complementary to the main switch, which does not require a new and complex control circuit. Due to low voltage gain, the proposed converter is suitable for use in voltage regulator modules. The proposed converter is completely analysed. To confirm the theoretical analysis, an experimental sample is made and tested at 15 W and the results are presented. Also, the efficiency of the proposed converter at full load is 97.5%.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 2","pages":"136-146"},"PeriodicalIF":1.3,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12089","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131255579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying Zhang, Minghui Ge, Xin Chen, Jiaqi Yao, Zhiming Mao
Modern electronic systems usually use third-party IP cores to build basic blocks. However, there may be Hardware Trojans (HTs) in IP cores, which will cause critical security problem. There are already many HT detection methods which claim to detect all publicly available HT benchmarks. But these methods can still be defeated by designing novel HTs. In this article, a method called Blinding HT is proposed, which camouflages itself as a normal circuit and is difficult to be triggered. The Blinding HT hides input signals of HT modules by tracing across multiple sequential levels. This method increases the influence of HT trigger inputs on output signals, so that trigger inputs are not be identified as redundant inputs. In this way, this approach can defeat the detection methods which identify weakly affecting trigger inputs and redundant trigger inputs across multiple sequential levels. As shown in the experimental results, the proposed HTs are hardly detected even by the novel HT detection approach based on machine learning algorithm. These HTs have small footprints on the design in terms of area and power to resist the side-channel effect analysis. The proposed HT has stealthiness, general applicability and imperceptibility.
{"title":"Blinding HT: Hiding Hardware Trojan signals traced across multiple sequential levels","authors":"Ying Zhang, Minghui Ge, Xin Chen, Jiaqi Yao, Zhiming Mao","doi":"10.1049/cds2.12088","DOIUrl":"10.1049/cds2.12088","url":null,"abstract":"<p>Modern electronic systems usually use third-party IP cores to build basic blocks. However, there may be Hardware Trojans (HTs) in IP cores, which will cause critical security problem. There are already many HT detection methods which claim to detect all publicly available HT benchmarks. But these methods can still be defeated by designing novel HTs. In this article, a method called Blinding HT is proposed, which camouflages itself as a normal circuit and is difficult to be triggered. The Blinding HT hides input signals of HT modules by tracing across multiple sequential levels. This method increases the influence of HT trigger inputs on output signals, so that trigger inputs are not be identified as redundant inputs. In this way, this approach can defeat the detection methods which identify weakly affecting trigger inputs and redundant trigger inputs across multiple sequential levels. As shown in the experimental results, the proposed HTs are hardly detected even by the novel HT detection approach based on machine learning algorithm. These HTs have small footprints on the design in terms of area and power to resist the side-channel effect analysis. The proposed HT has stealthiness, general applicability and imperceptibility.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 1","pages":"105-115"},"PeriodicalIF":1.3,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12088","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121712654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jayaraj Kidav, Perumal M. Pillai, Deepak V, Sreejeesh S. G
In this work, the design and development of a 128-channel transceiver hardware for medical ultrasound imaging systems and research is presented. The proposed hardware solution integrates the analog front-end (AFE) sections, high voltage transmit pulser sections, field programmable gate array (FPGA)-based transmit beamforming and control logic, time gain compensation (TGC) and continuous (CW) Doppler functional circuits, and the necessary power supplies (high voltage (HV) and low voltage (LV)) into a single board. In addition, it integrates pervasive segments like power, clock tree sections, and power management and debugger logic. The developed transceiver solution helps to advance the research in medical ultrasound imaging techniques and technologies. To prototype an ultrasound imaging system, the developed hardware can be interfaced with a 128-channel ultrasound transducer array and an FPGA-based signal processing module. As the transceiver hardware is designed with commercially available chipsets, it provides the flexibility to programme the ultrasound AFE signal chain, transmit beamforming and the arbitrary transmit wave pattern. Besides, compared to the commercial open ultrasound research scanners, the flexibility to interface FPGA-based signal processing module helps to investigate the performance of hardware realisation of various ultrasound signal processing algorithms. Moreover, the work realises a single-board transceiver solution for multichannel ultrasound system fulfilment.
{"title":"Design of a 128-channel transceiver hardware for medical ultrasound imaging systems","authors":"Jayaraj Kidav, Perumal M. Pillai, Deepak V, Sreejeesh S. G","doi":"10.1049/cds2.12087","DOIUrl":"10.1049/cds2.12087","url":null,"abstract":"<p>In this work, the design and development of a 128-channel transceiver hardware for medical ultrasound imaging systems and research is presented. The proposed hardware solution integrates the analog front-end (AFE) sections, high voltage transmit pulser sections, field programmable gate array (FPGA)-based transmit beamforming and control logic, time gain compensation (TGC) and continuous (CW) Doppler functional circuits, and the necessary power supplies (high voltage (HV) and low voltage (LV)) into a single board. In addition, it integrates pervasive segments like power, clock tree sections, and power management and debugger logic. The developed transceiver solution helps to advance the research in medical ultrasound imaging techniques and technologies. To prototype an ultrasound imaging system, the developed hardware can be interfaced with a 128-channel ultrasound transducer array and an FPGA-based signal processing module. As the transceiver hardware is designed with commercially available chipsets, it provides the flexibility to programme the ultrasound AFE signal chain, transmit beamforming and the arbitrary transmit wave pattern. Besides, compared to the commercial open ultrasound research scanners, the flexibility to interface FPGA-based signal processing module helps to investigate the performance of hardware realisation of various ultrasound signal processing algorithms. Moreover, the work realises a single-board transceiver solution for multichannel ultrasound system fulfilment.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 1","pages":"92-104"},"PeriodicalIF":1.3,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12087","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132669132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pu Li, Xiaoyuan Wang, Xue Zhang, Jason K. Eshraghian, Herbert Ho Ching Lu
Memristors are passive non-linear circuit components with memory characteristics, and have been recognized as the fourth basic circuit component, along with resistors, capacitors, and inductors. It has been nearly half a century since the conceptualisation of the memristor, and related research has mainly focussed on the two aspects of binary and continuous memristors. However, compared with these two types of memristors, tri-state and multi-state memristors have greater data density per device, with rich dynamics and great potential in logic and chaotic circuit applications. Moreover, previous studies show that the series-parallel connection of memristor generates more diverse circuit behaviours and increased capacity over a single memristor. However, most of this research is based on mathematical analysis, and lack behavioural circuit simulations or experimental validation. Here, the tri-state memristor is proposed and the mathematic and equivalent Spice models of the tri-state memristor is shown. Furthermore, the circuit characteristics are studied with a complete characterisation of its series-parallel behaviours of the tri-state memristor. Simulations are performed with LTSpice, and the results verify the theoretical analysis, which provides a strong experimental basis for the study of combinational memristive circuits.
{"title":"Spice modelling of a tri-state memristor and analysis of its series and parallel characteristics","authors":"Pu Li, Xiaoyuan Wang, Xue Zhang, Jason K. Eshraghian, Herbert Ho Ching Lu","doi":"10.1049/cds2.12086","DOIUrl":"10.1049/cds2.12086","url":null,"abstract":"<p>Memristors are passive non-linear circuit components with memory characteristics, and have been recognized as the fourth basic circuit component, along with resistors, capacitors, and inductors. It has been nearly half a century since the conceptualisation of the memristor, and related research has mainly focussed on the two aspects of binary and continuous memristors. However, compared with these two types of memristors, tri-state and multi-state memristors have greater data density per device, with rich dynamics and great potential in logic and chaotic circuit applications. Moreover, previous studies show that the series-parallel connection of memristor generates more diverse circuit behaviours and increased capacity over a single memristor. However, most of this research is based on mathematical analysis, and lack behavioural circuit simulations or experimental validation. Here, the tri-state memristor is proposed and the mathematic and equivalent Spice models of the tri-state memristor is shown. Furthermore, the circuit characteristics are studied with a complete characterisation of its series-parallel behaviours of the tri-state memristor. Simulations are performed with LTSpice, and the results verify the theoretical analysis, which provides a strong experimental basis for the study of combinational memristive circuits.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 1","pages":"81-91"},"PeriodicalIF":1.3,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12086","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128438175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CORRIGENDUM Systematic Cell placement in Quantum-dot Cellular Automata Embedding Underlying Regular Clocking Circuit","authors":"","doi":"10.1049/cds2.12082","DOIUrl":"https://doi.org/10.1049/cds2.12082","url":null,"abstract":"<p>In [<span>1</span>], the following corrections should be noted.</p><p>This work is sponsored by the Young Faculty Research Fellowship (YFRF) of Visvesvaraya Ph.D. scheme through the grant number MLA/MUM/GA/10(37)B.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 2","pages":"200"},"PeriodicalIF":1.3,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137548799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saeid Seyedi, Behrouz Pourghebleh, Nima Jafari Navimipour
Quantum-dot cellular automata (QCA) is one of the best methods to implement digital circuits at nanoscale. It has excellent potential with high density, fast switching speed, and low energy consumption. Researchers have emphasized reducing the number of gates, the delay, and the cell count in QCA technology. In addition, a ripple carry adder (RCA) is a circuit in which each full adder's carry-out is the connection for the next full adder's carry-in. These types of adders are quite simple and easily expandable to any desired size. However, they are relatively slow because carries may broadcast across the entire adder. Therefore, an RCA design on a nanoscale QCA is proposed to diminish the cell number, improve complexity, and decrease latency. The QCADesigner simulation tool is used to verify the correctness of the suggested circuit. The comparison results for the design indicate an approximately 49.14% improvement in cell number and 14.29% advantage in area for the state-of-the-art 4-bit RCA designs with QCA technology. In addition, the obtained results specify the effectiveness of the offered design.
{"title":"A new coplanar design of a 4-bit ripple carry adder based on quantum-dot cellular automata technology","authors":"Saeid Seyedi, Behrouz Pourghebleh, Nima Jafari Navimipour","doi":"10.1049/cds2.12083","DOIUrl":"10.1049/cds2.12083","url":null,"abstract":"<p>Quantum-dot cellular automata (QCA) is one of the best methods to implement digital circuits at nanoscale. It has excellent potential with high density, fast switching speed, and low energy consumption. Researchers have emphasized reducing the number of gates, the delay, and the cell count in QCA technology. In addition, a ripple carry adder (RCA) is a circuit in which each full adder's carry-out is the connection for the next full adder's carry-in. These types of adders are quite simple and easily expandable to any desired size. However, they are relatively slow because carries may broadcast across the entire adder. Therefore, an RCA design on a nanoscale QCA is proposed to diminish the cell number, improve complexity, and decrease latency. The QCADesigner simulation tool is used to verify the correctness of the suggested circuit. The comparison results for the design indicate an approximately 49.14% improvement in cell number and 14.29% advantage in area for the state-of-the-art 4-bit RCA designs with QCA technology. In addition, the obtained results specify the effectiveness of the offered design.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 1","pages":"64-70"},"PeriodicalIF":1.3,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12083","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122614378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}