Pub Date : 2013-03-28DOI: 10.1109/ISSCC.2013.6487717
M. Caruso, M. Bassi, A. Bevilacqua, A. Neviani
Radar imaging is gaining interest for medical, security, and industrial applications. Enabled by the advances in silicon technologies, a clear trend towards higher integration is observed [1-3]. Early-stage breast cancer detection is a promising application for radar imaging, as first clinical trials with patients have been carried out [4]. Commercial VNAs have been used in these experiments, but custom hardware is needed to improve the sensitivity, and to decrease the size and the cost of the setup [4]. Medical radar imaging sets great challenges. The radiation must be coupled into the body, while the skin acts as a shield. The waves that penetrate beyond the skin are heavily attenuated (>80dB for a few centimeters at 10GHz [4]). Tumor cells have different electrical properties than the healthy tissue, thus reflecting the waves and allowing for detection; this contrast is frequency dependent, decreasing at higher frequencies. These fundamental limits result in a radar requiring a dynamic range in excess to 100dB [4], and force operation in the lower-GHz range. In contrast, mm-Waves would be preferred to achieve higher resolution [1]. Ultra-wideband radars combine larger scattered energy collected at lower frequencies (thus higher SNR), and mm-range resolution, since the resolution is set by the overall bandwidth and the antenna array arrangement [2].
{"title":"A 2-to-16GHz 204mW 3mm-resolution stepped-frequency radar for breast-cancer diagnostic imaging in 65nm CMOS","authors":"M. Caruso, M. Bassi, A. Bevilacqua, A. Neviani","doi":"10.1109/ISSCC.2013.6487717","DOIUrl":"https://doi.org/10.1109/ISSCC.2013.6487717","url":null,"abstract":"Radar imaging is gaining interest for medical, security, and industrial applications. Enabled by the advances in silicon technologies, a clear trend towards higher integration is observed [1-3]. Early-stage breast cancer detection is a promising application for radar imaging, as first clinical trials with patients have been carried out [4]. Commercial VNAs have been used in these experiments, but custom hardware is needed to improve the sensitivity, and to decrease the size and the cost of the setup [4]. Medical radar imaging sets great challenges. The radiation must be coupled into the body, while the skin acts as a shield. The waves that penetrate beyond the skin are heavily attenuated (>80dB for a few centimeters at 10GHz [4]). Tumor cells have different electrical properties than the healthy tissue, thus reflecting the waves and allowing for detection; this contrast is frequency dependent, decreasing at higher frequencies. These fundamental limits result in a radar requiring a dynamic range in excess to 100dB [4], and force operation in the lower-GHz range. In contrast, mm-Waves would be preferred to achieve higher resolution [1]. Ultra-wideband radars combine larger scattered energy collected at lower frequencies (thus higher SNR), and mm-range resolution, since the resolution is set by the overall bandwidth and the antenna array arrangement [2].","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"77 1","pages":"240-241"},"PeriodicalIF":0.0,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77891793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-03-28DOI: 10.1109/ISSCC.2013.6487636
V. Krishnaswamy, Dawei Huang, Sebastian Turullols, Jinuk Luke Shin
Continuous advancement in multicore and multi-threaded design requires optimized integration of hardware and software to address increasing bandwidth and power management challenges for high-end system designs. The next generation Oracle T-series systems utilizing the SPARC T5 processor address these challenges. These systems scale from one to eight sockets using a 1-hop glueless connection. The processor implements 16 8-threaded cores, an 8MB L3 cache, four on-chip memory controllers and two on-chip PCIE Gen 3 interfaces [1]. The 8-socket system comprises an unprecedented 1024 threads to deliver the highest thread count ever in any T-series system. The fully configured 8-socket T5 system supports DDR3-1066-based memory bandwidth, which reaches over 2.9TB/s, coherence bandwidth of 2+TB/s and PCI Gen 3 bandwidth with 256GB/s to deliver 5+TB/s throughput (Fig. 3.7.1).
多核和多线程设计的不断发展需要优化硬件和软件的集成,以解决高端系统设计中日益增加的带宽和电源管理挑战。下一代使用SPARC T5处理器的Oracle t系列系统解决了这些挑战。这些系统使用1跳无胶连接扩展到1到8个套接字。该处理器实现了16个8线程内核,一个8MB L3缓存,四个片上内存控制器和两个片上PCIE Gen 3接口[1]。8套接字系统包含前所未有的1024个线程,在任何t系列系统中提供最高的线程数。全配置的8插槽T5系统支持基于ddr3 -1066的内存带宽达到2.9TB/s以上,相干带宽达到2+TB/s, PCI Gen 3带宽达到256GB/s,可提供5+TB/s的吞吐量(图3.7.1)。
{"title":"Bandwidth and power management of glueless 8-socket SPARC T5 system","authors":"V. Krishnaswamy, Dawei Huang, Sebastian Turullols, Jinuk Luke Shin","doi":"10.1109/ISSCC.2013.6487636","DOIUrl":"https://doi.org/10.1109/ISSCC.2013.6487636","url":null,"abstract":"Continuous advancement in multicore and multi-threaded design requires optimized integration of hardware and software to address increasing bandwidth and power management challenges for high-end system designs. The next generation Oracle T-series systems utilizing the SPARC T5 processor address these challenges. These systems scale from one to eight sockets using a 1-hop glueless connection. The processor implements 16 8-threaded cores, an 8MB L3 cache, four on-chip memory controllers and two on-chip PCIE Gen 3 interfaces [1]. The 8-socket system comprises an unprecedented 1024 threads to deliver the highest thread count ever in any T-series system. The fully configured 8-socket T5 system supports DDR3-1066-based memory bandwidth, which reaches over 2.9TB/s, coherence bandwidth of 2+TB/s and PCI Gen 3 bandwidth with 256GB/s to deliver 5+TB/s throughput (Fig. 3.7.1).","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"13 1","pages":"58-59"},"PeriodicalIF":0.0,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76384891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we present a state-of-the-art WBAN transceiver satisfying all of the specifications for the IEEE 802.15.6 standard. Especially, the driver active-digital-bandpass filter (ADF) is proposed to fulfill the tight spectral mask requirement without using external components. Moreover, the WBAN transceiver SoC is applied to multichannel electro-acupuncture, which is one of the most prominent emerging medical applications and is useful to verify the successful operation of the transceiver [6].
{"title":"A 5.5mW IEEE-802.15.6 wireless body-area-network standard transceiver for multichannel electro-acupuncture application","authors":"Hyungwoo Lee, Kwonjoon Lee, Sunjoo Hong, Kiseok Song, Taehwan Roh, Joonsung Bae, H. Yoo","doi":"10.1109/ISSCC.2013.6487811","DOIUrl":"https://doi.org/10.1109/ISSCC.2013.6487811","url":null,"abstract":"In this paper, we present a state-of-the-art WBAN transceiver satisfying all of the specifications for the IEEE 802.15.6 standard. Especially, the driver active-digital-bandpass filter (ADF) is proposed to fulfill the tight spectral mask requirement without using external components. Moreover, the WBAN transceiver SoC is applied to multichannel electro-acupuncture, which is one of the most prominent emerging medical applications and is useful to verify the successful operation of the transceiver [6].","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"23 1","pages":"452-453"},"PeriodicalIF":0.0,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74191666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-03-28DOI: 10.1109/ISSCC.2013.6487639
Yan Lu, Xing Li, W. Ki, C. Tsui, C. Yue
Wireless power transfer has a broad range of applications ranging from mobile phone chargers to biomedical implants. For cochlear implants [1] and retinal prostheses [2], having a miniaturized form factor and being battery-less are highly desirable. Such devices require real-time power transfer in the range of 10 to 100mW [3], and as human tissue specific absorption rate (SAR) increases with frequency, inductively-coupled power links that operate at 13.56MHz or lower in ISM bands are commonly used, as shown in Fig. 4.2.1. However, lower transmission frequency means larger matching and filtering capacitors that are bulky. In addition, the received AC input amplitude VAC,Peak would fluctuate due to changes in distance and orientation between the coupling coils. Hence, comparator- controlled power switches (active diodes) are used to replace diodes so that the rectifier could work at a lower VAC,Peak and still achieve a high voltage conversion ratio (VCR) and power conversion efficiency (PCE) [4]. In this research, we present the first fully integrated 1X/2X active rectifier in the 30mW range with all capacitors fabricated on-chip, also shown in Fig. 4.2.1. This is made possible by a switching arrangement that avoids connecting the output capacitors in series in the 2X mode. Reverse current is reduced for VAC,Peak that ranges from 1.25 to 4V by a bias current that is quasi-inversely proportional to the output DC voltage, as explained later; and efficiency is carefully measured by the insertion of a sensing resistor plus an additional capacitor to reduce distortion.
{"title":"A 13.56MHz fully integrated 1X/2X active rectifier with compensated bias current for inductively powered devices","authors":"Yan Lu, Xing Li, W. Ki, C. Tsui, C. Yue","doi":"10.1109/ISSCC.2013.6487639","DOIUrl":"https://doi.org/10.1109/ISSCC.2013.6487639","url":null,"abstract":"Wireless power transfer has a broad range of applications ranging from mobile phone chargers to biomedical implants. For cochlear implants [1] and retinal prostheses [2], having a miniaturized form factor and being battery-less are highly desirable. Such devices require real-time power transfer in the range of 10 to 100mW [3], and as human tissue specific absorption rate (SAR) increases with frequency, inductively-coupled power links that operate at 13.56MHz or lower in ISM bands are commonly used, as shown in Fig. 4.2.1. However, lower transmission frequency means larger matching and filtering capacitors that are bulky. In addition, the received AC input amplitude VAC,Peak would fluctuate due to changes in distance and orientation between the coupling coils. Hence, comparator- controlled power switches (active diodes) are used to replace diodes so that the rectifier could work at a lower VAC,Peak and still achieve a high voltage conversion ratio (VCR) and power conversion efficiency (PCE) [4]. In this research, we present the first fully integrated 1X/2X active rectifier in the 30mW range with all capacitors fabricated on-chip, also shown in Fig. 4.2.1. This is made possible by a switching arrangement that avoids connecting the output capacitors in series in the 2X mode. Reverse current is reduced for VAC,Peak that ranges from 1.25 to 4V by a bias current that is quasi-inversely proportional to the output DC voltage, as explained later; and efficiency is carefully measured by the insertion of a sensing resistor plus an additional capacitor to reduce distortion.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"234 1","pages":"66-67"},"PeriodicalIF":0.0,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73506226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-03-28DOI: 10.1109/ISSCC.2013.6487640
K. Chew, Zhuochao Sun, Howard Tang, L. Siek
Energy harvesting enables the remote sensors of the wireless sensor network to obtain power from the environment for their entire lifetime. For indoor remote sensors, amorphous silicon photovoltaic (PV) cell can be used to harvest energy from indoor lighting. Furthermore, if the power consumption of the sensor is low, e.g., the image sensor in [1], the power rating of the PV cell can be limited to tens or hundreds of microwatts to minimize the form factor of the sensor. However, as the output power of the PV cell varies greatly with illumination level [2] and the output voltage of the PV cell (VPV), an energy storage device, such as a battery, is required to regulate the harvester's output power. Furthermore, a DC-DC converter with a maximum power point tracker (MPPT) is needed to lock the PV cell at its maximum power point (MPP).
{"title":"A 400nW single-inductor dual-input-tri-output DC-DC buck-boost converter with maximum power point tracking for indoor photovoltaic energy harvesting","authors":"K. Chew, Zhuochao Sun, Howard Tang, L. Siek","doi":"10.1109/ISSCC.2013.6487640","DOIUrl":"https://doi.org/10.1109/ISSCC.2013.6487640","url":null,"abstract":"Energy harvesting enables the remote sensors of the wireless sensor network to obtain power from the environment for their entire lifetime. For indoor remote sensors, amorphous silicon photovoltaic (PV) cell can be used to harvest energy from indoor lighting. Furthermore, if the power consumption of the sensor is low, e.g., the image sensor in [1], the power rating of the PV cell can be limited to tens or hundreds of microwatts to minimize the form factor of the sensor. However, as the output power of the PV cell varies greatly with illumination level [2] and the output voltage of the PV cell (VPV), an energy storage device, such as a battery, is required to regulate the harvester's output power. Furthermore, a DC-DC converter with a maximum power point tracker (MPPT) is needed to lock the PV cell at its maximum power point (MPP).","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"65 1","pages":"68-69"},"PeriodicalIF":0.0,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85109170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-03-28DOI: 10.1109/ISSCC.2013.6487781
S. H. Shalmany, D. Draxelmayr, K. Makinwa
This paper presents a micropower current-sensing system (CSS) for battery monitoring, which consists of a calibrated shunt resistor, a ΔΣ ADC, and a dynamic bandgap reference (BGR). For currents ranging from 0 to 1A over the industrial temperature range (-40°C to +85°C), it exhibits 10μA offset and ±0.03% (3σ) gain error, which is a 3× improvement on systems with off-chip external references [1,2]. This level of accuracy is achieved by the use of dynamic error-correction techniques, digital temperature compensation, and an on-chip dynamic BGR, whose spread is corrected by a single room-temperature trim.
{"title":"A micropower battery current sensor with ±0.03% (3σ) inaccuracy from −40 to +85°C","authors":"S. H. Shalmany, D. Draxelmayr, K. Makinwa","doi":"10.1109/ISSCC.2013.6487781","DOIUrl":"https://doi.org/10.1109/ISSCC.2013.6487781","url":null,"abstract":"This paper presents a micropower current-sensing system (CSS) for battery monitoring, which consists of a calibrated shunt resistor, a ΔΣ ADC, and a dynamic bandgap reference (BGR). For currents ranging from 0 to 1A over the industrial temperature range (-40°C to +85°C), it exhibits 10μA offset and ±0.03% (3σ) gain error, which is a 3× improvement on systems with off-chip external references [1,2]. This level of accuracy is achieved by the use of dynamic error-correction techniques, digital temperature compensation, and an on-chip dynamic BGR, whose spread is corrected by a single room-temperature trim.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"1 1","pages":"386-387"},"PeriodicalIF":0.0,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89648977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-03-28DOI: 10.1109/ISSCC.2013.6487765
E. Mammei, E. Monaco, A. Mazzanti, F. Svelto
Signal processing in ultra-wide bandwidths is one of the key challenges in the design of multi-Gb/s wireless transceivers at mm-Waves, where channels covering 57GHz to 66GHz are specified. Further considering spreads due to process variations and the stringent reference phase noise to ensure signal integrity calls for an ultra-wide tuning range and low-noise on-chip oscillator. Meeting this target is even more challenging when adopting an ultra-scaled CMOS technology node where key passive components suffer from a reduced quality factor (Q) [1]. In a 32nm node the thickness of metals closer to the substrate is half that in a 65nm process leading, for example, to MOM capacitors with roughly half Q. The penalty is only marginally compensated by the higher transistor ft, improved only by ~20%. Various techniques exploiting alternative tuning implementations have been published recently. Magnetic tuning methods where the equivalent tank inductance is varied through reflection of the secondary coil impedance of a transformer demonstrate outstanding tuning ranges but at the cost of a severe trade-off with tank Q and poor noise FOMs [2,3]. A bank of capacitors switched in and out in an LC tank is the most popular tuning approach [4-6]. However the quality factor is severely degraded, when large ranges are involved. In this work, the switched-capacitor tank of the VCO shown in Fig. 20.3.1 is centered around two different resonance frequencies by splitting the inductor through the switch Msw. In particular, an up-shift is produced when the switch is off due to its parasitic capacitance. The frequency range is significantly increased without compromising tank Q leading to large tuning range and high FOM simultaneously. Prototypes of the VCO have been realized in 32nm CMOS showing the following performances: 31.6% frequency tuning range, minimum phase noise of -118dBc/Hz at 10MHz offset from 40GHz with 9.8mW power dissipation. Despite being realized in an ultra-scaled 32nm standard digital CMOS process without RF thick metal options, the oscillator shows state-of-the-art performances.
{"title":"A 33.6-to-46.2GHz 32nm CMOS VCO with 177.5dBc/Hz minimum noise FOM using inductor splitting for tuning extension","authors":"E. Mammei, E. Monaco, A. Mazzanti, F. Svelto","doi":"10.1109/ISSCC.2013.6487765","DOIUrl":"https://doi.org/10.1109/ISSCC.2013.6487765","url":null,"abstract":"Signal processing in ultra-wide bandwidths is one of the key challenges in the design of multi-Gb/s wireless transceivers at mm-Waves, where channels covering 57GHz to 66GHz are specified. Further considering spreads due to process variations and the stringent reference phase noise to ensure signal integrity calls for an ultra-wide tuning range and low-noise on-chip oscillator. Meeting this target is even more challenging when adopting an ultra-scaled CMOS technology node where key passive components suffer from a reduced quality factor (Q) [1]. In a 32nm node the thickness of metals closer to the substrate is half that in a 65nm process leading, for example, to MOM capacitors with roughly half Q. The penalty is only marginally compensated by the higher transistor ft, improved only by ~20%. Various techniques exploiting alternative tuning implementations have been published recently. Magnetic tuning methods where the equivalent tank inductance is varied through reflection of the secondary coil impedance of a transformer demonstrate outstanding tuning ranges but at the cost of a severe trade-off with tank Q and poor noise FOMs [2,3]. A bank of capacitors switched in and out in an LC tank is the most popular tuning approach [4-6]. However the quality factor is severely degraded, when large ranges are involved. In this work, the switched-capacitor tank of the VCO shown in Fig. 20.3.1 is centered around two different resonance frequencies by splitting the inductor through the switch Msw. In particular, an up-shift is produced when the switch is off due to its parasitic capacitance. The frequency range is significantly increased without compromising tank Q leading to large tuning range and high FOM simultaneously. Prototypes of the VCO have been realized in 32nm CMOS showing the following performances: 31.6% frequency tuning range, minimum phase noise of -118dBc/Hz at 10MHz offset from 40GHz with 9.8mW power dissipation. Despite being realized in an ultra-scaled 32nm standard digital CMOS process without RF thick metal options, the oscillator shows state-of-the-art performances.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"14 1","pages":"350-351"},"PeriodicalIF":0.0,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89115490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-03-28DOI: 10.1109/ISSCC.2013.6487819
Hyeok-Ki Hong, Hyun-Wook Kang, Barosaim Sung, Choong-Hoon Lee, Michael Choi, Hojin Park, S. Ryu
By taking advantage of the merits of the low power consumption and hardware simplicity of SAR ADCs, 2b/cycle conversion structures in SAR ADCs have been actively studied in recent years for enhanced conversion rates and excellent FoM [1-3]. However, many error sources in the 2b/cycle SAR ADCs, such as mismatches between DACs and comparators, and the signal-dependent errors from comparators, namely kickback noise and offset, make it difficult to achieve high resolution. To date, pure 2b/cycle structures operating above hundreds of MS/s have shown a somewhat limited resolution with an ENOB lower than 7 at Nyquist rates [1,2]. As a derivation of the structure, a sub-ADC could be implemented using the 2b/cycle SAR ADC structure for high resolution as in [4], at the cost of increased circuit complexity and static current flow. In this work, we present a resolution-enhancing design technique for 2b/cycle SAR ADCs with negligible hardware overhead, while relieving the requirements for the aforementioned errors: Reconfiguration from a 2b/cycle structure to a normal 1b/cycle SAR ADC with error-correction capability achieves an 8.6 ENOB from a 9b ADC.
{"title":"An 8.6 ENOB 900MS/s time-interleaved 2b/cycle SAR ADC with a 1b/cycle reconfiguration for resolution enhancement","authors":"Hyeok-Ki Hong, Hyun-Wook Kang, Barosaim Sung, Choong-Hoon Lee, Michael Choi, Hojin Park, S. Ryu","doi":"10.1109/ISSCC.2013.6487819","DOIUrl":"https://doi.org/10.1109/ISSCC.2013.6487819","url":null,"abstract":"By taking advantage of the merits of the low power consumption and hardware simplicity of SAR ADCs, 2b/cycle conversion structures in SAR ADCs have been actively studied in recent years for enhanced conversion rates and excellent FoM [1-3]. However, many error sources in the 2b/cycle SAR ADCs, such as mismatches between DACs and comparators, and the signal-dependent errors from comparators, namely kickback noise and offset, make it difficult to achieve high resolution. To date, pure 2b/cycle structures operating above hundreds of MS/s have shown a somewhat limited resolution with an ENOB lower than 7 at Nyquist rates [1,2]. As a derivation of the structure, a sub-ADC could be implemented using the 2b/cycle SAR ADC structure for high resolution as in [4], at the cost of increased circuit complexity and static current flow. In this work, we present a resolution-enhancing design technique for 2b/cycle SAR ADCs with negligible hardware overhead, while relieving the requirements for the aforementioned errors: Reconfiguration from a 2b/cycle structure to a normal 1b/cycle SAR ADC with error-correction capability achieves an 8.6 ENOB from a 9b ADC.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"1 1","pages":"470-471"},"PeriodicalIF":0.0,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88659284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-03-28DOI: 10.1109/ISSCC.2013.6487743
A. Dehennis, M. Mailand, David Grice, S. Getzlaff, Arthur E. Colvin
Remotely powered, biological-monitoring systems with a small form factor that enable long-term implantation can facilitate treatments for a variety of diseases and conditions [1,2]. This type of sensor system can also build off the standards used in near-field communications, which provide a great opportunity for communicating with battery-less sensing systems that remain dormant the majority of the time, except when activated by a host system to take measurements. This paper presents a wireless fluorimeter that enables a long-term implantable, continuous glucose-monitoring system. This work merges fluorimetry-based sensing with microsystem technology, to leverage the substantial increases in optical efficiency and provide access to applications where long-term reliability and small form factor are required [2]. Fluorescent transduction also enables full encapsulation of the electrical system, isolating it from an externally placed indicator, which needs to be in continuous equilibrium with its environment.
{"title":"A near-field-communication (NFC) enabled wireless fluorimeter for fully implantable biosensing applications","authors":"A. Dehennis, M. Mailand, David Grice, S. Getzlaff, Arthur E. Colvin","doi":"10.1109/ISSCC.2013.6487743","DOIUrl":"https://doi.org/10.1109/ISSCC.2013.6487743","url":null,"abstract":"Remotely powered, biological-monitoring systems with a small form factor that enable long-term implantation can facilitate treatments for a variety of diseases and conditions [1,2]. This type of sensor system can also build off the standards used in near-field communications, which provide a great opportunity for communicating with battery-less sensing systems that remain dormant the majority of the time, except when activated by a host system to take measurements. This paper presents a wireless fluorimeter that enables a long-term implantable, continuous glucose-monitoring system. This work merges fluorimetry-based sensing with microsystem technology, to leverage the substantial increases in optical efficiency and provide access to applications where long-term reliability and small form factor are required [2]. Fluorescent transduction also enables full encapsulation of the electrical system, isolating it from an externally placed indicator, which needs to be in continuous equilibrium with its environment.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"31 1","pages":"298-299"},"PeriodicalIF":0.0,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80885774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-03-28DOI: 10.1109/ISSCC.2013.6487812
J. V. Sinderen, G. D. Jong, Frank Leong, Xin He, M. Apostolidou, H. Kundur, R. Rutten, J. Niehof, Jos Verlinden, Hao Wang, A. Hoogstraate, K. Kwok, René Verlinden, Reinier Hoogendoorn, D. Jeurissen, Anton Salfelner, E. Bergler, Javier M. Velandia Torres, C. J. Haji-Michael, Thomas Unterweger, E. Tarvainen, Martin Posch, R. Schmidt, Markus Stattmann, J. Tyminski, P. Jean, S. Darfeuille, Olivier Aymard, A. L. Grontec, C. Boucey, C. Kelma, G. Monnerie
Wireless car keys, tire pressure sensors and wireless car diagnostic systems operate in the UHF ISM-bands using FSK/GFSK or ASK/OOK modulation with data rates between 0.5 and 200Kb/s. Recently, long-range car key applications have become popular, requiring the support of longer radio links within the boundaries of legislation and battery life. BPSK DSSS modulation allows increasing the transmitter power without violating legislation on maximum transmitted power density, but at the cost of having a non-constant RF signal envelope and a larger signal bandwidth. Unfortunately both these properties are not supported by classical narrow-band FSK/ASK transceivers.
{"title":"Wideband UHF ISM-band transceiver supporting multichannel reception and DSSS modulation","authors":"J. V. Sinderen, G. D. Jong, Frank Leong, Xin He, M. Apostolidou, H. Kundur, R. Rutten, J. Niehof, Jos Verlinden, Hao Wang, A. Hoogstraate, K. Kwok, René Verlinden, Reinier Hoogendoorn, D. Jeurissen, Anton Salfelner, E. Bergler, Javier M. Velandia Torres, C. J. Haji-Michael, Thomas Unterweger, E. Tarvainen, Martin Posch, R. Schmidt, Markus Stattmann, J. Tyminski, P. Jean, S. Darfeuille, Olivier Aymard, A. L. Grontec, C. Boucey, C. Kelma, G. Monnerie","doi":"10.1109/ISSCC.2013.6487812","DOIUrl":"https://doi.org/10.1109/ISSCC.2013.6487812","url":null,"abstract":"Wireless car keys, tire pressure sensors and wireless car diagnostic systems operate in the UHF ISM-bands using FSK/GFSK or ASK/OOK modulation with data rates between 0.5 and 200Kb/s. Recently, long-range car key applications have become popular, requiring the support of longer radio links within the boundaries of legislation and battery life. BPSK DSSS modulation allows increasing the transmitter power without violating legislation on maximum transmitted power density, but at the cost of having a non-constant RF signal envelope and a larger signal bandwidth. Unfortunately both these properties are not supported by classical narrow-band FSK/ASK transceivers.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"34 1","pages":"454-455"},"PeriodicalIF":0.0,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81218507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}