Pub Date : 2016-08-01DOI: 10.1109/NANO.2016.7751536
Zhuqing Wang, Jinhua Li, M. Kimura, T. Ono
Protein addressing in packaged multi-channels is developed for calorimetric biosensors in this research. First, we use electrodeposition method to fabricate chitosan film as the substrate on the patterned electrode surface. Second, the fabricated chitosan film was functionalized with alkyne groups for click chemistry. Thirdly, the azide-tagged protein is immobilized on the electrode by electrical signal for enzyme immobilization. The results demonstrate that the electro-click chemistry method was capable of multi-enzyme immobilization in packaged multi-channel for calorimetry biosensor of healthcare application.
{"title":"Protein addressing in packaged multi-channel by electro-click chemistry for calorimetry biosensor","authors":"Zhuqing Wang, Jinhua Li, M. Kimura, T. Ono","doi":"10.1109/NANO.2016.7751536","DOIUrl":"https://doi.org/10.1109/NANO.2016.7751536","url":null,"abstract":"Protein addressing in packaged multi-channels is developed for calorimetric biosensors in this research. First, we use electrodeposition method to fabricate chitosan film as the substrate on the patterned electrode surface. Second, the fabricated chitosan film was functionalized with alkyne groups for click chemistry. Thirdly, the azide-tagged protein is immobilized on the electrode by electrical signal for enzyme immobilization. The results demonstrate that the electro-click chemistry method was capable of multi-enzyme immobilization in packaged multi-channel for calorimetry biosensor of healthcare application.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"32 1","pages":"681-682"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87908538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.1109/NANO.2016.7751348
N. Toan, M. Toda, T. Ono
This work reports on metal assisted chemical etching (MACE) for high aspect silicon structures. Ultra-high aspect trenches and pillars of 400 and 80, respectively, have been achieved by MACE. Additionally, a cantilever fabrication based on above pillars is demonstrated by using assembly technology. The pillars are assembled onto glass substrate and fixed by conductive glue. The fabricated cantilever shows a resonance frequency of 235 kHz and a quality factor of 800.
{"title":"High aspect silicon structures using metal assisted chemical etching","authors":"N. Toan, M. Toda, T. Ono","doi":"10.1109/NANO.2016.7751348","DOIUrl":"https://doi.org/10.1109/NANO.2016.7751348","url":null,"abstract":"This work reports on metal assisted chemical etching (MACE) for high aspect silicon structures. Ultra-high aspect trenches and pillars of 400 and 80, respectively, have been achieved by MACE. Additionally, a cantilever fabrication based on above pillars is demonstrated by using assembly technology. The pillars are assembled onto glass substrate and fixed by conductive glue. The fabricated cantilever shows a resonance frequency of 235 kHz and a quality factor of 800.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"720-723"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88313576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.1109/NANO.2016.7751518
S. Dash
Summary form only given. Two-dimensional (2D) atomic crystals are considered to be very promising for nanoelectronics and spintronics applications. It provides a large class of materials proposed to be important for long distance spin transport, spin polarized tunneling and large spin-orbit coupling. Here I will discuss spintronic aspects of these 2D materials and their heterostructures. Graphene is considered to be an ideal material for spin transport due to the high mobility and long spin lifetime of the carriers. Recently, we demonstrated spin transport over distances of 16 μm and spin lifetimes up to 1.2 ns in large area CVD graphene on SiO2/Si substrate at room temperature [1]. Subsequently, using insulating h-BN as a tunnel barrier on graphene, we observe an enhancement in spin polarized tunneling [2], and its negative sign for thicker h-BN layers [3]. These signatures provide an experimental evidence of the spin filtering across the ferromagnet/hBN-graphene van der Waals heterostructures. We also employed 2D materials such as h-BN and MoS2 in ferromagnetic tunnel junctions for observation of tunnel magnetoresistance up to room temperature [4]. We further aim to address the issue of spin manipulation in graphene by employing heterostructures with other 2D semiconductors [5], topological insulators [6] and materials with novel spin textures. I will present both electronic and spintronic properties of these 2D materials and their heterostructures. These findings open a platform for exploring novel spin functionalities in 2D crystals and understanding the basic phenomenon that control their behavior.
{"title":"Spin transport in two-dimensional materials and van der Waals heterostructures","authors":"S. Dash","doi":"10.1109/NANO.2016.7751518","DOIUrl":"https://doi.org/10.1109/NANO.2016.7751518","url":null,"abstract":"Summary form only given. Two-dimensional (2D) atomic crystals are considered to be very promising for nanoelectronics and spintronics applications. It provides a large class of materials proposed to be important for long distance spin transport, spin polarized tunneling and large spin-orbit coupling. Here I will discuss spintronic aspects of these 2D materials and their heterostructures. Graphene is considered to be an ideal material for spin transport due to the high mobility and long spin lifetime of the carriers. Recently, we demonstrated spin transport over distances of 16 μm and spin lifetimes up to 1.2 ns in large area CVD graphene on SiO2/Si substrate at room temperature [1]. Subsequently, using insulating h-BN as a tunnel barrier on graphene, we observe an enhancement in spin polarized tunneling [2], and its negative sign for thicker h-BN layers [3]. These signatures provide an experimental evidence of the spin filtering across the ferromagnet/hBN-graphene van der Waals heterostructures. We also employed 2D materials such as h-BN and MoS2 in ferromagnetic tunnel junctions for observation of tunnel magnetoresistance up to room temperature [4]. We further aim to address the issue of spin manipulation in graphene by employing heterostructures with other 2D semiconductors [5], topological insulators [6] and materials with novel spin textures. I will present both electronic and spintronic properties of these 2D materials and their heterostructures. These findings open a platform for exploring novel spin functionalities in 2D crystals and understanding the basic phenomenon that control their behavior.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"25 1","pages":"986-986"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87005039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.1109/NANO.2016.7751361
S. Bai, Jingxiang Xu, Y. Higuchi, N. Ozawa, K. Adachi, S. Mori, K. Kurihara, M. Kubo
Water lubrication has been attracting attention for environment-friendly society due to low CO2 emission. Furthermore, carbon-based materials such as diamond-like carbon (DLC) show the low friction properties in water lubrication due to the oxidation reaction on the surface in pre-sliding. However, the influence of oxidation reactions on low friction mechanism is still unclear. In this study, we clarify the structure change of DLC with the oxidation reaction in the pre-sliding using first-principles calculation, which suggests the low friction mechanism of DLC in water lubrication. The results show the structure change from sp3 carbon (Csp3) to sp2 carbon (Csp2) by the oxidation reaction on the surface. Furthermore, the Csp2 rich surface in water lubrication indicates the smooth sliding. We suggest that the structure change from Csp3 to Csp2 would affect low friction properties of DLC in water lubrication.
{"title":"Computational study on low friction mechanism of diamond-like carbon induced by oxidation reaction","authors":"S. Bai, Jingxiang Xu, Y. Higuchi, N. Ozawa, K. Adachi, S. Mori, K. Kurihara, M. Kubo","doi":"10.1109/NANO.2016.7751361","DOIUrl":"https://doi.org/10.1109/NANO.2016.7751361","url":null,"abstract":"Water lubrication has been attracting attention for environment-friendly society due to low CO2 emission. Furthermore, carbon-based materials such as diamond-like carbon (DLC) show the low friction properties in water lubrication due to the oxidation reaction on the surface in pre-sliding. However, the influence of oxidation reactions on low friction mechanism is still unclear. In this study, we clarify the structure change of DLC with the oxidation reaction in the pre-sliding using first-principles calculation, which suggests the low friction mechanism of DLC in water lubrication. The results show the structure change from sp3 carbon (Csp3) to sp2 carbon (Csp2) by the oxidation reaction on the surface. Furthermore, the Csp2 rich surface in water lubrication indicates the smooth sliding. We suggest that the structure change from Csp3 to Csp2 would affect low friction properties of DLC in water lubrication.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"6 1","pages":"941-943"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86951753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.1109/NANO.2016.7751465
H. Kaji, Jin Suzuki, M. Nishizawa, Nobuhiro Nagai, T. Abe
Age-related macular degeneration (AMD) is one of the major ophthalmic diseases that cause visual impairment and blindness. Although transplantation of autologous peripheral cells has been attempted by injecting cell suspensions, limited visual improvement resulted due to the low viability of the injected cells in the subretinal tissue. We developed micropatterned polymeric nanosheets toward local delivery of retinal pigment epithelial (RPE) cells. The micropatterned nanosheet directed growth and morphogenesis of the RPE cells, and allowed for the injection of an engineered RPE monolayer through syringe needles flexibly into the subretinal space of rat eyes. Such an ultra-thin flexible carrier has the promise of a minimally invasive delivery of organized cellular structures into narrow tissue spaces.
{"title":"Injectable polymeric nanosheets for subretinal cell delivery","authors":"H. Kaji, Jin Suzuki, M. Nishizawa, Nobuhiro Nagai, T. Abe","doi":"10.1109/NANO.2016.7751465","DOIUrl":"https://doi.org/10.1109/NANO.2016.7751465","url":null,"abstract":"Age-related macular degeneration (AMD) is one of the major ophthalmic diseases that cause visual impairment and blindness. Although transplantation of autologous peripheral cells has been attempted by injecting cell suspensions, limited visual improvement resulted due to the low viability of the injected cells in the subretinal tissue. We developed micropatterned polymeric nanosheets toward local delivery of retinal pigment epithelial (RPE) cells. The micropatterned nanosheet directed growth and morphogenesis of the RPE cells, and allowed for the injection of an engineered RPE monolayer through syringe needles flexibly into the subretinal space of rat eyes. Such an ultra-thin flexible carrier has the promise of a minimally invasive delivery of organized cellular structures into narrow tissue spaces.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"12 1","pages":"267-269"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77740294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.1109/NANO.2016.7751389
K. Makasheva, B. Despax, C. Laurent, L. Millière, C. Villeneuve-Faure, C. Bonafos, A. Pugliara, R. Carles, L. Boudou, G. Teyssèdre
The proposed approach in this contribution concerns plasma deposition processes for engineering of multifunctional materials. It opens the way for transition from material level of development to system level of applications. This concept is applied for deposition of nanocomposite thin layers comprising a single layer of silver nanoparticles (AgNPs) embedded in silica-like host matrices at a controlled distance from the free surface with application in two distinguished fields, namely plasmonics to obtain large-area plasmonic embedded substrates and electrical engineering to control the charge injection in dielectrics. Structural, optical and electrical characterizations of the samples confirm the process efficiency.
{"title":"Plasma based concept for engineering of multifunctional materials with application to synthesis of large-area plasmonic substrates and to control the charge injection in dielectrics","authors":"K. Makasheva, B. Despax, C. Laurent, L. Millière, C. Villeneuve-Faure, C. Bonafos, A. Pugliara, R. Carles, L. Boudou, G. Teyssèdre","doi":"10.1109/NANO.2016.7751389","DOIUrl":"https://doi.org/10.1109/NANO.2016.7751389","url":null,"abstract":"The proposed approach in this contribution concerns plasma deposition processes for engineering of multifunctional materials. It opens the way for transition from material level of development to system level of applications. This concept is applied for deposition of nanocomposite thin layers comprising a single layer of silver nanoparticles (AgNPs) embedded in silica-like host matrices at a controlled distance from the free surface with application in two distinguished fields, namely plasmonics to obtain large-area plasmonic embedded substrates and electrical engineering to control the charge injection in dielectrics. Structural, optical and electrical characterizations of the samples confirm the process efficiency.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"69 1","pages":"8-11"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81528116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.1109/NANO.2016.7751408
Shichen Yin, Zhiyu Wang, Y. Ho, Y. Takakura, J. Delaunay
We propose a hybrid cavity-channel structure to tune optical wavelengths using narrow-band resonances. High spectral selectivity and high angular dependency of the absorptance are reported due to the resonance between propagating surface plasmon modes and channel modes. By varying the incident angle, we could adjust both the position and the amplitude of the reflectance dips thus achieving highly efficient angular optical switches.
{"title":"Angular dependent optical wavelength selection in hybrid cavity-channel structure by coupled plasmon resonance","authors":"Shichen Yin, Zhiyu Wang, Y. Ho, Y. Takakura, J. Delaunay","doi":"10.1109/NANO.2016.7751408","DOIUrl":"https://doi.org/10.1109/NANO.2016.7751408","url":null,"abstract":"We propose a hybrid cavity-channel structure to tune optical wavelengths using narrow-band resonances. High spectral selectivity and high angular dependency of the absorptance are reported due to the resonance between propagating surface plasmon modes and channel modes. By varying the incident angle, we could adjust both the position and the amplitude of the reflectance dips thus achieving highly efficient angular optical switches.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"20 1","pages":"333-336"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75994761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.1109/NANO.2016.7751430
S. Yoshida, H. Miyaguchi, T. Nakamura
In this study, we have proposed an ingestible sensor platform utilizing gastric acid battery for daily healthcare. This platform has a fundamental application to precisely measure core body temperature as one of the most useful vital signs for health check. It also has the expandability to add various biosensors such as pH, pressure sensors etc.. The architecture without a conventional battery is essential to human body safety and environmental load reduction. In addition, the size and cost are expected to be reduced. This paper reports on the feasibility study of the proposed system and key technical elements.
{"title":"Feasibility study of ingestible sensor platform powered by gastric acid battery for daily health care","authors":"S. Yoshida, H. Miyaguchi, T. Nakamura","doi":"10.1109/NANO.2016.7751430","DOIUrl":"https://doi.org/10.1109/NANO.2016.7751430","url":null,"abstract":"In this study, we have proposed an ingestible sensor platform utilizing gastric acid battery for daily healthcare. This platform has a fundamental application to precisely measure core body temperature as one of the most useful vital signs for health check. It also has the expandability to add various biosensors such as pH, pressure sensors etc.. The architecture without a conventional battery is essential to human body safety and environmental load reduction. In addition, the size and cost are expected to be reduced. This paper reports on the feasibility study of the proposed system and key technical elements.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"257 1","pages":"724-727"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76191751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.1109/NANO.2016.7751363
J. Hsu, Jheng-Hong Shih, Shu-Yu Chang, Chiang-Hsin Lin, Tzy-Rong Lin
We demonstrate dynamic modulation of a hybrid plasmonic-photonic crystal nanocavity through using monochromatic coherent acoustic phonons formed by ultrahigh-frequency surface acoustic waves to achieve strong optomechanical coupling. As a result, optical resonance wavelength shift and a large modulation bandwidth are shown at telecommunication wavelength for the hybrid nanocavity.
{"title":"Optomechanical coupling in photonic-plasmonic nanocavities with acoustic waves","authors":"J. Hsu, Jheng-Hong Shih, Shu-Yu Chang, Chiang-Hsin Lin, Tzy-Rong Lin","doi":"10.1109/NANO.2016.7751363","DOIUrl":"https://doi.org/10.1109/NANO.2016.7751363","url":null,"abstract":"We demonstrate dynamic modulation of a hybrid plasmonic-photonic crystal nanocavity through using monochromatic coherent acoustic phonons formed by ultrahigh-frequency surface acoustic waves to achieve strong optomechanical coupling. As a result, optical resonance wavelength shift and a large modulation bandwidth are shown at telecommunication wavelength for the hybrid nanocavity.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"4 1","pages":"98-100"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73194833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.1109/NANO.2016.7751375
S. Aikawa, Kohei Yamada, H. Hashimoto, H. Asoh, S. Ono
GaAs nanowires fabricated by an anodic etching have some advantages over conventional dry crystal growth and wet chemical dissolution techniques in terms of their formation. However, undesired electrical insulating behavior caused by deep interface states is observed. It is known that the interface states originate from the dissociated As atoms between GaAs core and Ga2O3 outer layer. Here, we investigated the effect of hydrogen exposure on anodically etched GaAs nanowires in liquid electrolyte in order to reduce the high density of interface states. As a result of different hydrogen exposure time, Raman spectra indicated that the longitudinal optical phonon intensities gradually decreased and slightly upshifted with increasing the electrolysis time. This means that the density of interface states was reduced by the hydrogen exposure. Based on the Raman analysis, we fabricated thin-film transistors (TFTs) using GaAs nanowires with 600 s of reverse electrolysis treatment. The TFT having nanowire random network channel showed good electrical properties (field-effect mobility: 2.3 cm2/Vs). This is comparable to TFTs using random network channel composed of other one dimensional materials.
{"title":"Hydrogen exposure effects on anodically etched GaAs nanowires in liquid electrolyte","authors":"S. Aikawa, Kohei Yamada, H. Hashimoto, H. Asoh, S. Ono","doi":"10.1109/NANO.2016.7751375","DOIUrl":"https://doi.org/10.1109/NANO.2016.7751375","url":null,"abstract":"GaAs nanowires fabricated by an anodic etching have some advantages over conventional dry crystal growth and wet chemical dissolution techniques in terms of their formation. However, undesired electrical insulating behavior caused by deep interface states is observed. It is known that the interface states originate from the dissociated As atoms between GaAs core and Ga2O3 outer layer. Here, we investigated the effect of hydrogen exposure on anodically etched GaAs nanowires in liquid electrolyte in order to reduce the high density of interface states. As a result of different hydrogen exposure time, Raman spectra indicated that the longitudinal optical phonon intensities gradually decreased and slightly upshifted with increasing the electrolysis time. This means that the density of interface states was reduced by the hydrogen exposure. Based on the Raman analysis, we fabricated thin-film transistors (TFTs) using GaAs nanowires with 600 s of reverse electrolysis treatment. The TFT having nanowire random network channel showed good electrical properties (field-effect mobility: 2.3 cm2/Vs). This is comparable to TFTs using random network channel composed of other one dimensional materials.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"8 1","pages":"70-73"},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83030215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}