首页 > 最新文献

2019 Symposium on VLSI Technology最新文献

英文 中文
Modeling of Charge Loss Mechanisms during the Short Term Retention Operation in 3-D NAND Flash Memories 三维NAND闪存短期保持过程中电荷损失机制的建模
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776579
Changbeom Woo, Myeongwon Lee, Shinkeun Kim, Jaeyeol Park, Gil-Bok Choi, M. Seo, K. Noh, Myounggon Kang, Hyungcheol Shin
Right after program, stored electrons in the shallow nitride trap level can be released less than a few seconds. By setting the delay between program and reading phase to as small as 10μs, we found that several mechanisms are mixed when stored electrons are emitted during short term retention of 3-D NAND Flash. For the first time, we have confirmed that the charge loss mechanisms consist of three mechanisms and have separated each mechanism. In particular, the vertical redistribution of electrons in the charge trap layer, observed only during short term, was analyzed for the first time. Short term retention data measured at various temperatures (25-115°C) and at several program verify levels (PV3, PV5, PV7) in solid (S/P) and checker-board patterns (C/P) were analyzed using our model. Finally, the activation energy (Ea) of each mechanism was extracted by the Arrhenius law and the magnitudes of $E_{text{a}}$ were compared.
程序完成后,储存在氮阱层的电子可以在几秒钟内释放出来。通过将程序和读取相位之间的延迟设置为10μs,我们发现在3-D NAND闪存的短期保留过程中,存储电子的发射是多种机制混合的。我们首次证实了电荷损失机制由三种机制组成,并对每种机制进行了分离。特别是,首次分析了电荷阱层中电子的垂直再分布,这一现象仅在短期内观察到。使用我们的模型分析了在固体(S/P)和棋盘模式(C/P)中不同温度(25-115°C)和几个程序验证水平(PV3, PV5, PV7)下测量的短期保留数据。最后,利用Arrhenius定律提取了各机理的活化能Ea,并比较了$E_{text{a}}$的大小。
{"title":"Modeling of Charge Loss Mechanisms during the Short Term Retention Operation in 3-D NAND Flash Memories","authors":"Changbeom Woo, Myeongwon Lee, Shinkeun Kim, Jaeyeol Park, Gil-Bok Choi, M. Seo, K. Noh, Myounggon Kang, Hyungcheol Shin","doi":"10.23919/VLSIT.2019.8776579","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776579","url":null,"abstract":"Right after program, stored electrons in the shallow nitride trap level can be released less than a few seconds. By setting the delay between program and reading phase to as small as 10μs, we found that several mechanisms are mixed when stored electrons are emitted during short term retention of 3-D NAND Flash. For the first time, we have confirmed that the charge loss mechanisms consist of three mechanisms and have separated each mechanism. In particular, the vertical redistribution of electrons in the charge trap layer, observed only during short term, was analyzed for the first time. Short term retention data measured at various temperatures (25-115°C) and at several program verify levels (PV3, PV5, PV7) in solid (S/P) and checker-board patterns (C/P) were analyzed using our model. Finally, the activation energy (Ea) of each mechanism was extracted by the Arrhenius law and the magnitudes of $E_{text{a}}$ were compared.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"3 1","pages":"T214-T215"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82500303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Energy-Efficient Edge Inference on Multi-Channel Streaming Data in 28nm HKMG FeFET Technology 28nm HKMG ffet技术中多通道流数据的高能效边缘推断
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776525
S. Dutta, W. Chakraborty, J. Gomez, K. Ni, S. Joshi, S. Datta
We present a system implementing extremely energy-efficient inference on multi-channel biomedical-sensor data. We leverage Ferroelectric FET (FeFET) to perform classification directly on analog sensor signals. We demonstrate: (i) voltage-controlled multi-domain ferroelectric polarization switching to obtain 8 distinct transconductance $(text{g}_{text{m}})$ states in a 28nm HKMG FeFET technology [1], (ii) 30x tunable range in $text{g}_{text{m}}$ over the bandwidth of interest, (iii) successful implementation of artifact removal, feature extraction and classification for seizure detection from CHB-MIT EEG dataset with 98.46% accuracy and $< 0.375/text{hr}$. false alarm rate for two patients, (iv) ultra-low energy of 47 fJ/MAC with 1,000x improvement in area compared to alternative mixed-signal MAC.
我们提出了一种对多通道生物医学传感器数据进行极节能推理的系统。我们利用铁电场效应管(FeFET)直接对模拟传感器信号进行分类。我们演示了:(i)电压控制的多域铁电极化开关在28nm HKMG FeFET技术中获得8个不同的跨导$(text{g}_{text{m}})$状态[1],(ii)在感兴趣的带宽上,$text{g}_{text{m}}$的30倍可调谐范围,(iii)成功实现了对CHB-MIT EEG数据集进行癫痫检测的伪像去除,特征提取和分类,准确率为98.46%,$< 0.375/text{hr}$。(iv) 47 fJ/MAC的超低能量,与替代混合信号MAC相比,面积提高了1000倍。
{"title":"Energy-Efficient Edge Inference on Multi-Channel Streaming Data in 28nm HKMG FeFET Technology","authors":"S. Dutta, W. Chakraborty, J. Gomez, K. Ni, S. Joshi, S. Datta","doi":"10.23919/VLSIT.2019.8776525","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776525","url":null,"abstract":"We present a system implementing extremely energy-efficient inference on multi-channel biomedical-sensor data. We leverage Ferroelectric FET (FeFET) to perform classification directly on analog sensor signals. We demonstrate: (i) voltage-controlled multi-domain ferroelectric polarization switching to obtain 8 distinct transconductance $(text{g}_{text{m}})$ states in a 28nm HKMG FeFET technology [1], (ii) 30x tunable range in $text{g}_{text{m}}$ over the bandwidth of interest, (iii) successful implementation of artifact removal, feature extraction and classification for seizure detection from CHB-MIT EEG dataset with 98.46% accuracy and $< 0.375/text{hr}$. false alarm rate for two patients, (iv) ultra-low energy of 47 fJ/MAC with 1,000x improvement in area compared to alternative mixed-signal MAC.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"12 1","pages":"T38-T39"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88362483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Towards scalable quantum computing based on silicon spin 迈向基于硅自旋的可扩展量子计算
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776562
T. Meunier, L. Hutin, B. Bertrand, Y. Thonnart, G. Pillonnet, G. Billiot, H. Jacquinot, M. Cassé, S. Barraud, Y.-J. Kim, V. Mazzocchi, A. Amisse, H. Bohuslavskyi, L. Bourdet, A. Crippa, X. Jehl, R. Maurand, Y. Niquet, M. Sanquer, B. Venitucci, B. Jadot, E. Chanrion, P. Mortemousque, C. Spence, M. Urdampilleta, S. de Franceschi, M. Vinet
Quantum computing (QC) is expected to extend the high performance computing roadmap [1]–[2] at the condition to be able to run a large number of errorless quantum operations, typically. over a billion. It is out of reach in actual physical systems because of the quantum decoherence. As a consequence, quantum error correction techniques, which utilize the idea of redundant encoding, have been introduced to cure for the errors [3]–[5]. In state-of-the-art codes, with error thresholds or fidelities around 10−2 in Si spin qubits, it is expected that logical qubits will be made out of a few thousands or more of physical qubits [6], bringing the number of required physical qubits to perform relevant quantum calculations to at least a million.
量子计算(QC)有望扩展高性能计算路线图[1]-[2],条件是能够运行大量无差错的量子运算。超过十亿。由于量子退相干的存在,这在实际物理系统中是无法实现的。因此,利用冗余编码思想的量子纠错技术被引入来解决这些错误[3]-[5]。在最先进的代码中,Si自旋量子位的错误阈值或保真度约为10−2,预计逻辑量子位将由数千个或更多的物理量子位组成[6],从而使执行相关量子计算所需的物理量子位的数量至少达到100万。
{"title":"Towards scalable quantum computing based on silicon spin","authors":"T. Meunier, L. Hutin, B. Bertrand, Y. Thonnart, G. Pillonnet, G. Billiot, H. Jacquinot, M. Cassé, S. Barraud, Y.-J. Kim, V. Mazzocchi, A. Amisse, H. Bohuslavskyi, L. Bourdet, A. Crippa, X. Jehl, R. Maurand, Y. Niquet, M. Sanquer, B. Venitucci, B. Jadot, E. Chanrion, P. Mortemousque, C. Spence, M. Urdampilleta, S. de Franceschi, M. Vinet","doi":"10.23919/VLSIT.2019.8776562","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776562","url":null,"abstract":"Quantum computing (QC) is expected to extend the high performance computing roadmap [1]–[2] at the condition to be able to run a large number of errorless quantum operations, typically. over a billion. It is out of reach in actual physical systems because of the quantum decoherence. As a consequence, quantum error correction techniques, which utilize the idea of redundant encoding, have been introduced to cure for the errors [3]–[5]. In state-of-the-art codes, with error thresholds or fidelities around 10−2 in Si spin qubits, it is expected that logical qubits will be made out of a few thousands or more of physical qubits [6], bringing the number of required physical qubits to perform relevant quantum calculations to at least a million.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"89 1","pages":"T30-T31"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78703202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Short Course 短期课程
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776574
Short Course
短期课程
{"title":"Short Course","authors":"","doi":"10.23919/VLSIT.2019.8776574","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776574","url":null,"abstract":"Short Course","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"3 1","pages":"xiv-xvi"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77656162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-thin <10nm) Dual-oxide (Al2O3/TiO2) Hybrid Device (Memory/Selector) with Extremely Low Ioff <1nA) and Ireset <1nA) for 3D Storage Class Memory 超薄<10nm)双氧化物(Al2O3/TiO2)混合器件(存储器/选择器)具有极低的Ioff <1nA)和Ireset <1nA),用于3D存储级存储器
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776527
Changhyuck Sung, Jeonghwan Song, Donguk Lee, Seokjae Lim, Myounghun Kwak, H. Hwang
We demonstrate ultra-thin ALD-processed dual-oxide (Al2O3/TiO2) hybrid device with memory and selector characteristics by engineering the stability of metal filament in Al2O3 and TiO2 layer. The optimized hybrid memory device shows outstanding performances such as low off current $(< 1text{nA})$, low reset current $(< 1text{nA})$, and high on/off ratio $(> 10^{4})$. Inserting a Ti buffer layer which has a low electrode potential value, we observed excellent uniformity and retention property. Finally, an outstanding read/write margins and ultra-low power consumption are confirmed through array simulations of the proposed hybrid memory device.
我们通过设计Al2O3和TiO2层中金属丝的稳定性,展示了具有记忆和选择特性的超薄Al2O3双氧化物(Al2O3/TiO2)混合器件。优化后的混合存储器件具有低关断电流$(< 1text{nA})$、低复位电流$(< 1text{nA})$、高开/关比$(> 10^{4})$等优异性能。插入电极电位值较低的Ti缓冲层,观察到良好的均匀性和保留性能。最后,通过阵列模拟验证了该混合存储器件具有优异的读写余量和超低功耗。
{"title":"Ultra-thin <10nm) Dual-oxide (Al2O3/TiO2) Hybrid Device (Memory/Selector) with Extremely Low Ioff <1nA) and Ireset <1nA) for 3D Storage Class Memory","authors":"Changhyuck Sung, Jeonghwan Song, Donguk Lee, Seokjae Lim, Myounghun Kwak, H. Hwang","doi":"10.23919/VLSIT.2019.8776527","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776527","url":null,"abstract":"We demonstrate ultra-thin ALD-processed dual-oxide (Al<inf>2</inf>O<inf>3</inf>/TiO<inf>2</inf>) hybrid device with memory and selector characteristics by engineering the stability of metal filament in Al<inf>2</inf>O<inf>3</inf> and TiO<inf>2</inf> layer. The optimized hybrid memory device shows outstanding performances such as low off current <tex>$(< 1text{nA})$</tex>, low reset current <tex>$(< 1text{nA})$</tex>, and high on/off ratio <tex>$(> 10^{4})$</tex>. Inserting a Ti buffer layer which has a low electrode potential value, we observed excellent uniformity and retention property. Finally, an outstanding read/write margins and ultra-low power consumption are confirmed through array simulations of the proposed hybrid memory device.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"108 1","pages":"T62-T63"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81412667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Considerations of Integrating Computing-In-Memory and Processing-In-Sensor into Convolutional Neural Network Accelerators for Low-Power Edge Devices 低功耗边缘器件卷积神经网络加速器中内存计算和传感器处理集成的思考
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776560
K. Tang, Wei-Chen Wei, Zuo-Wei Yeh, Tzu-Hsiang Hsu, Yen-Cheng Chiu, Cheng-Xin Xue, Yu-Chun Kuo, Tai-Hsing We, M. Ho, C. Lo, Ren-Shuo Liu, C. Hsieh, Meng-Fan Chang
In quest to execute emerging deep learning algorithms at edge devices, developing low-power and low-latency deep learning accelerators (DLAs) have become top priority. To achieve this goal, data processing techniques in sensor and memory utilizing the array structure have drawn much attention. Processing-in-sensor (PIS) solutions could reduce data transfer; computing-in-memory (CIM) macros could reduce memory access and intermediate data movement. We propose a new architecture to integrate PIS and CIM to realize low-power DLA. The advantages of using these techniques and the challenges from system point-of-view are discussed.
为了实现这一目标,利用阵列结构的传感器和存储器的数据处理技术引起了人们的广泛关注。传感器内处理(PIS)解决方案可以减少数据传输;内存中计算(CIM)宏可以减少内存访问和中间数据移动。我们提出了一种集成PIS和CIM的新架构,以实现低功耗DLA。从系统的角度讨论了这些技术的优点和面临的挑战。
{"title":"Considerations of Integrating Computing-In-Memory and Processing-In-Sensor into Convolutional Neural Network Accelerators for Low-Power Edge Devices","authors":"K. Tang, Wei-Chen Wei, Zuo-Wei Yeh, Tzu-Hsiang Hsu, Yen-Cheng Chiu, Cheng-Xin Xue, Yu-Chun Kuo, Tai-Hsing We, M. Ho, C. Lo, Ren-Shuo Liu, C. Hsieh, Meng-Fan Chang","doi":"10.23919/VLSIT.2019.8776560","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776560","url":null,"abstract":"In quest to execute emerging deep learning algorithms at edge devices, developing low-power and low-latency deep learning accelerators (DLAs) have become top priority. To achieve this goal, data processing techniques in sensor and memory utilizing the array structure have drawn much attention. Processing-in-sensor (PIS) solutions could reduce data transfer; computing-in-memory (CIM) macros could reduce memory access and intermediate data movement. We propose a new architecture to integrate PIS and CIM to realize low-power DLA. The advantages of using these techniques and the challenges from system point-of-view are discussed.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"33 1","pages":"T166-T167"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76094639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Integrated Power Management and Microcontroller for Ultra-Wide Power Adaptation down to nW 集成电源管理和微控制器的超宽功率自适应低至西北
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776545
Longyang Lin, Saurabh Jain, M. Alioto
This paper presents a power management unit (PMU) driving a microcontroller, and controlling a power knob that enables adaptation to the sensed power availability over an ultra-wide range, well beyond voltage scaling. Conventional battery-powered operation is augmented with pure harvesting. Wide power adaptation is enabled by comparator delay self-biasing and zero-current switching scheme shared among all power modes with single-cycle convergence.
本文介绍了一个驱动微控制器的电源管理单元(PMU),并控制一个功率旋钮,使其能够在超宽范围内适应感应功率可用性,远远超出电压缩放。传统的电池供电操作增加了纯粹的收获。通过比较器延迟自偏置和所有功率模式共享的零电流开关方案,实现了单周期收敛的宽功率自适应。
{"title":"Integrated Power Management and Microcontroller for Ultra-Wide Power Adaptation down to nW","authors":"Longyang Lin, Saurabh Jain, M. Alioto","doi":"10.23919/VLSIT.2019.8776545","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776545","url":null,"abstract":"This paper presents a power management unit (PMU) driving a microcontroller, and controlling a power knob that enables adaptation to the sensed power availability over an ultra-wide range, well beyond voltage scaling. Conventional battery-powered operation is augmented with pure harvesting. Wide power adaptation is enabled by comparator delay self-biasing and zero-current switching scheme shared among all power modes with single-cycle convergence.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"12 1","pages":"C178-C179"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88299191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A 40nm 2Mb ReRAM Macro with 85% Reduction in FORMING Time and 99% Reduction in Page-Write Time Using Auto-FORMING and Auto-Write Schemes 40nm 2Mb ReRAM宏,使用自动成形和自动写入方案,成形时间减少85%,页面写入时间减少99%
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776540
Yen-Cheng Chiu, Han-Wen Hu, Li-Ya Lai, Tsung-Yuan Huang, Hui-Yao Kao, K. Chang, M. Ho, Chung-Cheng Chou, Y. Chih, T. Chang, Meng-Fan Chang
This work proposes (1) an auto-forming (AF) scheme to shorten the macro forming time $(text{T}_{text{FM}-text{M}})$ and testing costs; (2) an auto-RESET (ARST) scheme to shorten page-RESET time $(text{T}_{text{W}-text{PAGE}-text{RST}})$ for expanding the applications of hidden-RESET operation in standby mode, and (3) an auto-SET (ASET) scheme to shorten page-write time $(text{T}_{text{W}-text{PAGE}})$ combined with hidden-RESET scheme. A fabricated 40nm 2Mb ReRAM macro achieved 85+% reduction in TFM-M, and $99+%$ reduction in $text{T}_{text{W}}-text{PAGE}$ for a page. For the first time, AF, ARST, and ASET schemes are demonstrated in silicon for ReRAM. Keywords: ReRAM, forming, page-write
本文提出(1)一种自动成形(AF)方案,以缩短宏成形时间$(text{T}_{text{FM}-text{M}})$和测试成本;(2)缩短页面重置时间的auto-RESET (ARST)方案$(text{T}_{text{W}-text{PAGE}-text{RST}})$用于扩展隐藏- reset操作在待机模式下的应用;(3)缩短页面写时间的auto-SET (ASET)方案$(text{T}_{text{W}-text{PAGE}})$结合隐藏- reset方案。制作的40nm 2Mb ReRAM宏实现了TFM-M减少85% +%,$text{T}_{text{W}}-text{PAGE}$减少99+ %$。AF、ARST和ASET方案首次在硅片上用于ReRAM。关键词:ReRAM,成形,页面写入
{"title":"A 40nm 2Mb ReRAM Macro with 85% Reduction in FORMING Time and 99% Reduction in Page-Write Time Using Auto-FORMING and Auto-Write Schemes","authors":"Yen-Cheng Chiu, Han-Wen Hu, Li-Ya Lai, Tsung-Yuan Huang, Hui-Yao Kao, K. Chang, M. Ho, Chung-Cheng Chou, Y. Chih, T. Chang, Meng-Fan Chang","doi":"10.23919/VLSIT.2019.8776540","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776540","url":null,"abstract":"This work proposes (1) an auto-forming (AF) scheme to shorten the macro forming time $(text{T}_{text{FM}-text{M}})$ and testing costs; (2) an auto-RESET (ARST) scheme to shorten page-RESET time $(text{T}_{text{W}-text{PAGE}-text{RST}})$ for expanding the applications of hidden-RESET operation in standby mode, and (3) an auto-SET (ASET) scheme to shorten page-write time $(text{T}_{text{W}-text{PAGE}})$ combined with hidden-RESET scheme. A fabricated 40nm 2Mb ReRAM macro achieved 85+% reduction in TFM-M, and $99+%$ reduction in $text{T}_{text{W}}-text{PAGE}$ for a page. For the first time, AF, ARST, and ASET schemes are demonstrated in silicon for ReRAM. Keywords: ReRAM, forming, page-write","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"58 1","pages":"T232-T233"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89165665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
3D Multi-chip Integration with System on Integrated Chips (SoIC™) 3D多芯片集成与系统集成芯片(SoIC™)
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776486
C.C. Hu, M.F. Chen, W. Chiou, Doug C. H. Yu
The electrical characterization of System on Integrated Chips (SoIC™), an innovative 3D heterogeneous integration technology manufactured in front-end of line with known-good-die is reported. Chiplets integration of devices including foundry leading edge 7nm FinFET technology with SoIC™ illustrates its advantages in high bandwidth density and high power efficiency, as compared with 2.5D and conventional 3D-IC with micro-bump/TSV.
本文报道了系统集成芯片(SoIC™)的电气特性,SoIC™是一种创新的3D异构集成技术,采用已知好的模具在生产线前端制造。与具有微凸点/TSV的2.5D和传统3D-IC相比,包括代工领先的7nm FinFET技术和SoIC™在内的器件的小片集成显示了其在高带宽密度和高功率效率方面的优势。
{"title":"3D Multi-chip Integration with System on Integrated Chips (SoIC™)","authors":"C.C. Hu, M.F. Chen, W. Chiou, Doug C. H. Yu","doi":"10.23919/VLSIT.2019.8776486","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776486","url":null,"abstract":"The electrical characterization of System on Integrated Chips (SoIC™), an innovative 3D heterogeneous integration technology manufactured in front-end of line with known-good-die is reported. Chiplets integration of devices including foundry leading edge 7nm FinFET technology with SoIC™ illustrates its advantages in high bandwidth density and high power efficiency, as compared with 2.5D and conventional 3D-IC with micro-bump/TSV.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"86 1","pages":"T20-T21"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75109116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
Application-Induced Cell Reliability Variability-Aware Approximate Computing in TaOx-based ReRAM Data Center Storage for Machine Learning 用于机器学习的基于taox的ReRAM数据中心存储的应用诱导单元可靠性可变性感知近似计算
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776565
C. Matsui, S. Fukuyama, Atsuna Hayakawa, K. Takeuchi
This paper proposes Variability-Aware Approximate Computing (V-AC) for TaOx ReRAM storage at data centers. For the first time, this paper shows that application-induced variability degrades the performance. To solve this problem, V-AC utilizes error resilience of machine learning (ML) application and reduces bit-error rate (BER) of typical cells by removing extra data copy and enlarging BER difference among cells. By combining device measurement and system emulations, this paper realizes system, circuit and device codesign (SCDCD). V-AC is key enabling technology to push the limits of performance, power, chip size and scaling of ReRAM for ML. Performance, energy and cell area of ReRAM storage improves by 7.0 times, 90% and 8.5%, respectively.
针对数据中心的TaOx ReRAM存储,提出了一种可变性感知近似计算(V-AC)方法。本文首次表明,应用引起的可变性会降低性能。为了解决这个问题,V-AC利用机器学习(ML)应用程序的错误弹性,通过去除额外的数据副本和扩大单元之间的误码率差异来降低典型单元的误码率(BER)。通过器件测量和系统仿真相结合,实现了系统、电路和器件协同设计(SCDCD)。V-AC是一项关键的使能技术,可以突破ML中ReRAM存储的性能、功耗、芯片尺寸和扩展限制。ReRAM存储的性能、能量和单元面积分别提高了7.0倍、90%和8.5%。
{"title":"Application-Induced Cell Reliability Variability-Aware Approximate Computing in TaOx-based ReRAM Data Center Storage for Machine Learning","authors":"C. Matsui, S. Fukuyama, Atsuna Hayakawa, K. Takeuchi","doi":"10.23919/VLSIT.2019.8776565","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776565","url":null,"abstract":"This paper proposes Variability-Aware Approximate Computing (V-AC) for TaOx ReRAM storage at data centers. For the first time, this paper shows that application-induced variability degrades the performance. To solve this problem, V-AC utilizes error resilience of machine learning (ML) application and reduces bit-error rate (BER) of typical cells by removing extra data copy and enlarging BER difference among cells. By combining device measurement and system emulations, this paper realizes system, circuit and device codesign (SCDCD). V-AC is key enabling technology to push the limits of performance, power, chip size and scaling of ReRAM for ML. Performance, energy and cell area of ReRAM storage improves by 7.0 times, 90% and 8.5%, respectively.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"29 1","pages":"T234-T235"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74480599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
2019 Symposium on VLSI Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1