首页 > 最新文献

2019 Symposium on VLSI Technology最新文献

英文 中文
Technology challenges and enablers to extend Cu metallization to beyond 7 nm node 将铜金属化扩展到7nm以上节点的技术挑战和推动因素
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776573
T. Nogami, H. Huang, H. Shobha, R. Patlolla, J. Kelly, C. Penny, C. Hu, D. Sil, S. DeVries, J. Lee, S. Nguyen, L. Jiang, J. Demarest, J. Li, G. Lian, M. Ali, P. Bhosale, N. Lanzillo, K. Motoyama, S. Lian, T. Standaert, G. Bonilla, D. Edelstein, B. Haran
Electromigration (EM) and TDDB reliability of Cu interconnects with a barrier/wetting layer as thin as 2 nm employing a PVD-reflowed through-Co self-forming barrier (tCoSFB) is demonstrated to meet the required specifications for 7 nm BEOL. The resulting Cu EM lifetime is 2000X longer than Cu interconnects with a standard scaled barrier/wetting layer. This tCoSFB Cu EM and TDDB reliability performance were equivalent to pure Co metal interconnects, but with a 50% lower line resistance even down to 30 nm pitch dimensions. However, the annealing process for PVD-reflow Cu seed that enhances EM reliability caused Cu agglomeration at dual damascene line-end vias, leading to poor via-chain yield. Resolving this geometry-sensitive via-fill problem was identified as key to extending Cu manufacturability to 7 nm and beyond. We propose, and show preliminary data, for Cu/tCoSFB metallization with CVD Co via pre-fill as potential solution.
采用pvd回流通过co自形成势垒(tCoSFB)的铜互连的电迁移(EM)和TDDB可靠性达到了7纳米BEOL的要求规格。由此产生的Cu EM寿命比具有标准鳞片屏障/润湿层的Cu互连长2000倍。这种tCoSFB Cu EM和TDDB的可靠性性能相当于纯钴金属互连,但即使在30nm间距尺寸下,线路电阻也降低了50%。然而,提高电磁可靠性的pvd -回流铜籽的退火工艺导致铜在双damascene线端过孔处聚集,导致过孔链产率较差。解决这种几何敏感的过孔填充问题被认为是将铜的可制造性扩展到7纳米及以上的关键。我们提出并展示了通过预填充的CVD Co作为潜在解决方案的Cu/tCoSFB金属化的初步数据。
{"title":"Technology challenges and enablers to extend Cu metallization to beyond 7 nm node","authors":"T. Nogami, H. Huang, H. Shobha, R. Patlolla, J. Kelly, C. Penny, C. Hu, D. Sil, S. DeVries, J. Lee, S. Nguyen, L. Jiang, J. Demarest, J. Li, G. Lian, M. Ali, P. Bhosale, N. Lanzillo, K. Motoyama, S. Lian, T. Standaert, G. Bonilla, D. Edelstein, B. Haran","doi":"10.23919/VLSIT.2019.8776573","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776573","url":null,"abstract":"Electromigration (EM) and TDDB reliability of Cu interconnects with a barrier/wetting layer as thin as 2 nm employing a PVD-reflowed through-Co self-forming barrier (tCoSFB) is demonstrated to meet the required specifications for 7 nm BEOL. The resulting Cu EM lifetime is 2000X longer than Cu interconnects with a standard scaled barrier/wetting layer. This tCoSFB Cu EM and TDDB reliability performance were equivalent to pure Co metal interconnects, but with a 50% lower line resistance even down to 30 nm pitch dimensions. However, the annealing process for PVD-reflow Cu seed that enhances EM reliability caused Cu agglomeration at dual damascene line-end vias, leading to poor via-chain yield. Resolving this geometry-sensitive via-fill problem was identified as key to extending Cu manufacturability to 7 nm and beyond. We propose, and show preliminary data, for Cu/tCoSFB metallization with CVD Co via pre-fill as potential solution.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"51 1","pages":"T18-T19"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73962392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Split-Gate FeFET (SG-FeFET) with Dynamic Memory Window Modulation for Non-Volatile Memory and Neuromorphic Applications 分栅ffet (sg - ffet)与动态记忆窗调制非易失性记忆和神经形态应用
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776555
V. Hu, Hung-Han Lin, Z. Zheng, Zih-Tang Lin, Yi-chun Lu, Lun-Yi Ho, Yen-Wei Lee, Cheng-Wei Su, C. Su
In this work, we propose a novel split-gate FeFET (SG-FeFET) with two separate external gates to dynamically modulate the memory window (MW) for non-volatile memory and neuromorphic applications. During read operation, only one gate is turned on to decrease the area ratio $(text{A}_{text{FE}}/text{A}_{text{IL}})$ of ferroelectric layer to insulator layer, which increases MW and read current ratio $(text{I}_{text{Read}_{-}1}/text{I}_{text{Read}_{-}0})$. During write operation (program/erase), both two gates are turned on to increase $text{A}_{text{FE}}/text{A}_{text{IL}}$, which decreases MW, thereby resulting in lower write voltage $(text{V}_{text{Write}})$. Compared to FeFET, SG-FeFET (1) Demonstrates lower $text{V}_{text{Write}}(=1.85text{V})$ and 59.5% reduction in write energy at fixed $text{I}_{text{Read}_{-}1}/text{I}_{text{Read}_{-}0};(2)$ Exhibits lower read energy (-11.3%) and higher $text{I}_{text{Read}_{-}text{1}/text{I}_{text{Read}_{-}0}}(=8.6text{E}6)$ at fixed $text{V}_{text{Write}};(3)$ Allows random access and eliminates half-select disturb; (4) Preserves higher endurance due to lower $text{V}_{text{Write}}$ and charge trapping. SG-FeFET as synaptic device also exhibits superior symmetry and linearity for potentiation and depression process.
在这项工作中,我们提出了一种新型的分栅ffet (SG-FeFET),具有两个独立的外部栅极,可以动态调制非易失性存储器和神经形态应用的记忆窗口(MW)。在读取过程中,只打开一个栅极,降低了铁电层与绝缘子层的面积比$(text{A}_{text{FE}}/text{A}_{text{IL}})$,增加了MW和读取电流比$(text{I}_{text{read}_{-}1}/text{I}_{text{read}_{-}0})$。在写操作(程序/擦除)过程中,两个门都打开以增加$text{A}_{text{FE}}/text{A}_{text{IL}}$,从而降低MW,从而导致较低的写电压$(text{V}_{text{write}})$。与FeFET相比,SG-FeFET(1)显示$text{V}_{text{Write}}(=1.85text{V})$和固定$text{I}_{text{Read}_{-}1}/text{Read}}{-}0} $的写入能量降低了59.5%;(2)$显示较低的读取能量(-11.3%)和较高的$text{I}_{text{Read}} {-}1}/text{I}} {text{Read}} {-}0}}(=8.6text{E}6)$在固定$text{V}} {text{Write}} $允许随机访问,消除半选择干扰;(4)由于低$text{V}_{text{Write}}$和电荷捕获,保持更高的续航时间。sg - ffet作为突触器件,在增强和抑制过程中也表现出良好的对称性和线性性。
{"title":"Split-Gate FeFET (SG-FeFET) with Dynamic Memory Window Modulation for Non-Volatile Memory and Neuromorphic Applications","authors":"V. Hu, Hung-Han Lin, Z. Zheng, Zih-Tang Lin, Yi-chun Lu, Lun-Yi Ho, Yen-Wei Lee, Cheng-Wei Su, C. Su","doi":"10.23919/VLSIT.2019.8776555","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776555","url":null,"abstract":"In this work, we propose a novel split-gate FeFET (SG-FeFET) with two separate external gates to dynamically modulate the memory window (MW) for non-volatile memory and neuromorphic applications. During read operation, only one gate is turned on to decrease the area ratio $(text{A}_{text{FE}}/text{A}_{text{IL}})$ of ferroelectric layer to insulator layer, which increases MW and read current ratio $(text{I}_{text{Read}_{-}1}/text{I}_{text{Read}_{-}0})$. During write operation (program/erase), both two gates are turned on to increase $text{A}_{text{FE}}/text{A}_{text{IL}}$, which decreases MW, thereby resulting in lower write voltage $(text{V}_{text{Write}})$. Compared to FeFET, SG-FeFET (1) Demonstrates lower $text{V}_{text{Write}}(=1.85text{V})$ and 59.5% reduction in write energy at fixed $text{I}_{text{Read}_{-}1}/text{I}_{text{Read}_{-}0};(2)$ Exhibits lower read energy (-11.3%) and higher $text{I}_{text{Read}_{-}text{1}/text{I}_{text{Read}_{-}0}}(=8.6text{E}6)$ at fixed $text{V}_{text{Write}};(3)$ Allows random access and eliminates half-select disturb; (4) Preserves higher endurance due to lower $text{V}_{text{Write}}$ and charge trapping. SG-FeFET as synaptic device also exhibits superior symmetry and linearity for potentiation and depression process.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"68 1","pages":"T134-T135"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82492259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Inference of Long-Short Term Memory networks at software-equivalent accuracy using 2.5M analog Phase Change Memory devices 使用2.5M模拟相变存储器器件在软件等效精度下推断长短期记忆网络
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776519
H. Tsai, S. Ambrogio, C. Mackin, P. Narayanan, R. Shelby, K. Rocki, A. Chen, G. Burr
We report accuracy for forward inference of long-short-term-memory (LSTM) networks using weights programmed into the conductances of $> 2.5text{M}$ phase-change memory (PCM) devices. We demonstrate strategies for software weight-mapping and programming of hardware analog conductances that provide accurate weight programming despite significant device variability. Inference accuracy very close to software-model baselines is achieved on several language modeling tasks.
我们报告了长短期记忆(LSTM)网络前向推理的准确性,使用将权重编程到$> 2.5text{M}$相变记忆(PCM)器件的电导中。我们演示了硬件模拟电导的软件权重映射和编程策略,这些策略可以在显著的器件可变性下提供准确的权重编程。在几个语言建模任务上,实现了非常接近软件模型基线的推理精度。
{"title":"Inference of Long-Short Term Memory networks at software-equivalent accuracy using 2.5M analog Phase Change Memory devices","authors":"H. Tsai, S. Ambrogio, C. Mackin, P. Narayanan, R. Shelby, K. Rocki, A. Chen, G. Burr","doi":"10.23919/VLSIT.2019.8776519","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776519","url":null,"abstract":"We report accuracy for forward inference of long-short-term-memory (LSTM) networks using weights programmed into the conductances of $> 2.5text{M}$ phase-change memory (PCM) devices. We demonstrate strategies for software weight-mapping and programming of hardware analog conductances that provide accurate weight programming despite significant device variability. Inference accuracy very close to software-model baselines is achieved on several language modeling tasks.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"47 31 1","pages":"T82-T83"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80623357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
Advantage of Extremely-thin Body (Tsi~3nm) Device to Boost the Memory Window for 3D NAND Flash 超薄体(Tsi~3nm)器件的优势提升3D NAND闪存的存储窗口
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776483
H. Lue, C. Hsieh, T. Hsu, W. C. Chen, C. Chen, C. Chiu, Keh-Chung Wang, Chih-Yuan Lu
The advantage of using extremely-thin body (ETB, Tsi=3nm) device has been demonstrated in a 3D NAND Flash test chip. Net P/E memory window gain of >1.3V is observed for devices using ETB poly-Si. This substantial gain can be explained by the “quantum confinement” that raises effective Si bandgap and in turn reduces the tunneling barrier height. Simulation model has been validated and it shows equivalent barrier height reduction of ~0.16eV and 0.07eV for electron and hole, respectively for Tsi=3nm. Meanwhile, the extremely-thin body poly silicon channel can improve S.S. to nearly 250mV/dec, which is close to bulk 2D Flash devices. However, the Idsat is degraded to only 160nA for Tsi=3nm, which is attributed to the larger effective mass or higher contact resistance. The degraded Idsat can be accommodated by lower Isense<30nA for page buffer circuit tuning. Random telegraph noise (RTN) is significantly reduced by extremely-thin body, and it shows tighter program-verify (PV) distribution in the MLC/TLC operation.
采用极薄体(ETB, Tsi=3nm)器件的优势已在3D NAND闪存测试芯片中得到验证。对于使用ETB多晶硅的器件,观察到净P/E存储器窗口增益为>1.3V。这种可观的增益可以用“量子约束”来解释,它提高了有效的Si带隙,从而降低了隧道势垒的高度。仿真结果表明,当Tsi=3nm时,电子和空穴的等效势垒高度分别降低了~0.16eV和0.07eV。同时,极薄的多晶硅通道可以将S.S.提高到接近250mV/dec,接近体块2D Flash器件。然而,当Tsi=3nm时,由于更大的有效质量或更高的接触电阻,Idsat仅退化到160nA。降低的Idsat可以通过较低的Isense<30nA进行页面缓冲电路调优。超薄的机身显著降低了随机电报噪声(RTN),并且在MLC/TLC操作中显示出更紧密的程序验证(PV)分布。
{"title":"Advantage of Extremely-thin Body (Tsi~3nm) Device to Boost the Memory Window for 3D NAND Flash","authors":"H. Lue, C. Hsieh, T. Hsu, W. C. Chen, C. Chen, C. Chiu, Keh-Chung Wang, Chih-Yuan Lu","doi":"10.23919/VLSIT.2019.8776483","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776483","url":null,"abstract":"The advantage of using extremely-thin body (ETB, Tsi=3nm) device has been demonstrated in a 3D NAND Flash test chip. Net P/E memory window gain of >1.3V is observed for devices using ETB poly-Si. This substantial gain can be explained by the “quantum confinement” that raises effective Si bandgap and in turn reduces the tunneling barrier height. Simulation model has been validated and it shows equivalent barrier height reduction of ~0.16eV and 0.07eV for electron and hole, respectively for Tsi=3nm. Meanwhile, the extremely-thin body poly silicon channel can improve S.S. to nearly 250mV/dec, which is close to bulk 2D Flash devices. However, the Idsat is degraded to only 160nA for Tsi=3nm, which is attributed to the larger effective mass or higher contact resistance. The degraded Idsat can be accommodated by lower Isense<30nA for page buffer circuit tuning. Random telegraph noise (RTN) is significantly reduced by extremely-thin body, and it shows tighter program-verify (PV) distribution in the MLC/TLC operation.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"31 1","pages":"T210-T211"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82525364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
7nm Mobile SoC and 5G Platform Technology and Design Co-Development for PPA and Manufacturability 7nm移动SoC和5G平台技术与设计共同开发,用于PPA和可制造性
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776511
M. Cai, Hyunwoo Park, Jackie Yang, Youseok Suh, Jun Chen, Yandong Gao, Lunwei Chang, John Zhu, S. C. Song, Jihong Choi, Gary Chen, Bo Yu, Xiao-Yong Wang, V. Huang, Gudoor Reddy, Nagaraj Kelageri, D. Kidd, P. Pénzes, W. Chung, S. Yang, S.B. Lee, B. Tien, G. Nallapati, S. Wu, P. Chidambaram
We report on Qualcomm® Snapdragon™ SDM855 mobile SoC and world's first commercial 5G platform using industry-leading 7nm FINFET technologies. SDM855 exhibits $> 30%$ CPU performance gain over the previous generation thanks to a new design architecture enabled by dual poly pitch process integration. Low voltage operation and tight spread in power consumption has been achieved through process and design co-development, delivering a high performance and low power solution for both mobile and AI applications. Extending the 7nm technology with 2nd-year process enhancement demonstrates up to 50mV CPU Vmin reduction without any change to design rules, which paves the road for an integrated 5G mobile platform with $> 10text{Gbps}$ connectivity.
我们报告高通骁龙SDM855移动SoC和全球首个商用5G平台,采用业界领先的7nm FINFET技术。由于采用双多间距工艺集成的新设计架构,SDM855的CPU性能比上一代提高了30 %。通过工艺和设计的共同开发,实现了低电压运行和功耗的紧密分布,为移动和人工智能应用提供了高性能和低功耗的解决方案。通过两年的工艺改进,扩展7nm技术可以在不改变设计规则的情况下降低高达50mV的CPU Vmin,这为具有> 10text{Gbps}$连接的集成5G移动平台铺平了道路。
{"title":"7nm Mobile SoC and 5G Platform Technology and Design Co-Development for PPA and Manufacturability","authors":"M. Cai, Hyunwoo Park, Jackie Yang, Youseok Suh, Jun Chen, Yandong Gao, Lunwei Chang, John Zhu, S. C. Song, Jihong Choi, Gary Chen, Bo Yu, Xiao-Yong Wang, V. Huang, Gudoor Reddy, Nagaraj Kelageri, D. Kidd, P. Pénzes, W. Chung, S. Yang, S.B. Lee, B. Tien, G. Nallapati, S. Wu, P. Chidambaram","doi":"10.23919/VLSIT.2019.8776511","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776511","url":null,"abstract":"We report on Qualcomm® Snapdragon™ SDM855 mobile SoC and world's first commercial 5G platform using industry-leading 7nm FINFET technologies. SDM855 exhibits $> 30%$ CPU performance gain over the previous generation thanks to a new design architecture enabled by dual poly pitch process integration. Low voltage operation and tight spread in power consumption has been achieved through process and design co-development, delivering a high performance and low power solution for both mobile and AI applications. Extending the 7nm technology with 2nd-year process enhancement demonstrates up to 50mV CPU Vmin reduction without any change to design rules, which paves the road for an integrated 5G mobile platform with $> 10text{Gbps}$ connectivity.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"40 1","pages":"T104-T105"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74797451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Extremely Compact Integrate-and-Fire STT-MRAM Neuron: A Pathway toward All-Spin Artificial Deep Neural Network 极紧凑的STT-MRAM神经元:通往全自旋人工深度神经网络的途径
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776569
Ming-Hung Wu, Ming-Chun Hong, Chih-Cheng Chang, P. Sahu, Jeng-Hua Wei, Heng-Yuan Lee, Shyh-Shyuan Shcu, T. Hou
This work reports the complete framework from device to architecture for deep learning acceleration in an all-spin artificial neural network (ANN) built by highly manufacturable STT-MRAM technology. The most compact analog integrate-and-fire neuron reported to date is developed based on the back-hopping oscillation in magnetic tunnel junctions. This novel device is unique because it performs numerous essential neural functions simultaneously, including current integration, voltage spike generation, state reset, and 4-bit precision. The device itself is also a stochastic binary synapse, and thus eases the implementation of the compact all-spin ANN with high accuracy for online training.
基于磁隧道结的回跳振荡,开发了迄今为止报道的最紧凑的模拟积分-放电神经元。这种新颖的设备是独一无二的,因为它同时执行许多基本的神经功能,包括电流集成、电压尖峰产生、状态复位和4位精度。该装置本身也是一个随机二元突触,从而简化了紧凑的全自旋神经网络的实现,具有高精度的在线训练。
{"title":"Extremely Compact Integrate-and-Fire STT-MRAM Neuron: A Pathway toward All-Spin Artificial Deep Neural Network","authors":"Ming-Hung Wu, Ming-Chun Hong, Chih-Cheng Chang, P. Sahu, Jeng-Hua Wei, Heng-Yuan Lee, Shyh-Shyuan Shcu, T. Hou","doi":"10.23919/VLSIT.2019.8776569","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776569","url":null,"abstract":"This work reports the complete framework from device to architecture for deep learning acceleration in an all-spin artificial neural network (ANN) built by highly manufacturable STT-MRAM technology. The most compact analog integrate-and-fire neuron reported to date is developed based on the back-hopping oscillation in magnetic tunnel junctions. This novel device is unique because it performs numerous essential neural functions simultaneously, including current integration, voltage spike generation, state reset, and 4-bit precision. The device itself is also a stochastic binary synapse, and thus eases the implementation of the compact all-spin ANN with high accuracy for online training.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"15 1","pages":"T34-T35"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77614543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
1 Kbit 6T SRAM Arrays in Carbon Nanotube FET CMOS 碳纳米管FET CMOS中的1kbit 6T SRAM阵列
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776563
P. Kanhaiya, C. Lau, G. Hills, M. Bishop, M. Shulaker
We experimentally demonstrate the first static random-access memory (SRAM) arrays based on carbon nanotube (CNT) field-effect transistors (CNFETs). We demonstrate full 1 Kbit 6 transistor (6T) SRAM arrays fabricated with CNFET CMOS (totalling 6,144 p-and n-type CNFETs), with all 1,024 cells functioning correctly without any per-unit customization. We demonstrate robust operation by writing and reading multiple patterns to the Kbit arrays and characterize single-cell SRAM variability (write and read margins) and repeat cycling of cells. Due to low-temperature BEOL-compatible processing, CNFET SRAM enables new opportunities for digital systems, since: (1) CNFET SRAM can be fabricated directly on top of computing logic, and (2) buried power rails (i.e., as in our demonstration where the power rails are fabricated underneath the FET) can potentially enable smaller-area SRAM layouts.
我们实验展示了基于碳纳米管场效应晶体管(cnfet)的第一个静态随机存取存储器(SRAM)阵列。我们展示了用CNFET CMOS(共6,144个p型和n型CNFET)制造的全1 Kbit 6晶体管(6T) SRAM阵列,所有1,024个单元都能正常工作,无需任何单个定制。我们通过向Kbit阵列写入和读取多个模式来展示稳健的操作,并表征单细胞SRAM可变性(写入和读取边距)和细胞的重复循环。由于低温beol兼容处理,CNFET SRAM为数字系统带来了新的机会,因为:(1)CNFET SRAM可以直接在计算逻辑上制造,(2)埋地电源轨(即,正如我们的演示中,电源轨在FET下面制造)可以实现更小面积的SRAM布局。
{"title":"1 Kbit 6T SRAM Arrays in Carbon Nanotube FET CMOS","authors":"P. Kanhaiya, C. Lau, G. Hills, M. Bishop, M. Shulaker","doi":"10.23919/VLSIT.2019.8776563","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776563","url":null,"abstract":"We experimentally demonstrate the first static random-access memory (SRAM) arrays based on carbon nanotube (CNT) field-effect transistors (CNFETs). We demonstrate full 1 Kbit 6 transistor (6T) SRAM arrays fabricated with CNFET CMOS (totalling 6,144 p-and n-type CNFETs), with all 1,024 cells functioning correctly without any per-unit customization. We demonstrate robust operation by writing and reading multiple patterns to the Kbit arrays and characterize single-cell SRAM variability (write and read margins) and repeat cycling of cells. Due to low-temperature BEOL-compatible processing, CNFET SRAM enables new opportunities for digital systems, since: (1) CNFET SRAM can be fabricated directly on top of computing logic, and (2) buried power rails (i.e., as in our demonstration where the power rails are fabricated underneath the FET) can potentially enable smaller-area SRAM layouts.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"1 1","pages":"T54-T55"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77582839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
First Demonstration of Complementary FinFETs and Tunneling FinFETs Co-Integrated on a 200 mm GeSnOI Substrate: A Pathway towards Future Hybrid Nano-electronics Systems 互补finfet和隧道finfet在200 mm GeSnOI衬底上的首次演示:通往未来混合纳米电子系统的途径
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776539
Kaizhen Han, Ying Wu, Y. Huang, Shengqiang Xu, Annie Kumar, E. Kong, Yuye Kang, Jishen Zhang, Chengkuan Wang, Haiwen Xu, Chen Sun, X. Gong
For the first time, complementary FinFETs and complementary tunneling FinFETs (TFFETs), with fin width $(W_{Fin})$ of 20 nm and fin height $(H_{{fin}})$ of 50 nm, were co-integrated on the same substrate, enabled by the formation of high-quality GeSn-on-insulator (GeSnOI) substrate with 200 mm wafer size. Decent electrical characteristics were realized for both GeSn n-and p-channel FinFETs and TFFETs. We also performed simulation studies to show the promise of the GeSnOI platform, which is not only able to suppress the off-state leakage current and improve the $I_{on}/I_{off}$ ratio of tunneling FETs, but can also provide the powerful flexibility of using a back bias to achieve superior electrical characteristics beyond the benefits of incorporating Sn into Ge.
通过形成200 mm晶圆尺寸的高质量GeSnOI衬底,首次将翅片宽度$(W_{fin})$为20 nm,翅片高度$(H_{{fin}})$为50 nm的互补finfet和互补隧道finfet (tffet)在同一衬底上共集成。GeSn n沟道和p沟道finfet以及tffet均实现了良好的电特性。我们还进行了仿真研究,以显示GeSnOI平台的前景,该平台不仅能够抑制关态泄漏电流,提高隧道fet的$ i {on}/ $ i {off}}比值,而且还可以提供强大的灵活性,使用反偏置来实现超越将Sn加入Ge的好处的优越电气特性。
{"title":"First Demonstration of Complementary FinFETs and Tunneling FinFETs Co-Integrated on a 200 mm GeSnOI Substrate: A Pathway towards Future Hybrid Nano-electronics Systems","authors":"Kaizhen Han, Ying Wu, Y. Huang, Shengqiang Xu, Annie Kumar, E. Kong, Yuye Kang, Jishen Zhang, Chengkuan Wang, Haiwen Xu, Chen Sun, X. Gong","doi":"10.23919/VLSIT.2019.8776539","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776539","url":null,"abstract":"For the first time, complementary FinFETs and complementary tunneling FinFETs (TFFETs), with fin width $(W_{Fin})$ of 20 nm and fin height $(H_{{fin}})$ of 50 nm, were co-integrated on the same substrate, enabled by the formation of high-quality GeSn-on-insulator (GeSnOI) substrate with 200 mm wafer size. Decent electrical characteristics were realized for both GeSn n-and p-channel FinFETs and TFFETs. We also performed simulation studies to show the promise of the GeSnOI platform, which is not only able to suppress the off-state leakage current and improve the $I_{on}/I_{off}$ ratio of tunneling FETs, but can also provide the powerful flexibility of using a back bias to achieve superior electrical characteristics beyond the benefits of incorporating Sn into Ge.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"74 1","pages":"T182-T183"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86916863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
In-memory Reinforcement Learning with Moderately-Stochastic Conductance Switching of Ferroelectric Tunnel Junctions 铁电隧道结中随机电导开关的记忆强化学习
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776500
R. Berdan, T. Marukame, S. Kabuyanagi, K. Ota, M. Saitoh, S. Fujii, J. Deguchi, Y. Nishi
Building compact and efficient reinforcement learning (RL) systems for mobile deployment requires departure from the von-Neumann computing architecture and embracing novel in-memory computing, and local learning paradigms. We exploit nano-scale ferroelectric tunnel junction (FTJ) memristors with inherent analogue stochastic switching arranged in selector-less crossbars to demonstrate an analogue in-memory RL system, which, via a hardware-friendly algorithm, is capable of learning behavior policies. We show that commonly undesirable stochastic conductance switching is actually, in moderation, a beneficial property which promotes policy finding via a process akin to random search. We experimentally demonstrate path-finding based on reinforcement, and solve a standard control problem of balancing a pole on a cart via simulation, outperforming similar deterministic RL systems.
为移动部署构建紧凑高效的强化学习(RL)系统需要脱离冯-诺伊曼计算架构,并采用新颖的内存计算和本地学习范式。我们利用纳米级铁电隧道结(FTJ)忆阻器,其固有的模拟随机开关布置在无选择器的横条中,以演示模拟内存RL系统,该系统通过硬件友好的算法,能够学习行为策略。我们表明,通常不受欢迎的随机电导切换实际上是一个有益的特性,它通过类似于随机搜索的过程促进策略发现。我们通过实验证明了基于强化的寻径,并通过仿真解决了平衡推车上的极点的标准控制问题,优于类似的确定性强化学习系统。
{"title":"In-memory Reinforcement Learning with Moderately-Stochastic Conductance Switching of Ferroelectric Tunnel Junctions","authors":"R. Berdan, T. Marukame, S. Kabuyanagi, K. Ota, M. Saitoh, S. Fujii, J. Deguchi, Y. Nishi","doi":"10.23919/VLSIT.2019.8776500","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776500","url":null,"abstract":"Building compact and efficient reinforcement learning (RL) systems for mobile deployment requires departure from the von-Neumann computing architecture and embracing novel in-memory computing, and local learning paradigms. We exploit nano-scale ferroelectric tunnel junction (FTJ) memristors with inherent analogue stochastic switching arranged in selector-less crossbars to demonstrate an analogue in-memory RL system, which, via a hardware-friendly algorithm, is capable of learning behavior policies. We show that commonly undesirable stochastic conductance switching is actually, in moderation, a beneficial property which promotes policy finding via a process akin to random search. We experimentally demonstrate path-finding based on reinforcement, and solve a standard control problem of balancing a pole on a cart via simulation, outperforming similar deterministic RL systems.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"35 1","pages":"T22-T23"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84221163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
A Novel Confined Nitride-Trapping Layer Device for 3D NAND Flash with Robust Retention Performances 一种具有鲁棒保留性能的三维NAND闪存受限氮捕获层器件
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776572
C. Fu, H. Lue, T. Hsu, Wei-Chen Chen, Guan-Ru Lee, C. Chiu, Keh-Chung Wang, Chih-Yuan Lu
For the first time, we've fabricated a confined nitride (SiN) trapping layer device for 3D NAND Flash and demonstrated excellent post-cycling retention performances. The key process step is to develop a uniform sidewall lateral recess in the 3D stack, followed by a SiN pull back process to isolate the SiN trapping layer in a self-aligned way. Excellent retention with only ~600mV shift of charge loss (out of initial 7V window) after 125C 1-week high-temp baking for a post 1K cycled device was obtained. It is far superior to the control sample without confined SiN structure. Arrhenius analysis at various baking temperatures shows that the retention may pass> 100 years at 60C, and is even longer at room temperature. The device has potential to meet the low-cost long-retention archive memory applications.
我们首次为3D NAND闪存制作了一个受限氮化物(SiN)捕获层器件,并展示了良好的循环后保留性能。关键的工艺步骤是在3D叠层中形成一个均匀的侧壁侧向隐窝,然后进行SiN回拉过程,以自对齐的方式隔离SiN捕获层。在125C高温烘烤1周后的1K循环器件,获得了优异的保持性能,电荷损失只有~600mV的位移(在初始7V窗口外)。其性能远优于无受限SiN结构的对照样品。在不同烘烤温度下的阿伦尼乌斯分析表明,在60℃时,其保存期可达100 ~ 100年,在室温下保存期更长。该设备具有满足低成本长保留归档内存应用的潜力。
{"title":"A Novel Confined Nitride-Trapping Layer Device for 3D NAND Flash with Robust Retention Performances","authors":"C. Fu, H. Lue, T. Hsu, Wei-Chen Chen, Guan-Ru Lee, C. Chiu, Keh-Chung Wang, Chih-Yuan Lu","doi":"10.23919/VLSIT.2019.8776572","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776572","url":null,"abstract":"For the first time, we've fabricated a confined nitride (SiN) trapping layer device for 3D NAND Flash and demonstrated excellent post-cycling retention performances. The key process step is to develop a uniform sidewall lateral recess in the 3D stack, followed by a SiN pull back process to isolate the SiN trapping layer in a self-aligned way. Excellent retention with only ~600mV shift of charge loss (out of initial 7V window) after 125C 1-week high-temp baking for a post 1K cycled device was obtained. It is far superior to the control sample without confined SiN structure. Arrhenius analysis at various baking temperatures shows that the retention may pass> 100 years at 60C, and is even longer at room temperature. The device has potential to meet the low-cost long-retention archive memory applications.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"29 1","pages":"T212-T213"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78854618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
2019 Symposium on VLSI Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1