首页 > 最新文献

2019 Symposium on VLSI Technology最新文献

英文 中文
12-EUV Layer Surrounding Gate Transistor (SGT) for Vertical 6-T SRAM: 5-nm-class Technology for Ultra-Density Logic Devices 用于垂直6-T SRAM的12 euv层围绕栅极晶体管(SGT):用于超密度逻辑器件的5纳米级技术
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776532
M. Kim, N. Harada, Y. Kikuchi, J. Boemmels, J. Mitard, T. Huynh-Bao, P. Matagne, Z. Tao, W. Li, K. Devriendt, L. Ragnarsson, C. Lorant, F. Sebaai, C. Porret, E. Rosseel, A. Dangol, D. Batuk, G. Martinez-Alanis, J. Geypen, N. Jourdan, A. Sepúlveda, H. Puliyalil, G. Jamieson, M. H. van der Veen, L. Teugels, Z. El-Mekki, E. Altamirano-Sanchez, Y. Li, H. Nakamura, D. Mocuta, F. Masuoka
For the first time, we establish a fabrication process flow of an EUV-era ultra-density 6-surrounding-gate-transistor SRAM with $0.0205 mu text{m}^{2}$ unit cell area and demonstrate nMOS surrounding-gate-transistor function. In this paper, 6-surrounding-gate-transistor SRAM design layout is shown, and the fabrication process flow and key process steps are explained in detail. NMOS functional device characteristics of surrounding-gate-transistor is analyzed.
我们首次建立了euv时代的超密度6-包围栅极SRAM的制造工艺流程,单元面积为0.0205 mu text{m}^{2}$,并演示了nMOS包围栅极晶体管的功能。本文给出了六围栅晶体管SRAM的设计版图,并对其制作工艺流程和关键工艺步骤进行了详细说明。分析了围栅晶体管的NMOS功能器件特性。
{"title":"12-EUV Layer Surrounding Gate Transistor (SGT) for Vertical 6-T SRAM: 5-nm-class Technology for Ultra-Density Logic Devices","authors":"M. Kim, N. Harada, Y. Kikuchi, J. Boemmels, J. Mitard, T. Huynh-Bao, P. Matagne, Z. Tao, W. Li, K. Devriendt, L. Ragnarsson, C. Lorant, F. Sebaai, C. Porret, E. Rosseel, A. Dangol, D. Batuk, G. Martinez-Alanis, J. Geypen, N. Jourdan, A. Sepúlveda, H. Puliyalil, G. Jamieson, M. H. van der Veen, L. Teugels, Z. El-Mekki, E. Altamirano-Sanchez, Y. Li, H. Nakamura, D. Mocuta, F. Masuoka","doi":"10.23919/VLSIT.2019.8776532","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776532","url":null,"abstract":"For the first time, we establish a fabrication process flow of an EUV-era ultra-density 6-surrounding-gate-transistor SRAM with $0.0205 mu text{m}^{2}$ unit cell area and demonstrate nMOS surrounding-gate-transistor function. In this paper, 6-surrounding-gate-transistor SRAM design layout is shown, and the fabrication process flow and key process steps are explained in detail. NMOS functional device characteristics of surrounding-gate-transistor is analyzed.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"75 1","pages":"T198-T199"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85829318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A Ternary Based Bit Scalable, 8.80 TOPS/W CNN accelerator with Many-core Processing-in-memory Architecture with 896K synapses/mm2 一个基于二进制可扩展,8.80 TOPS/W的CNN加速器,具有多核内存处理架构,具有896K突触/mm2
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776544
S. Okumura, M. Yabuuchi, K. Hijioka, Koichi Nose
A Processing-In-Memory (PIM) accelerator with ternary SRAM is proposed for low-power, large-scale deep neural network (DNN) processing. The accelerator consists of Ternary Neural Arithmetic Memory (TNAM) which is capable of bit-scalable MAC (multiply and accumulation) operation in accordance with target accuracy and power limit. An ADC less readout circuits to reduce analog-digital conversion power and a system-level variation avoidance technique utilizing features of TNAM are also proposed. A test chip with large-scale PIM is fabricated and successfully operate convolutional neural networks (CNNs) with 8.8TOPS/W and highest accuracy and area density among recent SRAM-type PIMs are obtained.
提出了一种基于三元SRAM的内存处理(PIM)加速器,用于低功耗、大规模深度神经网络(DNN)处理。该加速器由三元神经算术存储器(TNAM)组成,能够根据目标精度和功率限制进行位扩展的MAC(乘法和累加)操作。本文还提出了一种减少模数转换功率的无ADC读出电路和一种利用TNAM特性的系统级变差避免技术。制作了一个大规模PIM测试芯片,成功运行了卷积神经网络(cnn),其精度为8.8TOPS/W,是近年来sram型PIM中精度和面积密度最高的。
{"title":"A Ternary Based Bit Scalable, 8.80 TOPS/W CNN accelerator with Many-core Processing-in-memory Architecture with 896K synapses/mm2","authors":"S. Okumura, M. Yabuuchi, K. Hijioka, Koichi Nose","doi":"10.23919/VLSIT.2019.8776544","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776544","url":null,"abstract":"A Processing-In-Memory (PIM) accelerator with ternary SRAM is proposed for low-power, large-scale deep neural network (DNN) processing. The accelerator consists of Ternary Neural Arithmetic Memory (TNAM) which is capable of bit-scalable MAC (multiply and accumulation) operation in accordance with target accuracy and power limit. An ADC less readout circuits to reduce analog-digital conversion power and a system-level variation avoidance technique utilizing features of TNAM are also proposed. A test chip with large-scale PIM is fabricated and successfully operate convolutional neural networks (CNNs) with 8.8TOPS/W and highest accuracy and area density among recent SRAM-type PIMs are obtained.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"336 1","pages":"C248-C249"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86790236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
1 Kbit 6T SRAM Arrays in Carbon Nanotube FET CMOS 碳纳米管FET CMOS中的1kbit 6T SRAM阵列
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776563
P. Kanhaiya, C. Lau, G. Hills, M. Bishop, M. Shulaker
We experimentally demonstrate the first static random-access memory (SRAM) arrays based on carbon nanotube (CNT) field-effect transistors (CNFETs). We demonstrate full 1 Kbit 6 transistor (6T) SRAM arrays fabricated with CNFET CMOS (totalling 6,144 p-and n-type CNFETs), with all 1,024 cells functioning correctly without any per-unit customization. We demonstrate robust operation by writing and reading multiple patterns to the Kbit arrays and characterize single-cell SRAM variability (write and read margins) and repeat cycling of cells. Due to low-temperature BEOL-compatible processing, CNFET SRAM enables new opportunities for digital systems, since: (1) CNFET SRAM can be fabricated directly on top of computing logic, and (2) buried power rails (i.e., as in our demonstration where the power rails are fabricated underneath the FET) can potentially enable smaller-area SRAM layouts.
我们实验展示了基于碳纳米管场效应晶体管(cnfet)的第一个静态随机存取存储器(SRAM)阵列。我们展示了用CNFET CMOS(共6,144个p型和n型CNFET)制造的全1 Kbit 6晶体管(6T) SRAM阵列,所有1,024个单元都能正常工作,无需任何单个定制。我们通过向Kbit阵列写入和读取多个模式来展示稳健的操作,并表征单细胞SRAM可变性(写入和读取边距)和细胞的重复循环。由于低温beol兼容处理,CNFET SRAM为数字系统带来了新的机会,因为:(1)CNFET SRAM可以直接在计算逻辑上制造,(2)埋地电源轨(即,正如我们的演示中,电源轨在FET下面制造)可以实现更小面积的SRAM布局。
{"title":"1 Kbit 6T SRAM Arrays in Carbon Nanotube FET CMOS","authors":"P. Kanhaiya, C. Lau, G. Hills, M. Bishop, M. Shulaker","doi":"10.23919/VLSIT.2019.8776563","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776563","url":null,"abstract":"We experimentally demonstrate the first static random-access memory (SRAM) arrays based on carbon nanotube (CNT) field-effect transistors (CNFETs). We demonstrate full 1 Kbit 6 transistor (6T) SRAM arrays fabricated with CNFET CMOS (totalling 6,144 p-and n-type CNFETs), with all 1,024 cells functioning correctly without any per-unit customization. We demonstrate robust operation by writing and reading multiple patterns to the Kbit arrays and characterize single-cell SRAM variability (write and read margins) and repeat cycling of cells. Due to low-temperature BEOL-compatible processing, CNFET SRAM enables new opportunities for digital systems, since: (1) CNFET SRAM can be fabricated directly on top of computing logic, and (2) buried power rails (i.e., as in our demonstration where the power rails are fabricated underneath the FET) can potentially enable smaller-area SRAM layouts.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"1 1","pages":"T54-T55"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77582839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Extremely Compact Integrate-and-Fire STT-MRAM Neuron: A Pathway toward All-Spin Artificial Deep Neural Network 极紧凑的STT-MRAM神经元:通往全自旋人工深度神经网络的途径
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776569
Ming-Hung Wu, Ming-Chun Hong, Chih-Cheng Chang, P. Sahu, Jeng-Hua Wei, Heng-Yuan Lee, Shyh-Shyuan Shcu, T. Hou
This work reports the complete framework from device to architecture for deep learning acceleration in an all-spin artificial neural network (ANN) built by highly manufacturable STT-MRAM technology. The most compact analog integrate-and-fire neuron reported to date is developed based on the back-hopping oscillation in magnetic tunnel junctions. This novel device is unique because it performs numerous essential neural functions simultaneously, including current integration, voltage spike generation, state reset, and 4-bit precision. The device itself is also a stochastic binary synapse, and thus eases the implementation of the compact all-spin ANN with high accuracy for online training.
基于磁隧道结的回跳振荡,开发了迄今为止报道的最紧凑的模拟积分-放电神经元。这种新颖的设备是独一无二的,因为它同时执行许多基本的神经功能,包括电流集成、电压尖峰产生、状态复位和4位精度。该装置本身也是一个随机二元突触,从而简化了紧凑的全自旋神经网络的实现,具有高精度的在线训练。
{"title":"Extremely Compact Integrate-and-Fire STT-MRAM Neuron: A Pathway toward All-Spin Artificial Deep Neural Network","authors":"Ming-Hung Wu, Ming-Chun Hong, Chih-Cheng Chang, P. Sahu, Jeng-Hua Wei, Heng-Yuan Lee, Shyh-Shyuan Shcu, T. Hou","doi":"10.23919/VLSIT.2019.8776569","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776569","url":null,"abstract":"This work reports the complete framework from device to architecture for deep learning acceleration in an all-spin artificial neural network (ANN) built by highly manufacturable STT-MRAM technology. The most compact analog integrate-and-fire neuron reported to date is developed based on the back-hopping oscillation in magnetic tunnel junctions. This novel device is unique because it performs numerous essential neural functions simultaneously, including current integration, voltage spike generation, state reset, and 4-bit precision. The device itself is also a stochastic binary synapse, and thus eases the implementation of the compact all-spin ANN with high accuracy for online training.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"15 1","pages":"T34-T35"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77614543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
7nm Mobile SoC and 5G Platform Technology and Design Co-Development for PPA and Manufacturability 7nm移动SoC和5G平台技术与设计共同开发,用于PPA和可制造性
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776511
M. Cai, Hyunwoo Park, Jackie Yang, Youseok Suh, Jun Chen, Yandong Gao, Lunwei Chang, John Zhu, S. C. Song, Jihong Choi, Gary Chen, Bo Yu, Xiao-Yong Wang, V. Huang, Gudoor Reddy, Nagaraj Kelageri, D. Kidd, P. Pénzes, W. Chung, S. Yang, S.B. Lee, B. Tien, G. Nallapati, S. Wu, P. Chidambaram
We report on Qualcomm® Snapdragon™ SDM855 mobile SoC and world's first commercial 5G platform using industry-leading 7nm FINFET technologies. SDM855 exhibits $> 30%$ CPU performance gain over the previous generation thanks to a new design architecture enabled by dual poly pitch process integration. Low voltage operation and tight spread in power consumption has been achieved through process and design co-development, delivering a high performance and low power solution for both mobile and AI applications. Extending the 7nm technology with 2nd-year process enhancement demonstrates up to 50mV CPU Vmin reduction without any change to design rules, which paves the road for an integrated 5G mobile platform with $> 10text{Gbps}$ connectivity.
我们报告高通骁龙SDM855移动SoC和全球首个商用5G平台,采用业界领先的7nm FINFET技术。由于采用双多间距工艺集成的新设计架构,SDM855的CPU性能比上一代提高了30 %。通过工艺和设计的共同开发,实现了低电压运行和功耗的紧密分布,为移动和人工智能应用提供了高性能和低功耗的解决方案。通过两年的工艺改进,扩展7nm技术可以在不改变设计规则的情况下降低高达50mV的CPU Vmin,这为具有> 10text{Gbps}$连接的集成5G移动平台铺平了道路。
{"title":"7nm Mobile SoC and 5G Platform Technology and Design Co-Development for PPA and Manufacturability","authors":"M. Cai, Hyunwoo Park, Jackie Yang, Youseok Suh, Jun Chen, Yandong Gao, Lunwei Chang, John Zhu, S. C. Song, Jihong Choi, Gary Chen, Bo Yu, Xiao-Yong Wang, V. Huang, Gudoor Reddy, Nagaraj Kelageri, D. Kidd, P. Pénzes, W. Chung, S. Yang, S.B. Lee, B. Tien, G. Nallapati, S. Wu, P. Chidambaram","doi":"10.23919/VLSIT.2019.8776511","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776511","url":null,"abstract":"We report on Qualcomm® Snapdragon™ SDM855 mobile SoC and world's first commercial 5G platform using industry-leading 7nm FINFET technologies. SDM855 exhibits $> 30%$ CPU performance gain over the previous generation thanks to a new design architecture enabled by dual poly pitch process integration. Low voltage operation and tight spread in power consumption has been achieved through process and design co-development, delivering a high performance and low power solution for both mobile and AI applications. Extending the 7nm technology with 2nd-year process enhancement demonstrates up to 50mV CPU Vmin reduction without any change to design rules, which paves the road for an integrated 5G mobile platform with $> 10text{Gbps}$ connectivity.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"40 1","pages":"T104-T105"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74797451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Device-, Circuit- & Block-level evaluation of CFET in a 4 track library 器件级、电路级和块级的四磁道库中CFET的评估
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776513
P. Schuddinck, O. Zografos, P. Weckx, P. Matagne, S. Sarkar, Y. Sherazi, R. Baert, D. Jang, D. Yakimets, A. Gupta, B. Parvais, J. Ryckaert, D. Verkest, A. Mocuta
The structure of the complementary FET (CFET) with NMOS stacked on top of PMOS, inherently yields standard cells and SRAM cells with 25% smaller layout area, 25% higher pin density and 2x higher routing flexibility than FinFET with same overall active footprint. Moreover, our work, based on advanced modelling, demonstrates that 4 track CFET can match and even outperform 5 track FinFET; without the need to lower S/D contact resistivity down to $5text{e}-10Omega.text{cm}^{2}$ or to elevate the channel stress up to 2GPa. All gains in power-performance-area at circuit-level are maintained at block-level, making 4 track CFET a suitable candidate for N3 & N2 technologies. Keywords: CFET, scaling, S/D engineering, Pi-gate.
互补FET (cet)的结构是NMOS堆叠在PMOS之上,固有地产生标准单元和SRAM单元,其布局面积比FinFET小25%,引脚密度高25%,布线灵活性高2倍,但总体有源占地面积相同。此外,基于先进的建模,我们的工作表明,4磁道CFET可以匹配甚至优于5磁道FinFET;无需将S/D接触电阻率降低到$5text{e}-10Omega。text{cm}^{2}$或将通道应力提高到2GPa。电路级功率性能区域的所有增益都保持在块级,使4磁道CFET成为N3和N2技术的合适候选人。关键词:CFET,缩放,S/D工程,pi栅极
{"title":"Device-, Circuit- & Block-level evaluation of CFET in a 4 track library","authors":"P. Schuddinck, O. Zografos, P. Weckx, P. Matagne, S. Sarkar, Y. Sherazi, R. Baert, D. Jang, D. Yakimets, A. Gupta, B. Parvais, J. Ryckaert, D. Verkest, A. Mocuta","doi":"10.23919/VLSIT.2019.8776513","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776513","url":null,"abstract":"The structure of the complementary FET (CFET) with NMOS stacked on top of PMOS, inherently yields standard cells and SRAM cells with 25% smaller layout area, 25% higher pin density and 2x higher routing flexibility than FinFET with same overall active footprint. Moreover, our work, based on advanced modelling, demonstrates that 4 track CFET can match and even outperform 5 track FinFET; without the need to lower S/D contact resistivity down to $5text{e}-10Omega.text{cm}^{2}$ or to elevate the channel stress up to 2GPa. All gains in power-performance-area at circuit-level are maintained at block-level, making 4 track CFET a suitable candidate for N3 & N2 technologies. Keywords: CFET, scaling, S/D engineering, Pi-gate.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"38 1","pages":"T204-T205"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91038183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
GaN HEMTs with Breakdown Voltage of 2200 V Realized on a 200 mm GaN-on-Insulator(GNOI)-on-Si Wafer 在200 mm的绝缘体上氮化镓硅片上实现了击穿电压为2200 V的氮化镓hemt
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776522
Zhihong Liu, Hanlin Xie, K. Lee, C. S. Tan, G. Ng, E. Fitzgerald
GaN-on-Si has revealed its great potential for next-generation power electronics applications, however, there remains a challenge in increasing the breakdown voltage $(BV_{text{off}})$ due to the limit of the GaN epilayer thickness on large size wafers. In this work we propose a GaN-on-Insulator (GNOI)-on-Si structure to address this issue. A 200 mm GNOI-on-Si wafer was prepared through removing the original Si substrate of a GaN-on-Si wafer and bonding onto a fresh SiO2/Si substrate. HEMTs were fabricated with measured $BV_{text{off}}$ much larger than those on GaN-on-Si. Record high $BV text{off}$ up to 2200 V and high figure-of-merit (FOM) $BV_{off^2}/R_{text{on, sp}}$ up to 1.87 GW/cm2 have been achieved in the HEMTs on a 200 mm GNOI-on-Si wafer with a thin GaN epilayer of $3.2 {mu m}$.
GaN-on- si已显示出其在下一代电力电子应用中的巨大潜力,然而,由于大尺寸晶圆上GaN涂层厚度的限制,在提高击穿电压(BV_{text{off}})方面仍然存在挑战。在这项工作中,我们提出了一种GaN-on-Insulator (GNOI)-on-Si结构来解决这个问题。通过去除GaN-on-Si晶片的原始Si衬底并粘合到新的SiO2/Si衬底上,制备了200 mm的gni -on-Si晶片。测量到的$BV_{text{off}}$要比GaN-on-Si上的hemt大得多。在200 mm的gni -on- si晶片上,具有3.2 { μ m}$的薄GaN涂层的hemt实现了创纪录的高达2200 V的$BV text{off}$和高达1.87 GW/cm2的高品质因数(FOM) $BV_{off^2}/R_{text{on, sp}}$。
{"title":"GaN HEMTs with Breakdown Voltage of 2200 V Realized on a 200 mm GaN-on-Insulator(GNOI)-on-Si Wafer","authors":"Zhihong Liu, Hanlin Xie, K. Lee, C. S. Tan, G. Ng, E. Fitzgerald","doi":"10.23919/VLSIT.2019.8776522","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776522","url":null,"abstract":"GaN-on-Si has revealed its great potential for next-generation power electronics applications, however, there remains a challenge in increasing the breakdown voltage $(BV_{text{off}})$ due to the limit of the GaN epilayer thickness on large size wafers. In this work we propose a GaN-on-Insulator (GNOI)-on-Si structure to address this issue. A 200 mm GNOI-on-Si wafer was prepared through removing the original Si substrate of a GaN-on-Si wafer and bonding onto a fresh SiO2/Si substrate. HEMTs were fabricated with measured $BV_{text{off}}$ much larger than those on GaN-on-Si. Record high $BV text{off}$ up to 2200 V and high figure-of-merit (FOM) $BV_{off^2}/R_{text{on, sp}}$ up to 1.87 GW/cm2 have been achieved in the HEMTs on a 200 mm GNOI-on-Si wafer with a thin GaN epilayer of $3.2 {mu m}$.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"47 1","pages":"T242-T243"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88314157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Monolithic 3D+ -IC based Reconfigurable Compute-in-Memory SRAM Macro 基于单片3D+ ic的可重构内存计算SRAM宏
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776506
S. Srinivasa, Yung-Ning Tu, Xin Si, Cheng-Xin Xue, Chun-Ying Lee, F. Hsueh, Chane-Hone Shen, J. Shieh, W. Yeh, A. Ramanathan, M. Ho, J. Sampson, Meng-Fan Chang, V. Narayanan
This paper presents the first monolithic 3D two-layer reconfigurable SRAM macro capable of executing multiple Compute-in-Memory (CiM) tasks as part of data readout. Fabricated using low cost FinFET based 3D+-IC, the SRAM offers concurrent data read from both layers and write from layer 2 with 0.4V $text{V}_{text{dd}min}$ 12.8x improved computation latency is achieved as compared to near memory computation of successive Boolean operations.
本文提出了第一个单片3D双层可重构SRAM宏,能够执行多个内存中计算(CiM)任务作为数据读出的一部分。SRAM采用低成本的基于FinFET的3D+-IC制造,提供从两层读取并发数据和从第二层写入数据的速度为0.4V $text{V}_{text{dd}min}$与连续布尔运算的近内存计算相比,计算延迟提高了12.8倍。
{"title":"Monolithic 3D+ -IC based Reconfigurable Compute-in-Memory SRAM Macro","authors":"S. Srinivasa, Yung-Ning Tu, Xin Si, Cheng-Xin Xue, Chun-Ying Lee, F. Hsueh, Chane-Hone Shen, J. Shieh, W. Yeh, A. Ramanathan, M. Ho, J. Sampson, Meng-Fan Chang, V. Narayanan","doi":"10.23919/VLSIT.2019.8776506","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776506","url":null,"abstract":"This paper presents the first monolithic 3D two-layer reconfigurable SRAM macro capable of executing multiple Compute-in-Memory (CiM) tasks as part of data readout. Fabricated using low cost FinFET based 3D+-IC, the SRAM offers concurrent data read from both layers and write from layer 2 with 0.4V $text{V}_{text{dd}min}$ 12.8x improved computation latency is achieved as compared to near memory computation of successive Boolean operations.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"103 1","pages":"T32-T33"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80297739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
First Demonstration of Complementary FinFETs and Tunneling FinFETs Co-Integrated on a 200 mm GeSnOI Substrate: A Pathway towards Future Hybrid Nano-electronics Systems 互补finfet和隧道finfet在200 mm GeSnOI衬底上的首次演示:通往未来混合纳米电子系统的途径
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776539
Kaizhen Han, Ying Wu, Y. Huang, Shengqiang Xu, Annie Kumar, E. Kong, Yuye Kang, Jishen Zhang, Chengkuan Wang, Haiwen Xu, Chen Sun, X. Gong
For the first time, complementary FinFETs and complementary tunneling FinFETs (TFFETs), with fin width $(W_{Fin})$ of 20 nm and fin height $(H_{{fin}})$ of 50 nm, were co-integrated on the same substrate, enabled by the formation of high-quality GeSn-on-insulator (GeSnOI) substrate with 200 mm wafer size. Decent electrical characteristics were realized for both GeSn n-and p-channel FinFETs and TFFETs. We also performed simulation studies to show the promise of the GeSnOI platform, which is not only able to suppress the off-state leakage current and improve the $I_{on}/I_{off}$ ratio of tunneling FETs, but can also provide the powerful flexibility of using a back bias to achieve superior electrical characteristics beyond the benefits of incorporating Sn into Ge.
通过形成200 mm晶圆尺寸的高质量GeSnOI衬底,首次将翅片宽度$(W_{fin})$为20 nm,翅片高度$(H_{{fin}})$为50 nm的互补finfet和互补隧道finfet (tffet)在同一衬底上共集成。GeSn n沟道和p沟道finfet以及tffet均实现了良好的电特性。我们还进行了仿真研究,以显示GeSnOI平台的前景,该平台不仅能够抑制关态泄漏电流,提高隧道fet的$ i {on}/ $ i {off}}比值,而且还可以提供强大的灵活性,使用反偏置来实现超越将Sn加入Ge的好处的优越电气特性。
{"title":"First Demonstration of Complementary FinFETs and Tunneling FinFETs Co-Integrated on a 200 mm GeSnOI Substrate: A Pathway towards Future Hybrid Nano-electronics Systems","authors":"Kaizhen Han, Ying Wu, Y. Huang, Shengqiang Xu, Annie Kumar, E. Kong, Yuye Kang, Jishen Zhang, Chengkuan Wang, Haiwen Xu, Chen Sun, X. Gong","doi":"10.23919/VLSIT.2019.8776539","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776539","url":null,"abstract":"For the first time, complementary FinFETs and complementary tunneling FinFETs (TFFETs), with fin width $(W_{Fin})$ of 20 nm and fin height $(H_{{fin}})$ of 50 nm, were co-integrated on the same substrate, enabled by the formation of high-quality GeSn-on-insulator (GeSnOI) substrate with 200 mm wafer size. Decent electrical characteristics were realized for both GeSn n-and p-channel FinFETs and TFFETs. We also performed simulation studies to show the promise of the GeSnOI platform, which is not only able to suppress the off-state leakage current and improve the $I_{on}/I_{off}$ ratio of tunneling FETs, but can also provide the powerful flexibility of using a back bias to achieve superior electrical characteristics beyond the benefits of incorporating Sn into Ge.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"74 1","pages":"T182-T183"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86916863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Biologically Plausible Ferroelectric Quasi-Leaky Integrate and Fire Neuron 生物学上似是而非的铁电准漏积分与放电神经元
Pub Date : 2019-06-09 DOI: 10.23919/VLSIT.2019.8776487
S. Dutta, A. Saha, P. Panda, W. Chakraborty, J. Gomez, A. Khanna, S. Gupta, K. Roy, S. Datta
Biologically plausible mechanism like homeostasis compliments Hebbian learning to allow unsupervised learning in spiking neural networks [1]. In this work, we propose a novel ferroelectric-based quasi-LIF neuron that induces intrinsic homeostasis. We experimentally characterize and perform phase-field simulations to delineate the non-trivial transient polarization relaxation mechanism associated with multi-domain interaction in poly-crystalline ferroelectric, such as Zr doped $text{HfO}_{2}$, that underlines the Q-LIF behavior. Network level simulations with the Q-LIF neuron model exhibits a 2.3x reduction in firing rate compared to traditional LIF neuron while maintaining iso-accuracy of 84-85% across varying network sizes. Such an energy-efficient hardware for spiking neuron can enable ultra-low power data processing in energy constrained environments suitable for edge-intelligence.
生物学上似是而非的机制,如内稳态,使赫比式学习得以在尖峰神经网络中实现无监督学习。在这项工作中,我们提出了一种新的基于铁电的准lif神经元,可以诱导内在稳态。我们通过实验表征并进行相场模拟来描述多晶铁电中与多畴相互作用相关的非平凡瞬态极化弛豫机制,例如Zr掺杂$text{HfO}_{2}$,强调Q-LIF行为。使用Q-LIF神经元模型进行的网络级模拟显示,与传统的LIF神经元相比,放电率降低了2.3倍,同时在不同网络大小的情况下保持84-85%的等精度。这种高效能的尖峰神经元硬件可以在能量受限的环境中实现适合边缘智能的超低功耗数据处理。
{"title":"Biologically Plausible Ferroelectric Quasi-Leaky Integrate and Fire Neuron","authors":"S. Dutta, A. Saha, P. Panda, W. Chakraborty, J. Gomez, A. Khanna, S. Gupta, K. Roy, S. Datta","doi":"10.23919/VLSIT.2019.8776487","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776487","url":null,"abstract":"Biologically plausible mechanism like homeostasis compliments Hebbian learning to allow unsupervised learning in spiking neural networks [1]. In this work, we propose a novel ferroelectric-based quasi-LIF neuron that induces intrinsic homeostasis. We experimentally characterize and perform phase-field simulations to delineate the non-trivial transient polarization relaxation mechanism associated with multi-domain interaction in poly-crystalline ferroelectric, such as Zr doped $text{HfO}_{2}$, that underlines the Q-LIF behavior. Network level simulations with the Q-LIF neuron model exhibits a 2.3x reduction in firing rate compared to traditional LIF neuron while maintaining iso-accuracy of 84-85% across varying network sizes. Such an energy-efficient hardware for spiking neuron can enable ultra-low power data processing in energy constrained environments suitable for edge-intelligence.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"6 1","pages":"T140-T141"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88010137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
期刊
2019 Symposium on VLSI Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1