首页 > 最新文献

2019 Symposium on VLSI Technology最新文献

英文 中文
Ag Ionic Memory Cell Technology for Terabit-Scale High-Density Application 太比特级高密度应用银离子存储电池技术
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776568
S. Fujii, R. Ichihara, T. Konno, M. Yamaguchi, Harumi Seki, Hiroki Tanaka, Dandan Zhao, Y. Yoshimura, M. Saitoh, M. Koyama
We demonstrated a cross-point memory array composed of 40nm Ag ionic memory cell with $text{sub}-mu text{A}$ and selectorless operation and 10-year data retention, making it a promising candidate for terabit-scale high-density memory application. Discontinuous conductive path with large and dense Ag clusters enabled 10-year retention even at sub-μA current with keeping high non-linearity in I-V. We implemented, for the first time, the improved cell into a 40nm cross-point array and demonstrated narrow read distribution which satisfies requirements for reliable array operation.
我们展示了一种由$text{sub}-mu text{a}$、无选择器操作和10年数据保留组成的40nm Ag离子存储单元组成的交叉点存储阵列,使其成为太比特级高密度存储应用的有希望的候选人。具有大而致密的银团簇的不连续导电路径即使在亚μ a电流下也能保持10年,并且在I-V电压下保持高非线性。我们首次将改进的cell实现为40nm的交叉点阵列,并证明了狭窄的读取分布,满足了阵列可靠运行的要求。
{"title":"Ag Ionic Memory Cell Technology for Terabit-Scale High-Density Application","authors":"S. Fujii, R. Ichihara, T. Konno, M. Yamaguchi, Harumi Seki, Hiroki Tanaka, Dandan Zhao, Y. Yoshimura, M. Saitoh, M. Koyama","doi":"10.23919/VLSIT.2019.8776568","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776568","url":null,"abstract":"We demonstrated a cross-point memory array composed of 40nm Ag ionic memory cell with $text{sub}-mu text{A}$ and selectorless operation and 10-year data retention, making it a promising candidate for terabit-scale high-density memory application. Discontinuous conductive path with large and dense Ag clusters enabled 10-year retention even at sub-μA current with keeping high non-linearity in I-V. We implemented, for the first time, the improved cell into a 40nm cross-point array and demonstrated narrow read distribution which satisfies requirements for reliable array operation.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"15 1","pages":"T188-T189"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80033637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Fin Bending Mitigation and Local Layout Effect Alleviation in Advanced FinFET Technology through Material Engineering and Metrology Optimization 基于材料工程和计量优化的先进FinFET技术中翅片弯曲缓解和局部布局效应缓解
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776517
T. Wen, B. Colombeau, C.l. Li, S. Liu, B. Guo, H. Meer, M. Hou, B. Yang, H.C. Feng, C. Hsu, C.C. Huang, Y. Tasi, H.P. Chen, S. Huang, C.W. Huang, C. Chen, J. Lin, K. Shim, J. Kuo, S. Lee, L. Holcman, K. Nafisr, J. Fernandez, D. Fung, N. H. Yang, J.Y. Wu, G. Hung
In advanced FinFET devices, STI gap fill and $vert text{LD}_{0}$ stress are responsible for fin defects, fin bending as well as device performance degradations due to the local layout effect (LLE). In this paper, for the first time, we look at different ways to modulate the stress from the Flowable CVD (FCVD) films either by additional UV treatment and/or ion beam treatment (hot Helium implantation). By leveraging in-line e-beam metrology capabilities of PROVision™ for massive measurements of critical dimensions (CDs), the process impact on fin spacing and LLEs are characterized and analyzed. Significant improvement for LLE is observed for nFET device which correlates to fin bending improvement. In addition, ~5% drive current gain for pFET is observed after $text{ILD}_{0}$ stress optimization.
在先进的FinFET器件中,STI间隙填充和$vert text{LD}_{0}$应力是导致翅片缺陷、翅片弯曲以及由于局部布局效应(LLE)导致的器件性能下降的原因。在本文中,我们首次研究了通过额外的紫外处理和/或离子束处理(热氦注入)来调节可流动CVD (FCVD)薄膜应力的不同方法。通过利用PROVision™的在线电子束测量功能对关键尺寸(cd)进行大规模测量,表征和分析了工艺对翅片间距和lle的影响。我们观察到,nFET器件的LLE有显著的改善,这与翅片弯曲的改善有关。此外,经过$text{ILD}_{0}$应力优化后,fet的驱动电流增益可达~5%。
{"title":"Fin Bending Mitigation and Local Layout Effect Alleviation in Advanced FinFET Technology through Material Engineering and Metrology Optimization","authors":"T. Wen, B. Colombeau, C.l. Li, S. Liu, B. Guo, H. Meer, M. Hou, B. Yang, H.C. Feng, C. Hsu, C.C. Huang, Y. Tasi, H.P. Chen, S. Huang, C.W. Huang, C. Chen, J. Lin, K. Shim, J. Kuo, S. Lee, L. Holcman, K. Nafisr, J. Fernandez, D. Fung, N. H. Yang, J.Y. Wu, G. Hung","doi":"10.23919/VLSIT.2019.8776517","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776517","url":null,"abstract":"In advanced FinFET devices, STI gap fill and $vert text{LD}_{0}$ stress are responsible for fin defects, fin bending as well as device performance degradations due to the local layout effect (LLE). In this paper, for the first time, we look at different ways to modulate the stress from the Flowable CVD (FCVD) films either by additional UV treatment and/or ion beam treatment (hot Helium implantation). By leveraging in-line e-beam metrology capabilities of PROVision™ for massive measurements of critical dimensions (CDs), the process impact on fin spacing and LLEs are characterized and analyzed. Significant improvement for LLE is observed for nFET device which correlates to fin bending improvement. In addition, ~5% drive current gain for pFET is observed after $text{ILD}_{0}$ stress optimization.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"33 1","pages":"T110-T111"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74110014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Gait identification using stochastic OXRRAM-based time sequence machine learning 基于随机oxrram时间序列机器学习的步态识别
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776571
R. Degraeve, J. Doevenspeck, A. Fantini, P. Debacker, D. Linten, D. Verkest
The way a person walks, i.e. his/her gait, can be as unique as a fingerprint. With portable accelerometers and/or gyroscopes available in present-day smartphones, gait verification and identification can be exploited for low-level security [1]. Achieving this requires machine learning of a time sequence.
一个人走路的方式,也就是他/她的步态,可以像指纹一样独一无二。随着便携式加速度计和/或陀螺仪在当今的智能手机中可用,步态验证和识别可以用于低级安全[1]。要做到这一点,需要对时间序列进行机器学习。
{"title":"Gait identification using stochastic OXRRAM-based time sequence machine learning","authors":"R. Degraeve, J. Doevenspeck, A. Fantini, P. Debacker, D. Linten, D. Verkest","doi":"10.23919/VLSIT.2019.8776571","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776571","url":null,"abstract":"The way a person walks, i.e. his/her gait, can be as unique as a fingerprint. With portable accelerometers and/or gyroscopes available in present-day smartphones, gait verification and identification can be exploited for low-level security [1]. Achieving this requires machine learning of a time sequence.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"10 1","pages":"T84-T85"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87435316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A 7.3 M Output Non-Zeros/J Sparse Matrix-Matrix Multiplication Accelerator using Memory Reconfiguration in 40 nm 基于40 nm内存重构的7.3 M输出非零/J稀疏矩阵-矩阵乘法加速器
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776507
S. Pal, Dong-hyeon Park, Siying Feng, Paul Gao, Jielun Tan, A. Rovinski, Shaolin Xie, Chun Zhao, Aporva Amarnath, Tim Wesley, Jonathan Beaumont, Kuan-Yu Chen, C. Chakrabarti, M. Taylor, T. Mudge, D. Blaauw, Hun-Seok Kim, R. Dreslinski
A Sparse Matrix-Matrix multiplication (SpMM) accelerator with 48 heterogeneous cores and a reconfigurable memory hierarchy is fabricated in 40 nm CMOS. On-chip memories are reconfigured as scratchpad or cache and interconnected with synthesizable coalescing crossbars for efficient memory access in each phase of the algorithm. The $2.0 text{mm}times 2.6 text{mm}$ chip exhibits $12.6times(8.4times)$ energy efficiency gain, $11.7times(77.6times)$ off-chip bandwidth efficiency gain and $17.1times(36.9times)$ compute density gain against a high-end CPU (GPU) across a diverse set of synthetic and real-world power-law graph based sparse matrices.
采用40 nm CMOS工艺,研制了具有48个异构核和可重构存储器结构的稀疏矩阵-矩阵乘法(SpMM)加速器。片上存储器被重新配置为刮擦板或缓存,并与可合成的聚结交叉条互连,以便在算法的每个阶段有效地访问存储器。$2.0 text{mm}times 2.6 text{mm}$芯片显示出$12.6倍(8.4倍)$能源效率增益,$11.7倍(77.6倍)$片外带宽效率增益和$17.1倍(36.9倍)$计算密度增益,与高端CPU (GPU)相比,跨一组不同的合成和基于真实世界幂律图的稀疏矩阵。
{"title":"A 7.3 M Output Non-Zeros/J Sparse Matrix-Matrix Multiplication Accelerator using Memory Reconfiguration in 40 nm","authors":"S. Pal, Dong-hyeon Park, Siying Feng, Paul Gao, Jielun Tan, A. Rovinski, Shaolin Xie, Chun Zhao, Aporva Amarnath, Tim Wesley, Jonathan Beaumont, Kuan-Yu Chen, C. Chakrabarti, M. Taylor, T. Mudge, D. Blaauw, Hun-Seok Kim, R. Dreslinski","doi":"10.23919/VLSIT.2019.8776507","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776507","url":null,"abstract":"A Sparse Matrix-Matrix multiplication (SpMM) accelerator with 48 heterogeneous cores and a reconfigurable memory hierarchy is fabricated in 40 nm CMOS. On-chip memories are reconfigured as scratchpad or cache and interconnected with synthesizable coalescing crossbars for efficient memory access in each phase of the algorithm. The $2.0 text{mm}times 2.6 text{mm}$ chip exhibits $12.6times(8.4times)$ energy efficiency gain, $11.7times(77.6times)$ off-chip bandwidth efficiency gain and $17.1times(36.9times)$ compute density gain against a high-end CPU (GPU) across a diverse set of synthetic and real-world power-law graph based sparse matrices.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"166 9 Suppl 1","pages":"C150-C151"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83339714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Energy-efficient continual learning in hybrid supervised-unsupervised neural networks with PCM synapses 具有PCM突触的有监督-无监督混合神经网络的节能持续学习
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776559
S. Bianchi, I. Muñoz-Martín, G. Pedretti, O. Melnic, S. Ambrogio, Daniele Ielmini
Artificial neural networks (ANNs) can outperform the human ability of object recognition by supervised training of synaptic parameters with large datasets. Contrarily to the human brain, however, ANNs cannot continually learn, i.e. acquire new information without catastrophically forgetting previous knowledge. To solve this issue, we present a novel hybrid neural network based on CMOS logic and phase change memory (PCM) synapses, mixing a supervised convolutional neural network (CNN) with bio-inspired unsupervised learning and neuronal redundancy. We demonstrate high classification accuracy in MNIST and CIFAR10 datasets (98% and 85%, respectively) and energy-efficient continual learning of up to 30% of non-trained classes with 83% average accuracy.
人工神经网络(ann)通过对大数据集的突触参数进行监督训练,可以超越人类的目标识别能力。然而,与人脑不同的是,人工神经网络不能持续学习,即在不灾难性地忘记先前知识的情况下获取新信息。为了解决这个问题,我们提出了一种基于CMOS逻辑和相变记忆(PCM)突触的新型混合神经网络,将有监督卷积神经网络(CNN)与生物启发的无监督学习和神经元冗余相结合。我们在MNIST和CIFAR10数据集上展示了很高的分类准确率(分别为98%和85%),并且节能的持续学习高达30%的非训练类,平均准确率为83%。
{"title":"Energy-efficient continual learning in hybrid supervised-unsupervised neural networks with PCM synapses","authors":"S. Bianchi, I. Muñoz-Martín, G. Pedretti, O. Melnic, S. Ambrogio, Daniele Ielmini","doi":"10.23919/VLSIT.2019.8776559","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776559","url":null,"abstract":"Artificial neural networks (ANNs) can outperform the human ability of object recognition by supervised training of synaptic parameters with large datasets. Contrarily to the human brain, however, ANNs cannot continually learn, i.e. acquire new information without catastrophically forgetting previous knowledge. To solve this issue, we present a novel hybrid neural network based on CMOS logic and phase change memory (PCM) synapses, mixing a supervised convolutional neural network (CNN) with bio-inspired unsupervised learning and neuronal redundancy. We demonstrate high classification accuracy in MNIST and CIFAR10 datasets (98% and 85%, respectively) and energy-efficient continual learning of up to 30% of non-trained classes with 83% average accuracy.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"21 1","pages":"T172-T173"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87107189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spoken vowel classification using synchronization of phase transition nano-oscillators 基于同步相变纳米振荡器的口语元音分类
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776534
S. Dutta, A. Khanna, W. Chakraborty, J. Gomez, S. Joshi, S. Datta
The paradigm of biologically-inspired computing endows the components of a neural network with dynamical functionality, such as self-oscillations, and harnesses emergent physical phenomena like synchronization, to learn and classify complex temporal patterns. In this work, we exploit the synchronization dynamics of a network of ultra-compact, low power Vanadium dioxide (VO2) based insulator-to-metal phase-transition nano-oscillators (IMT-NO) to classify complex temporal pattern for speech discrimination. We successfully train a network of four capacitively coupled IMT-NOs to recognize spoken vowels by tuning their oscillation frequencies electrically according to a real-time learning rule and achieve high recognition rates of 90.5% for spoken vowels. Such an energy-efficient compact hardware with a small number of functional elements are a promising technology option for edge artificial intelligence.
受生物启发的计算范式赋予神经网络的组件动态功能,如自振荡,并利用同步等紧急物理现象来学习和分类复杂的时间模式。在这项工作中,我们利用超紧凑,低功耗的基于二氧化钒(VO2)的绝缘体-金属相变纳米振荡器(IMT-NO)网络的同步动力学来分类复杂的时间模式,用于语音识别。我们成功地训练了一个由四个电容耦合的IMT-NOs组成的网络,根据实时学习规则通过电调谐它们的振荡频率来识别口语元音,并实现了90.5%的口语元音识别率。这种具有少量功能元素的节能紧凑硬件是边缘人工智能的一个有前途的技术选择。
{"title":"Spoken vowel classification using synchronization of phase transition nano-oscillators","authors":"S. Dutta, A. Khanna, W. Chakraborty, J. Gomez, S. Joshi, S. Datta","doi":"10.23919/VLSIT.2019.8776534","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776534","url":null,"abstract":"The paradigm of biologically-inspired computing endows the components of a neural network with dynamical functionality, such as self-oscillations, and harnesses emergent physical phenomena like synchronization, to learn and classify complex temporal patterns. In this work, we exploit the synchronization dynamics of a network of ultra-compact, low power Vanadium dioxide (VO2) based insulator-to-metal phase-transition nano-oscillators (IMT-NO) to classify complex temporal pattern for speech discrimination. We successfully train a network of four capacitively coupled IMT-NOs to recognize spoken vowels by tuning their oscillation frequencies electrically according to a real-time learning rule and achieve high recognition rates of 90.5% for spoken vowels. Such an energy-efficient compact hardware with a small number of functional elements are a promising technology option for edge artificial intelligence.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"44 4","pages":"T128-T129"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72576563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Technology Evening Panel Discussion What Will the Foundries of the Future Do? 科技之夜小组讨论:未来的铸造厂将做什么?
Pub Date : 2019-06-01 DOI: 10.23919/vlsit.2019.8776575
{"title":"Technology Evening Panel Discussion What Will the Foundries of the Future Do?","authors":"","doi":"10.23919/vlsit.2019.8776575","DOIUrl":"https://doi.org/10.23919/vlsit.2019.8776575","url":null,"abstract":"","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77604068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Progress and Next Directions for Embedded MRAM Technology 嵌入式MRAM技术的最新进展及未来发展方向
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776547
W. Gallagher, Eric Chien, Chiang Tien-Wei, Jian-Cheng Huang, Meng-Chun Shih, Wang Chia-Yu, C. Bair, George Lee, Y. Shih, Lee Chia-Fu, Roger Wang, K. Shen, J. J. Wu, Wayne Wang, H. Chuang
MRAM can play a variety of on-chip memory roles in advanced VLSI technology spanning from high retention, solder-reflow-capable non-volatile memory (NVM) to dense non-volatile or high retention working RAMs. This paper describes results for a solder-reflow-capable MRAM NVM and for extensions that trade off high retention against speed, power, and density.
MRAM可以在先进的VLSI技术中扮演各种片上存储角色,从高保留率,具有焊接回流功能的非易失性存储器(NVM)到密集非易失性或高保留率的工作ram。本文描述了具有焊接回流功能的MRAM NVM的结果,以及在速度、功率和密度方面权衡高保留的扩展。
{"title":"Recent Progress and Next Directions for Embedded MRAM Technology","authors":"W. Gallagher, Eric Chien, Chiang Tien-Wei, Jian-Cheng Huang, Meng-Chun Shih, Wang Chia-Yu, C. Bair, George Lee, Y. Shih, Lee Chia-Fu, Roger Wang, K. Shen, J. J. Wu, Wayne Wang, H. Chuang","doi":"10.23919/VLSIT.2019.8776547","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776547","url":null,"abstract":"MRAM can play a variety of on-chip memory roles in advanced VLSI technology spanning from high retention, solder-reflow-capable non-volatile memory (NVM) to dense non-volatile or high retention working RAMs. This paper describes results for a solder-reflow-capable MRAM NVM and for extensions that trade off high retention against speed, power, and density.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"24 1","pages":"T190-T191"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74309072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Session Quick Index 会话快速索引
Pub Date : 2019-06-01 DOI: 10.23919/vlsit.2019.8776501
{"title":"Session Quick Index","authors":"","doi":"10.23919/vlsit.2019.8776501","DOIUrl":"https://doi.org/10.23919/vlsit.2019.8776501","url":null,"abstract":"","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78704170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Cloud-ready Scalable Annealing Processor for Solving Large-scale Combinatorial Optimization Problems 解决大规模组合优化问题的云就绪可扩展退火处理器
Pub Date : 2019-06-01 DOI: 10.23919/VLSIT.2019.8776512
Masato Hayashi, Takashi Takemoto, C. Yoshimura, M. Yamaoka
This paper presents a CMOS annealing processor (CMOS-AP) that accelerates ground state searches of the Ising model. The main feature of this processor is its inter-chip connection interface for making a larger chip. A credit card sized compute node integrating two CMOS-APs was also developed as an interface with existing computer systems. The compute node can handle up to 61,952 spins at a time. A performance evaluation using the node improved the CPU speed by 55 times in solving a minimum vertex cover problem, one of the NP-hard combinatorial optimization problems. Finally, we describe a cloud interface for the compute node to make the CMOS-APs more useful and to promote application development for it.
提出了一种加速伊辛模型基态搜索的CMOS退火处理器(CMOS- ap)。该处理器的主要特点是它的芯片间连接接口,用于制作更大的芯片。集成两个cmos - ap的信用卡大小的计算节点也被开发作为与现有计算机系统的接口。该计算节点一次最多可以处理61952个旋转。在解决最小顶点覆盖问题(NP-hard组合优化问题之一)时,使用该节点的性能评估将CPU速度提高了55倍。最后,我们描述了计算节点的云接口,以使cmos - ap更有用,并促进其应用程序的开发。
{"title":"A Cloud-ready Scalable Annealing Processor for Solving Large-scale Combinatorial Optimization Problems","authors":"Masato Hayashi, Takashi Takemoto, C. Yoshimura, M. Yamaoka","doi":"10.23919/VLSIT.2019.8776512","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776512","url":null,"abstract":"This paper presents a CMOS annealing processor (CMOS-AP) that accelerates ground state searches of the Ising model. The main feature of this processor is its inter-chip connection interface for making a larger chip. A credit card sized compute node integrating two CMOS-APs was also developed as an interface with existing computer systems. The compute node can handle up to 61,952 spins at a time. A performance evaluation using the node improved the CPU speed by 55 times in solving a minimum vertex cover problem, one of the NP-hard combinatorial optimization problems. Finally, we describe a cloud interface for the compute node to make the CMOS-APs more useful and to promote application development for it.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"5 1","pages":"C148-C149"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79008475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
2019 Symposium on VLSI Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1