首页 > 最新文献

2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)最新文献

英文 中文
Modeling and Simulation of Atomic Layer Deposition 原子层沉积的建模与仿真
L. Filipovic
Two models for ALD of TiN and TiO2 are incorporated in an in-house level set based topography simulator, ViennaTS. While the models are based on 1D surface kinetics, here they are extended to handle 2D and 3D geometries by applying single particle Monte Carlo ray tracing. The particle flux and sticking coefficients are used to calibrate the surface adsorption of precursors and ultimately to calculate the resulting surface velocity. The TiO2 ALD model is based on the use of TTIP and H2O precursors and includes all surface kinetics taking place during deposition. In contract, the model for the deposition of TiN is somewhat simplified by ignoring the purge steps which are introduced after surface exposure to either precursor. The simplified model is then applied to reproduce experimental results from plasma enhanced ALD process for TiN deposition from TDMAT and H2-N2 plasma precursors.
TiN和TiO2的ALD的两个模型被合并在内部基于水平集的地形模拟器,维也纳。虽然模型是基于一维表面动力学的,但通过应用单粒子蒙特卡罗光线追踪,它们被扩展到处理二维和三维几何形状。粒子通量和粘附系数用于标定前驱体的表面吸附,并最终计算得到的表面速度。TiO2 ALD模型基于TTIP和H2O前体的使用,包括沉积过程中发生的所有表面动力学。相反,由于忽略了表面暴露于任一前驱体后引入的吹扫步骤,TiN沉积的模型在一定程度上得到了简化。然后应用简化模型重现了等离子体增强ALD工艺在TDMAT和H2-N2等离子体前体中沉积TiN的实验结果。
{"title":"Modeling and Simulation of Atomic Layer Deposition","authors":"L. Filipovic","doi":"10.1109/SISPAD.2019.8870462","DOIUrl":"https://doi.org/10.1109/SISPAD.2019.8870462","url":null,"abstract":"Two models for ALD of TiN and TiO2 are incorporated in an in-house level set based topography simulator, ViennaTS. While the models are based on 1D surface kinetics, here they are extended to handle 2D and 3D geometries by applying single particle Monte Carlo ray tracing. The particle flux and sticking coefficients are used to calibrate the surface adsorption of precursors and ultimately to calculate the resulting surface velocity. The TiO2 ALD model is based on the use of TTIP and H2O precursors and includes all surface kinetics taking place during deposition. In contract, the model for the deposition of TiN is somewhat simplified by ignoring the purge steps which are introduced after surface exposure to either precursor. The simplified model is then applied to reproduce experimental results from plasma enhanced ALD process for TiN deposition from TDMAT and H2-N2 plasma precursors.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"44 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84586070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
SISPAD 2019 Cover Page SISPAD 2019封面
{"title":"SISPAD 2019 Cover Page","authors":"","doi":"10.1109/sispad.2019.8870478","DOIUrl":"https://doi.org/10.1109/sispad.2019.8870478","url":null,"abstract":"","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"217 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74174878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of BEOL Design on Self-heating and Reliability in Highly-scaled FinFETs BEOL设计对大尺度finfet自热及可靠性的影响
Jaehee Choi, U. Monga, Yonghee Park, H. Shim, U. Kwon, S. Pae, D. Kim
This paper investigates the impact of BEOL design on device and backend reliability – HCI, BTI, EM – due to dependence of self-heating on BEOL in highly-scaled FinFETs. Our analysis indicates that due to poor thermal coupling to substrate – in the thin fin body devices – a large part of heat flows out of BEOL. This makes self-heating, and thus device (FEOL) temperature, very sensitive to BEOL design. The heat flow through BEOL also significantly increases the metal and via temperatures. The increased temperature negatively affects the overall reliability, and one of the ways to mitigate device degradation is optimization of BEOL design.
本文研究了BEOL设计对器件和后端可靠性(HCI, BTI, EM)的影响,因为BEOL依赖于高尺寸finfet的自热。我们的分析表明,由于薄鳍体器件与衬底的热耦合不良,很大一部分热量从BEOL流出。这使得自热和器件(FEOL)温度对BEOL设计非常敏感。通过BEOL的热流也显著提高了金属和管道的温度。温度升高会对整体可靠性产生负面影响,而优化BEOL设计是缓解器件退化的方法之一。
{"title":"Impact of BEOL Design on Self-heating and Reliability in Highly-scaled FinFETs","authors":"Jaehee Choi, U. Monga, Yonghee Park, H. Shim, U. Kwon, S. Pae, D. Kim","doi":"10.1109/SISPAD.2019.8870479","DOIUrl":"https://doi.org/10.1109/SISPAD.2019.8870479","url":null,"abstract":"This paper investigates the impact of BEOL design on device and backend reliability – HCI, BTI, EM – due to dependence of self-heating on BEOL in highly-scaled FinFETs. Our analysis indicates that due to poor thermal coupling to substrate – in the thin fin body devices – a large part of heat flows out of BEOL. This makes self-heating, and thus device (FEOL) temperature, very sensitive to BEOL design. The heat flow through BEOL also significantly increases the metal and via temperatures. The increased temperature negatively affects the overall reliability, and one of the ways to mitigate device degradation is optimization of BEOL design.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"13 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83717821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
TCAD analysis of FinFET temperature-dependent variability for analog applications 模拟应用中FinFET温度相关变异性的TCAD分析
S. Guerrieri, F. Bonani, G. Ghione
The Green’s Function based TCAD device variability analysis is extended to allow for temperature-dependent variability, with negligible overhead in terms of simulation time with respect to fixed temperature simulations. We provide temperature and bias-dependent 3D variability analysis of the DC current for a FinFET structure from the 22 nm node, showing how to predict and mitigate the effects of poor thermal management. Based on the quasi-stationary assumption, preliminary analysis of self-heating effects of a FinFET medium power amplifier is also presented.
基于格林函数的TCAD设备可变性分析扩展到允许温度相关的可变性,相对于固定温度模拟,在模拟时间方面的开销可以忽略不计。我们提供了22 nm节点的FinFET结构的直流电流的温度和偏置相关的3D可变性分析,展示了如何预测和减轻热管理不良的影响。在准平稳假设的基础上,对中功率放大器的自热效应进行了初步分析。
{"title":"TCAD analysis of FinFET temperature-dependent variability for analog applications","authors":"S. Guerrieri, F. Bonani, G. Ghione","doi":"10.1109/SISPAD.2019.8870492","DOIUrl":"https://doi.org/10.1109/SISPAD.2019.8870492","url":null,"abstract":"The Green’s Function based TCAD device variability analysis is extended to allow for temperature-dependent variability, with negligible overhead in terms of simulation time with respect to fixed temperature simulations. We provide temperature and bias-dependent 3D variability analysis of the DC current for a FinFET structure from the 22 nm node, showing how to predict and mitigate the effects of poor thermal management. Based on the quasi-stationary assumption, preliminary analysis of self-heating effects of a FinFET medium power amplifier is also presented.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"95 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76658459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
OFF Current Suppression by Gate-gontrolled Strain in The N-type GaAs Piezoelectric FinFETs 栅极控制应变抑制n型GaAs压电finfet中的关断电流
Y. Long, Jun Z. Huang, Zhongming Wei, Jun-Wei Luo, Xiangwei Jiang
The gate-controlled compressive strain induced by piezoelectric layers (piezo-layers) is used to suppress the OFF current of n-type GaAs piezoelectric FinFETs (Piezo-FinFETs). Quantum ballistic transport of n-type GaAs Piezo-FinFETs is modeled by the self-consistent Schrödinger–Poisson system. Our results suggest that n-type GaAs Piezo-FinFETs reduce OFF current by an order of magnitude for both high performance and low power applications compared with their counterparts without piezo-layers. The influences of device orientations on device performance is also investigated. The optimal device orientation of n-type GaAs Piezo-FinFETs is on the crystal surface (111).
利用压电层(piezoo -layers)引起的栅控压缩应变来抑制n型GaAs压电finfet (piezoo - finfet)的关断电流。采用自一致Schrödinger-Poisson系统对n型GaAs压电finet的量子弹道输运进行了建模。我们的研究结果表明,与没有压电层的同类产品相比,n型GaAs压电finet在高性能和低功耗应用中降低了一个数量级的OFF电流。研究了器件方向对器件性能的影响。n型GaAs压电finet的最佳器件取向是在晶体表面(111)。
{"title":"OFF Current Suppression by Gate-gontrolled Strain in The N-type GaAs Piezoelectric FinFETs","authors":"Y. Long, Jun Z. Huang, Zhongming Wei, Jun-Wei Luo, Xiangwei Jiang","doi":"10.1109/sispad.2019.8870452","DOIUrl":"https://doi.org/10.1109/sispad.2019.8870452","url":null,"abstract":"The gate-controlled compressive strain induced by piezoelectric layers (piezo-layers) is used to suppress the OFF current of n-type GaAs piezoelectric FinFETs (Piezo-FinFETs). Quantum ballistic transport of n-type GaAs Piezo-FinFETs is modeled by the self-consistent Schrödinger–Poisson system. Our results suggest that n-type GaAs Piezo-FinFETs reduce OFF current by an order of magnitude for both high performance and low power applications compared with their counterparts without piezo-layers. The influences of device orientations on device performance is also investigated. The optimal device orientation of n-type GaAs Piezo-FinFETs is on the crystal surface (111).","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"38 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87460490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical Study of the Edge Effect of Dumbbellshape Graphene Nanoribbon with a Dual Electronic Properties by First-principle Calculations 基于第一性原理计算的双电子性质哑铃形石墨烯纳米带边缘效应的理论研究
Qinqiang Zhang, T. Kudo, Jowesh Gounder, Ying Chen, Ken Suzuki, H. Miura
The electronic band structure (band gap) and electronic transmission properties of dumbbell-shape graphene nanoribbons (DS-GNRs), which consists of a thinner semiconductive GNR and two wider metallic GNRs at its both ends, was theoretically investigated using first-principles calculation to clarify the dominant controlling factors of their electronic performance for their applications to various smart sensors. The electronic properties of the DS-GNR was found to vary drastically depending on the combination of the total number of carbon atoms along the width direction of each portion, the length of the semiconductive portion, the width of the metallic portion, and so on.
采用第一原理计算方法,对哑铃形石墨烯纳米带(DS-GNRs)的电子能带结构(带隙)和电子传输特性进行了理论研究,以阐明其电子性能的主要控制因素,为其在各种智能传感器中的应用奠定基础。发现DS-GNR的电子性能随各部分宽度方向的碳原子总数、半导体部分的长度、金属部分的宽度等因素的组合而发生巨大变化。
{"title":"Theoretical Study of the Edge Effect of Dumbbellshape Graphene Nanoribbon with a Dual Electronic Properties by First-principle Calculations","authors":"Qinqiang Zhang, T. Kudo, Jowesh Gounder, Ying Chen, Ken Suzuki, H. Miura","doi":"10.1109/SISPAD.2019.8870398","DOIUrl":"https://doi.org/10.1109/SISPAD.2019.8870398","url":null,"abstract":"The electronic band structure (band gap) and electronic transmission properties of dumbbell-shape graphene nanoribbons (DS-GNRs), which consists of a thinner semiconductive GNR and two wider metallic GNRs at its both ends, was theoretically investigated using first-principles calculation to clarify the dominant controlling factors of their electronic performance for their applications to various smart sensors. The electronic properties of the DS-GNR was found to vary drastically depending on the combination of the total number of carbon atoms along the width direction of each portion, the length of the semiconductive portion, the width of the metallic portion, and so on.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"46 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91286777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Modeling of Temperature-Dependent MOSFET Aging 温度相关MOSFET老化的建模
F. A. Herrera, M. Miura-Mattausch, H. Kikuchihara, T. Iizuka, H. Mattausch, H. Takatsuka
We have modeled MOSFET-device aging based on the trap-density increase, which is included in the Poisson equation to consider aging explicitly and physically correct. To preserve consistency, the Poisson equation is solved iteratively. Measured temperature dependence of aged I-V characteristics are well reproduced with implementation of this aging model into the industry-standard model HiSIM. The extracted physical device quantities with the developed model from measurements have been investigated to characterize the aging features. It is observed that the activation energy Ea as a function of Vgs is nearly identical for non-aged and aged devices. This concludes that the temperature dependence of aging originates mostly from the temperature-dependent electrostatic potential, resulting in negligible temperature dependency of extracted trap density Ntrap. To generalize the conclusion, 2D-device simulation is investigated for a double-gate (DG) MOSFET with increased stress-induced trap density. The same results as obtained from measurements are achieved, namely the activation energy is nearly identical for either non-aged or aged cases. This concludes that the temperature dependence of device aging can be accurately predicted using the temperature-dependent I-V characteristics of non-aged device.
我们建立了基于陷阱密度增加的mosfet器件老化模型,它包含在泊松方程中,以明确地和物理上正确地考虑老化。为了保持一致性,对泊松方程进行迭代求解。通过将该老化模型应用于工业标准模型HiSIM,可以很好地再现老化I-V特性的温度依赖性。利用所建立的模型从测量中提取的物理器件量进行了研究,以表征老化特征。我们观察到,对于未老化和老化的器件,活化能Ea作为Vgs的函数几乎相同。这表明,老化的温度依赖性主要来自于温度依赖性静电势,导致提取陷阱密度Ntrap的温度依赖性可以忽略不计。为了推广这一结论,研究了增加应力诱导陷阱密度的双栅极MOSFET的二维器件模拟。从测量得到的结果是相同的,即活化能几乎是相同的,无论是未老化或老化的情况下。这表明,利用非老化器件的温度依赖I-V特性可以准确地预测器件老化的温度依赖关系。
{"title":"Modeling of Temperature-Dependent MOSFET Aging","authors":"F. A. Herrera, M. Miura-Mattausch, H. Kikuchihara, T. Iizuka, H. Mattausch, H. Takatsuka","doi":"10.1109/SISPAD.2019.8870469","DOIUrl":"https://doi.org/10.1109/SISPAD.2019.8870469","url":null,"abstract":"We have modeled MOSFET-device aging based on the trap-density increase, which is included in the Poisson equation to consider aging explicitly and physically correct. To preserve consistency, the Poisson equation is solved iteratively. Measured temperature dependence of aged I-V characteristics are well reproduced with implementation of this aging model into the industry-standard model HiSIM. The extracted physical device quantities with the developed model from measurements have been investigated to characterize the aging features. It is observed that the activation energy Ea as a function of Vgs is nearly identical for non-aged and aged devices. This concludes that the temperature dependence of aging originates mostly from the temperature-dependent electrostatic potential, resulting in negligible temperature dependency of extracted trap density Ntrap. To generalize the conclusion, 2D-device simulation is investigated for a double-gate (DG) MOSFET with increased stress-induced trap density. The same results as obtained from measurements are achieved, namely the activation energy is nearly identical for either non-aged or aged cases. This concludes that the temperature dependence of device aging can be accurately predicted using the temperature-dependent I-V characteristics of non-aged device.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"27 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81333621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
TCAD Simulations Combined with Free Carrier Absorption Experiments Revealing the Physical Nature of Hydrogen-Related Donors in IGBTs TCAD模拟结合自由载流子吸收实验揭示了igbt中氢相关供体的物理性质
A. Korzenietz, F. Hille, F. Niedernostheide, C. Sandow, G. Wachutka, G. Schrag
Hydrogen-related donors can be advantageously used in IGBTs and power diodes with a view to creating field-stop layers and to optimising the electrical performance. In this work, the influence of hydrogen-related donors on the on-state plasma profile in field-stop IGBTs is analysed by means of free-carrier absorption measurements. For these investigations, dedicated IGBT test structures were used, which had been adapted to the specific properties of the employed measurement set-up. Two different hydrogen-related donor profiles were implanted into these IGBT samples and, subsequently, measurements with different current densities were compared to 2D TCAD numerical simulations. In the next step, the simulation models were adjusted, with respect to carrier lifetime and mobility to reflect the impact of a possible variation of these properties.
与氢相关的供体可以在igbt和功率二极管中有利地使用,以创建场阻挡层并优化电性能。在这项工作中,通过自由载流子吸收测量,分析了氢相关供体对场停止igbt中状态等离子体轮廓的影响。对于这些研究,使用了专用的IGBT测试结构,该结构已适应所使用的测量装置的特定属性。将两种不同的氢相关供体剖面植入这些IGBT样品中,随后将不同电流密度的测量结果与二维TCAD数值模拟进行比较。下一步,根据载流子寿命和迁移率调整仿真模型,以反映这些特性可能变化的影响。
{"title":"TCAD Simulations Combined with Free Carrier Absorption Experiments Revealing the Physical Nature of Hydrogen-Related Donors in IGBTs","authors":"A. Korzenietz, F. Hille, F. Niedernostheide, C. Sandow, G. Wachutka, G. Schrag","doi":"10.1109/SISPAD.2019.8870353","DOIUrl":"https://doi.org/10.1109/SISPAD.2019.8870353","url":null,"abstract":"Hydrogen-related donors can be advantageously used in IGBTs and power diodes with a view to creating field-stop layers and to optimising the electrical performance. In this work, the influence of hydrogen-related donors on the on-state plasma profile in field-stop IGBTs is analysed by means of free-carrier absorption measurements. For these investigations, dedicated IGBT test structures were used, which had been adapted to the specific properties of the employed measurement set-up. Two different hydrogen-related donor profiles were implanted into these IGBT samples and, subsequently, measurements with different current densities were compared to 2D TCAD numerical simulations. In the next step, the simulation models were adjusted, with respect to carrier lifetime and mobility to reflect the impact of a possible variation of these properties.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"199 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80062168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full band quantum transport modelling with EP and NEGF methods; application to nanowire transistors 基于EP和NEGF方法的全带量子输运建模纳米线晶体管的应用
M. Pala, D. Esseni
The active region of many modern electron devices consists of semiconductors structured at truly nanometric dimensions, either as ultra-thin-body FETs (UTRFETs), or as 3D architectures such as Fin-FETs, multi-gate FETs (MuGFETs), and nanowire (NW) FETs [1]. Quantum mechanical effects have thus become prominent not only in terms of subband splitting [2], but also in terms of source-drain tunnnelling in CMOS FEFs [3], [4], [5], and band-to-band-tunnnelling (BTBT) in Tunnel FETs (TFETs) [6], [7]. The relevance of quantum effects in nanoscale FETs is also witnessed by the fact hat CMOS based quantum dots have been proposed as a platform for quantum computing [8].
许多现代电子器件的有源区域由真正纳米尺度结构的半导体组成,要么是超薄体fet (utrfet),要么是3D结构,如fin - fet、多栅极fet (mugfet)和纳米线fet (NW)[1]。因此,量子力学效应不仅在子带分裂[2]方面变得突出,而且在CMOS fef中的源漏隧穿[3],[4],[5]和隧道场效应管(tfet)中的带对带隧穿(BTBT)[6],[7]方面也变得突出。基于CMOS的量子点被提出作为量子计算平台,也证明了纳米级场效应管中量子效应的相关性[8]。
{"title":"Full band quantum transport modelling with EP and NEGF methods; application to nanowire transistors","authors":"M. Pala, D. Esseni","doi":"10.1109/SISPAD.2019.8870406","DOIUrl":"https://doi.org/10.1109/SISPAD.2019.8870406","url":null,"abstract":"The active region of many modern electron devices consists of semiconductors structured at truly nanometric dimensions, either as ultra-thin-body FETs (UTRFETs), or as 3D architectures such as Fin-FETs, multi-gate FETs (MuGFETs), and nanowire (NW) FETs [1]. Quantum mechanical effects have thus become prominent not only in terms of subband splitting [2], but also in terms of source-drain tunnnelling in CMOS FEFs [3], [4], [5], and band-to-band-tunnnelling (BTBT) in Tunnel FETs (TFETs) [6], [7]. The relevance of quantum effects in nanoscale FETs is also witnessed by the fact hat CMOS based quantum dots have been proposed as a platform for quantum computing [8].","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"2 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88268961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
SISPAD 2019 Welcome Page SISPAD 2019欢迎页面
{"title":"SISPAD 2019 Welcome Page","authors":"","doi":"10.1109/sispad.2019.8870376","DOIUrl":"https://doi.org/10.1109/sispad.2019.8870376","url":null,"abstract":"","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78704962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1