Pub Date : 2021-01-01DOI: 10.1088/2516-1091/ac1ea3
P. D. Sinawang, Fernando Soto, M. Ozen, D. Akin, U. Demirci
Cancer cells generate and secrete diverse molecules into circulation that could be used as signatures for health and disease. A significant obstacle in detecting such molecules derives from their low signal-to-noise ratio in subsequent downstream analyses. Developing reliable tools and methods for cancer early detection is crucial for advancing global strategies to decrease mortality, monitor disease progression and therapy, and improve the quality of life of patients. This perspective critically addresses recent developments in cancer early detection, highlighting current trends in the enrichment of cancer-related biomarkers, dividing them into biochemical and biophysical methods. Finally, we provide insights into the challenges and opportunities in biomarker isolation and enrichment protocols. Integrating these methods into clinical decision-making pipelines could lead to a better understanding of cancer progression, treatment efficacy, and hence improving the medical outcomes for cancer patients.
{"title":"Progress and challenges in biomarker enrichment for cancer early detection","authors":"P. D. Sinawang, Fernando Soto, M. Ozen, D. Akin, U. Demirci","doi":"10.1088/2516-1091/ac1ea3","DOIUrl":"https://doi.org/10.1088/2516-1091/ac1ea3","url":null,"abstract":"Cancer cells generate and secrete diverse molecules into circulation that could be used as signatures for health and disease. A significant obstacle in detecting such molecules derives from their low signal-to-noise ratio in subsequent downstream analyses. Developing reliable tools and methods for cancer early detection is crucial for advancing global strategies to decrease mortality, monitor disease progression and therapy, and improve the quality of life of patients. This perspective critically addresses recent developments in cancer early detection, highlighting current trends in the enrichment of cancer-related biomarkers, dividing them into biochemical and biophysical methods. Finally, we provide insights into the challenges and opportunities in biomarker isolation and enrichment protocols. Integrating these methods into clinical decision-making pipelines could lead to a better understanding of cancer progression, treatment efficacy, and hence improving the medical outcomes for cancer patients.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61183210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1088/2516-1091/ac12d6
Mohamed E. M. K. Abdelaziz, Libaihe Tian, M. Hamady, Guang-Zhong Yang, B. Temelkuran
Interventional radiology and cardiology are rapidly growing areas of minimally invasive surgery, covering multiple diagnostic and interventional procedures. Treatment via endovascular techniques has become the go-to approach, thanks to its minimally invasive nature and its effectiveness in reducing hospitalisation and total time to recovery when compared to open surgery. Although x-ray fluoroscopy is currently the gold standard imaging technique for endovascular interventions, it presents occupational safety hazards to medical personnel and potential risks to patients, especially paediatric patients, because of its inherent ionising radiation. Magnetic resonance imaging (MRI), with its unique ability to provide radiation-free imaging, and acquiring morphologic and functional information, holds great promise in the advancement of image-guided navigation through the vasculature. Moreover, MRI has the potential to combine diagnosis, therapy and early evaluation of therapy in the same intervention. However, MR-guided interventions face a major challenge due to the presence of a large magnetic field (1.5/3 Tesla), which limits the set of materials suitable for the construction of key instrumentation (sheaths, catheters and guidewires). Despite these challenges, in recent years, significant progress has been made in the development of interventional devices, which comprise biocompatible, MR safe and MR visible materials. In an attempt to encourage and accelerate the development of MR-guided endovascular instrumentation, we present a systematic and illustrated overview of the plethora of work targeting to overcome the aforementioned limitations which are underpinned by the interdependent advancements in science, technology, engineering, mathematics and medicine (STEMM).
{"title":"X-ray to MR: the progress of flexible instruments for endovascular navigation","authors":"Mohamed E. M. K. Abdelaziz, Libaihe Tian, M. Hamady, Guang-Zhong Yang, B. Temelkuran","doi":"10.1088/2516-1091/ac12d6","DOIUrl":"https://doi.org/10.1088/2516-1091/ac12d6","url":null,"abstract":"Interventional radiology and cardiology are rapidly growing areas of minimally invasive surgery, covering multiple diagnostic and interventional procedures. Treatment via endovascular techniques has become the go-to approach, thanks to its minimally invasive nature and its effectiveness in reducing hospitalisation and total time to recovery when compared to open surgery. Although x-ray fluoroscopy is currently the gold standard imaging technique for endovascular interventions, it presents occupational safety hazards to medical personnel and potential risks to patients, especially paediatric patients, because of its inherent ionising radiation. Magnetic resonance imaging (MRI), with its unique ability to provide radiation-free imaging, and acquiring morphologic and functional information, holds great promise in the advancement of image-guided navigation through the vasculature. Moreover, MRI has the potential to combine diagnosis, therapy and early evaluation of therapy in the same intervention. However, MR-guided interventions face a major challenge due to the presence of a large magnetic field (1.5/3 Tesla), which limits the set of materials suitable for the construction of key instrumentation (sheaths, catheters and guidewires). Despite these challenges, in recent years, significant progress has been made in the development of interventional devices, which comprise biocompatible, MR safe and MR visible materials. In an attempt to encourage and accelerate the development of MR-guided endovascular instrumentation, we present a systematic and illustrated overview of the plethora of work targeting to overcome the aforementioned limitations which are underpinned by the interdependent advancements in science, technology, engineering, mathematics and medicine (STEMM).","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61182501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1088/2516-1091/ac1731
M. M. Mau, Sunandita Sarker, B. Terry
Ingestible devices have been gaining attention from the medical community due to their noninvasive use in diagnostics and treatment of the gastrointestinal (GI) tract. However, their passive locomotion limits their GI residency period. Ingestible sensors residing in the GI tract are capable of providing continuous data, while long-acting ingestible drug delivery systems can reduce medication nonadherence. This paper presents a comprehensive overview of the state-of-the-art, long-term ingestible devices (LTIDs). Additionally, this review summarizes the current status of ingestible devices that persist in the GI tract for a prolonged period, as well as their inhabitance mechanisms and applications. Also included are relevant information about the GI structure and design considerations for understanding the significance and challenges associated with LTIDs. Finally, we discuss several potential applications of the LTIDs for therapeutic intervention in the GI tract and monitoring the physiology and pathophysiology of the GI tract for an extended period.
{"title":"Ingestible devices for long-term gastrointestinal residency: a review","authors":"M. M. Mau, Sunandita Sarker, B. Terry","doi":"10.1088/2516-1091/ac1731","DOIUrl":"https://doi.org/10.1088/2516-1091/ac1731","url":null,"abstract":"Ingestible devices have been gaining attention from the medical community due to their noninvasive use in diagnostics and treatment of the gastrointestinal (GI) tract. However, their passive locomotion limits their GI residency period. Ingestible sensors residing in the GI tract are capable of providing continuous data, while long-acting ingestible drug delivery systems can reduce medication nonadherence. This paper presents a comprehensive overview of the state-of-the-art, long-term ingestible devices (LTIDs). Additionally, this review summarizes the current status of ingestible devices that persist in the GI tract for a prolonged period, as well as their inhabitance mechanisms and applications. Also included are relevant information about the GI structure and design considerations for understanding the significance and challenges associated with LTIDs. Finally, we discuss several potential applications of the LTIDs for therapeutic intervention in the GI tract and monitoring the physiology and pathophysiology of the GI tract for an extended period.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61182958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1088/2516-1091/ac1b7f
O. Vickers, P. Culmer, G. Isaac, R. Kay, M. P. Shuttleworth, T. Board, S. Williams
Surgery to implant a total hip replacement (THR) is very successful in reducing pain and restoring function. This procedure has become more prevalent, and projections estimate further increases in demand. However, complications can arise, and current diagnostic techniques often fail to expose underlying issues before they result in a catastrophic failure that requires revision surgery. An instrumented implant, with embedded sensors capable of real time condition monitoring, would be an attractive proposition to incorporate within a THR. Continued advances in the performance and miniaturisation of electronic components, embedded systems, sensing and wireless communications have given the tools and resources medical device manufacturers need to innovate in the field of implantable medical devices. Smart implants are already being widely used in healthcare including pacemakers, cochlear implants, glucose monitors and insulin pumps however, a widely used smart THR has not yet been realised. Since the implantation of the first instrumented hip implant in the 1960s there have been several in vitro studies monitoring levels of implant loosening. Additionally, significant research has been conducted using instrumented THRs to perform in vivo measurement of biomechanical metrics, including force and moments. To date less than 100 patients have successfully received an instrumented implant. The results of these studies have aided researchers, designers and surgeons in wider research projects, however, the motivation behind the work was to provide discrete biomechanical data sets and not provide real-time condition monitoring of an implants performance or highlight early indications for revision surgery. If in vivo sensing within a THR is to be achieved and adopted in regular clinical practice then the following challenges need to be addressed: choice of the sensing method, biocompatibility and integration within the implant, power supply, communication, and regulatory considerations.
{"title":"Is in vivo sensing in a total hip replacement a possibility? A review on past systems and future challenges","authors":"O. Vickers, P. Culmer, G. Isaac, R. Kay, M. P. Shuttleworth, T. Board, S. Williams","doi":"10.1088/2516-1091/ac1b7f","DOIUrl":"https://doi.org/10.1088/2516-1091/ac1b7f","url":null,"abstract":"Surgery to implant a total hip replacement (THR) is very successful in reducing pain and restoring function. This procedure has become more prevalent, and projections estimate further increases in demand. However, complications can arise, and current diagnostic techniques often fail to expose underlying issues before they result in a catastrophic failure that requires revision surgery. An instrumented implant, with embedded sensors capable of real time condition monitoring, would be an attractive proposition to incorporate within a THR. Continued advances in the performance and miniaturisation of electronic components, embedded systems, sensing and wireless communications have given the tools and resources medical device manufacturers need to innovate in the field of implantable medical devices. Smart implants are already being widely used in healthcare including pacemakers, cochlear implants, glucose monitors and insulin pumps however, a widely used smart THR has not yet been realised. Since the implantation of the first instrumented hip implant in the 1960s there have been several in vitro studies monitoring levels of implant loosening. Additionally, significant research has been conducted using instrumented THRs to perform in vivo measurement of biomechanical metrics, including force and moments. To date less than 100 patients have successfully received an instrumented implant. The results of these studies have aided researchers, designers and surgeons in wider research projects, however, the motivation behind the work was to provide discrete biomechanical data sets and not provide real-time condition monitoring of an implants performance or highlight early indications for revision surgery. If in vivo sensing within a THR is to be achieved and adopted in regular clinical practice then the following challenges need to be addressed: choice of the sensing method, biocompatibility and integration within the implant, power supply, communication, and regulatory considerations.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61183123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-14DOI: 10.1088/2516-1091/abd37c
Xiang Chen, A. Diaz-Pinto, N. Ravikumar, Alejandro F Frangi
Image registration is a fundamental task in multiple medical image analysis applications. With the advent of deep learning, there have been significant advances in algorithmic performance for various computer vision tasks in recent years, including medical image registration. The last couple of years have seen a dramatic increase in the development of deep learning-based medical image registration algorithms. Consequently, a comprehensive review of the current state-of-the-art algorithms in the field is timely, and necessary. This review is aimed at understanding the clinical applications and challenges that drove this innovation, analysing the functionality and limitations of existing approaches, and at providing insights to open challenges and as yet unmet clinical needs that could shape future research directions. To this end, the main contributions of this paper are: (a) discussion of all deep learning-based medical image registration papers published since 2013 with significant methodological and/or functional contributions to the field; (b) analysis of the development and evolution of deep learning-based image registration methods, summarising the current trends and challenges in the domain; and (c) overview of unmet clinical needs and potential directions for future research in deep learning-based medical image registration.
{"title":"Deep learning in medical image registration","authors":"Xiang Chen, A. Diaz-Pinto, N. Ravikumar, Alejandro F Frangi","doi":"10.1088/2516-1091/abd37c","DOIUrl":"https://doi.org/10.1088/2516-1091/abd37c","url":null,"abstract":"Image registration is a fundamental task in multiple medical image analysis applications. With the advent of deep learning, there have been significant advances in algorithmic performance for various computer vision tasks in recent years, including medical image registration. The last couple of years have seen a dramatic increase in the development of deep learning-based medical image registration algorithms. Consequently, a comprehensive review of the current state-of-the-art algorithms in the field is timely, and necessary. This review is aimed at understanding the clinical applications and challenges that drove this innovation, analysing the functionality and limitations of existing approaches, and at providing insights to open challenges and as yet unmet clinical needs that could shape future research directions. To this end, the main contributions of this paper are: (a) discussion of all deep learning-based medical image registration papers published since 2013 with significant methodological and/or functional contributions to the field; (b) analysis of the development and evolution of deep learning-based image registration methods, summarising the current trends and challenges in the domain; and (c) overview of unmet clinical needs and potential directions for future research in deep learning-based medical image registration.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46426844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-10DOI: 10.1088/2516-1091/abc947
R. Chapla, J. West
Biomaterials can be intentionally designed to support and even guide vascularization for applications ranging from engineered organs to treatment of ischemic diseases like myocardial infarction and stroke. In order to appropriately design bioactive biomaterials for vascularization, it is important to understand the cellular and molecular events involved in angiogenesis and vasculogenesis. Cell-matrix and signaling biomolecule interactions that initiate and promote formation of vasculature in vivo can often be mimicked in biomaterial platforms. Hydrogels are frequently used in these applications because they are soft and hydrated with mechanical properties similar to soft tissues and because many synthetic hydrogels are essentially bioinert, allowing one to engineer in specific cell-material interactions. A variety of both naturally-derived and synthetic hydrogel bases are used for supporting vascularization, and these gels are tailored to possess mechanical properties, biodegradation, cell adhesive interactions, biochemical signaling, and/or architectural properties that can promote assembly and tubulogenesis by vascular cells. This article serves to review current hydrogel materials and the innovative design modifications implemented to guide and support the vascularization process.
{"title":"Hydrogel biomaterials to support and guide vascularization","authors":"R. Chapla, J. West","doi":"10.1088/2516-1091/abc947","DOIUrl":"https://doi.org/10.1088/2516-1091/abc947","url":null,"abstract":"Biomaterials can be intentionally designed to support and even guide vascularization for applications ranging from engineered organs to treatment of ischemic diseases like myocardial infarction and stroke. In order to appropriately design bioactive biomaterials for vascularization, it is important to understand the cellular and molecular events involved in angiogenesis and vasculogenesis. Cell-matrix and signaling biomolecule interactions that initiate and promote formation of vasculature in vivo can often be mimicked in biomaterial platforms. Hydrogels are frequently used in these applications because they are soft and hydrated with mechanical properties similar to soft tissues and because many synthetic hydrogels are essentially bioinert, allowing one to engineer in specific cell-material interactions. A variety of both naturally-derived and synthetic hydrogel bases are used for supporting vascularization, and these gels are tailored to possess mechanical properties, biodegradation, cell adhesive interactions, biochemical signaling, and/or architectural properties that can promote assembly and tubulogenesis by vascular cells. This article serves to review current hydrogel materials and the innovative design modifications implemented to guide and support the vascularization process.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45706070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-21DOI: 10.1088/2516-1091/abc34f
Hawley C. Pruitt, S. Gerecht
Tumor progression and metastasis requires a complex interplay between tumor cells and their surrounding environment. Conventional 2D and 3D tissue culture models lack the precision and spatiotemporal control required to accurately model the complexity of the tumor microenvironment and metastatic cascade. Advances in biomedical engineering have allowed us to generate precise and versatile model systems to elucidate mechanisms vital to tumor progression and metastasis. The incorporation of novel biomaterials creates a specific mechanical environment that has facilitated controlled studies of cancer cell mechano-transduction. In addition, microfluidic devices have not only allowed for the incorporation of flow and shear forces into vascularized tumor models, but also elucidated vital mechanisms of cancer cell migration that have shifted paradigms about the mode in which cancer cells initiate metastasis. Here, we review the latest developments in biomedical engineering approaches to model the tumor microenvironment and metastatic cascade. We discuss how these approaches have advanced the field of cancer biology and enhanced our understanding of the mechanisms driving metastasis. We initially focus on physical and mechanical aspects of the primary microenvironment that impact tumor cell invasion. We then transition to tumor cell migration using models of tumor extracellular matrix including confined migration. Finally, we review models of intravasation/extravasation and colonization of secondary sites.
{"title":"Modeling metastasis: engineering approaches to study the metastatic cascade","authors":"Hawley C. Pruitt, S. Gerecht","doi":"10.1088/2516-1091/abc34f","DOIUrl":"https://doi.org/10.1088/2516-1091/abc34f","url":null,"abstract":"Tumor progression and metastasis requires a complex interplay between tumor cells and their surrounding environment. Conventional 2D and 3D tissue culture models lack the precision and spatiotemporal control required to accurately model the complexity of the tumor microenvironment and metastatic cascade. Advances in biomedical engineering have allowed us to generate precise and versatile model systems to elucidate mechanisms vital to tumor progression and metastasis. The incorporation of novel biomaterials creates a specific mechanical environment that has facilitated controlled studies of cancer cell mechano-transduction. In addition, microfluidic devices have not only allowed for the incorporation of flow and shear forces into vascularized tumor models, but also elucidated vital mechanisms of cancer cell migration that have shifted paradigms about the mode in which cancer cells initiate metastasis. Here, we review the latest developments in biomedical engineering approaches to model the tumor microenvironment and metastatic cascade. We discuss how these approaches have advanced the field of cancer biology and enhanced our understanding of the mechanisms driving metastasis. We initially focus on physical and mechanical aspects of the primary microenvironment that impact tumor cell invasion. We then transition to tumor cell migration using models of tumor extracellular matrix including confined migration. Finally, we review models of intravasation/extravasation and colonization of secondary sites.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41848418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-08DOI: 10.1088/2516-1091/abbf5e
A. Lau, C. Ren, Luke P Lee
Simple yet powerful clustered regularly-interspaced short palindromic repeats (CRISPR) technology has led to the advent of numerous developments in life sciences, biotechnology, therapeutics, and molecular diagnostics, enabled by gene editing capability. By exploiting the CRISPR-Cas system’s nucleic acid sequence detection abilities, CRISPR-based molecular diagnostics have been developed. Here, we review the development of rapid, sensitive, and inexpensive CRISPR-based molecular diagnostics. We introduce the transition of CRISPR technology to precision molecular diagnostic devices from tube to device. Next, we discuss the various nucleic acid (NA) detection methods by CRISPR. We address the importance of significant sample preparation steps for a future sample-to-answer solution, which is lacking in current CRISPR-based molecular diagnostic technology. Lastly, we discuss the extension of CRISPR-based molecular diagnostics to various critical applications. We envision CRISPR technology holds great promise for widespread use in precision NA detection applications after particular technical challenges are overcome.
{"title":"Critical review on where CRISPR meets molecular diagnostics","authors":"A. Lau, C. Ren, Luke P Lee","doi":"10.1088/2516-1091/abbf5e","DOIUrl":"https://doi.org/10.1088/2516-1091/abbf5e","url":null,"abstract":"Simple yet powerful clustered regularly-interspaced short palindromic repeats (CRISPR) technology has led to the advent of numerous developments in life sciences, biotechnology, therapeutics, and molecular diagnostics, enabled by gene editing capability. By exploiting the CRISPR-Cas system’s nucleic acid sequence detection abilities, CRISPR-based molecular diagnostics have been developed. Here, we review the development of rapid, sensitive, and inexpensive CRISPR-based molecular diagnostics. We introduce the transition of CRISPR technology to precision molecular diagnostic devices from tube to device. Next, we discuss the various nucleic acid (NA) detection methods by CRISPR. We address the importance of significant sample preparation steps for a future sample-to-answer solution, which is lacking in current CRISPR-based molecular diagnostic technology. Lastly, we discuss the extension of CRISPR-based molecular diagnostics to various critical applications. We envision CRISPR technology holds great promise for widespread use in precision NA detection applications after particular technical challenges are overcome.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41547641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-25DOI: 10.1088/2516-1091/abab4c
L. Barducci, J. Norton, Sunandita Sarker, Sayeed Mohammed, Ryan Jones, P. Valdastri, B. Terry
The gastrointestinal (GI) tract is a complex environment comprised of the mouth, esophagus, stomach, small and large intestines, rectum and anus, which all cooperate to form the complete working GI system. Access to the GI using endoscopy has been augmented over the past several decades by swallowable diagnostic electromechanical devices, such as pill cameras. Research continues today and into the foreseeable future on new and more capable miniature devices for the purposes of systemic drug delivery, therapy, tissue biopsy, microbiome sampling, and a host of other novel ground-breaking applications. The purpose of this review is to provide engineers in this field a comprehensive reference manual of the GI environment and its complex physical, biological, and chemical characteristics so they can more quickly understand the constraints and challenges associated with developing devices for the GI space. To accomplish this, the work reviews and summarizes a broad spectrum of literature covering the main anatomical and physiological properties of the GI tract that are pertinent to successful development and operation of an electromechanical device. Each organ in the GI is discussed in this context, including the main mechanisms of digestion, chemical and mechanical processes that could impact devices, and GI motor behavior and resultant forces that may be experienced by objects as they move through the environment of the gut.
{"title":"Fundamentals of the gut for capsule engineers","authors":"L. Barducci, J. Norton, Sunandita Sarker, Sayeed Mohammed, Ryan Jones, P. Valdastri, B. Terry","doi":"10.1088/2516-1091/abab4c","DOIUrl":"https://doi.org/10.1088/2516-1091/abab4c","url":null,"abstract":"The gastrointestinal (GI) tract is a complex environment comprised of the mouth, esophagus, stomach, small and large intestines, rectum and anus, which all cooperate to form the complete working GI system. Access to the GI using endoscopy has been augmented over the past several decades by swallowable diagnostic electromechanical devices, such as pill cameras. Research continues today and into the foreseeable future on new and more capable miniature devices for the purposes of systemic drug delivery, therapy, tissue biopsy, microbiome sampling, and a host of other novel ground-breaking applications. The purpose of this review is to provide engineers in this field a comprehensive reference manual of the GI environment and its complex physical, biological, and chemical characteristics so they can more quickly understand the constraints and challenges associated with developing devices for the GI space. To accomplish this, the work reviews and summarizes a broad spectrum of literature covering the main anatomical and physiological properties of the GI tract that are pertinent to successful development and operation of an electromechanical device. Each organ in the GI is discussed in this context, including the main mechanisms of digestion, chemical and mechanical processes that could impact devices, and GI motor behavior and resultant forces that may be experienced by objects as they move through the environment of the gut.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41488972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-24DOI: 10.1088/2516-1091/abb008
G. Xiong, K. Venkatraman, S. Venkatraman
Ever since the term ‘Magic Bullet’ was coined by Nobel laureate Paul Ehrlich to denote selective activity of a therapeutic medicine against a particular target tissue or organism, researchers have been attempting to develop the concept, with the major part of the work directed towards cancer targets. In this review, we define four major technologies that embody the Magic Bullet concept, and discuss the status of the therapeutic in each case. The reasons for relative success and failure of the four technologies are assessed based on the clinical outcomes. There have been failures of ancillary concepts (to enable selectivity) such as the enhanced permeation and retention effect, which will be discussed in context. The outlook is hopeful, with the advent of immunotherapies, that the idealized Magic Bullet will see the light of day in the near future.
{"title":"The magic bullet as cancer therapeutic—has nanotechnology failed to find its mark?","authors":"G. Xiong, K. Venkatraman, S. Venkatraman","doi":"10.1088/2516-1091/abb008","DOIUrl":"https://doi.org/10.1088/2516-1091/abb008","url":null,"abstract":"Ever since the term ‘Magic Bullet’ was coined by Nobel laureate Paul Ehrlich to denote selective activity of a therapeutic medicine against a particular target tissue or organism, researchers have been attempting to develop the concept, with the major part of the work directed towards cancer targets. In this review, we define four major technologies that embody the Magic Bullet concept, and discuss the status of the therapeutic in each case. The reasons for relative success and failure of the four technologies are assessed based on the clinical outcomes. There have been failures of ancillary concepts (to enable selectivity) such as the enhanced permeation and retention effect, which will be discussed in context. The outlook is hopeful, with the advent of immunotherapies, that the idealized Magic Bullet will see the light of day in the near future.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45171781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}