首页 > 最新文献

Friction最新文献

英文 中文
Erratum to: Tribological behaviour of Ti3C2Tx nano-sheets: Substrate-dependent tribo-chemical reactions 勘误:Ti3C2Tx 纳米片的摩擦学行为:依赖于基底的三化学反应
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2023-12-14 DOI: 10.1007/s40544-023-0859-y
Alberto Rota, Nicolas Bellina, Bo Wang, Andreas Rosenkranz
{"title":"Erratum to: Tribological behaviour of Ti3C2Tx nano-sheets: Substrate-dependent tribo-chemical reactions","authors":"Alberto Rota, Nicolas Bellina, Bo Wang, Andreas Rosenkranz","doi":"10.1007/s40544-023-0859-y","DOIUrl":"https://doi.org/10.1007/s40544-023-0859-y","url":null,"abstract":"","PeriodicalId":12442,"journal":{"name":"Friction","volume":"46 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139001552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification and spectrum optimization method of grease based on infrared spectrum 基于红外光谱的油脂分类及光谱优化方法
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2023-12-05 DOI: 10.1007/s40544-023-0786-y
Xin Feng, Yanqiu Xia, Peiyuan Xie, Xiaohe Li

The infrared (IR) absorption spectral data of 63 kinds of lubricating greases containing six different types of thickeners were obtained using the IR spectroscopy. The Kohonen neural network algorithm was used to identify the type of the lubricating grease. The results show that this machine learning method can effectively eliminate the interference fringes in the IR spectrum, and complete the feature selection and dimensionality reduction of the high-dimensional spectral data. The 63 kinds of greases exhibit spatial clustering under certain IR spectrum recognition spectral bands, which are linked to characteristic peaks of lubricating greases and improve the recognition accuracy of these greases. The model achieved recognition accuracy of 100.00%, 96.08%, 94.87%, 100.00%, and 87.50% for polyurea grease, calcium sulfonate composite grease, aluminum (Al)-based grease, bentonite grease, and lithium-based grease, respectively. Based on the different IR absorption spectrum bands produced by each kind of lubricating grease, the three-dimensional spatial distribution map of the lubricating grease drawn also verifies the accuracy of classification while recognizing the accuracy. This paper demonstrates fast recognition speed and high accuracy, proving that the Kohonen neural network algorithm has an efficient recognition ability for identifying the types of the lubricating grease.

利用红外光谱法获得了63种含6种不同增稠剂的润滑脂的红外吸收光谱数据。采用Kohonen神经网络算法对润滑脂类型进行识别。结果表明,该机器学习方法可以有效地消除红外光谱中的干扰条纹,完成高维光谱数据的特征选择和降维。63种润滑脂在一定的红外光谱识别光谱带下呈现空间聚类,与润滑脂的特征峰相关联,提高了润滑脂的识别精度。该模型对聚脲润滑脂、硫酸钙复合润滑脂、铝基润滑脂、膨润土润滑脂和锂基润滑脂的识别准确率分别为100.00%、96.08%、94.87%、100.00%和87.50%。根据每种润滑脂产生的不同红外吸收光谱带,绘制出润滑脂的三维空间分布图,在识别精度的同时也验证了分类的准确性。本文验证了识别速度快、准确率高,证明了Kohonen神经网络算法对润滑油的种类识别具有高效的识别能力。
{"title":"Classification and spectrum optimization method of grease based on infrared spectrum","authors":"Xin Feng, Yanqiu Xia, Peiyuan Xie, Xiaohe Li","doi":"10.1007/s40544-023-0786-y","DOIUrl":"https://doi.org/10.1007/s40544-023-0786-y","url":null,"abstract":"<p>The infrared (IR) absorption spectral data of 63 kinds of lubricating greases containing six different types of thickeners were obtained using the IR spectroscopy. The Kohonen neural network algorithm was used to identify the type of the lubricating grease. The results show that this machine learning method can effectively eliminate the interference fringes in the IR spectrum, and complete the feature selection and dimensionality reduction of the high-dimensional spectral data. The 63 kinds of greases exhibit spatial clustering under certain IR spectrum recognition spectral bands, which are linked to characteristic peaks of lubricating greases and improve the recognition accuracy of these greases. The model achieved recognition accuracy of 100.00%, 96.08%, 94.87%, 100.00%, and 87.50% for polyurea grease, calcium sulfonate composite grease, aluminum (Al)-based grease, bentonite grease, and lithium-based grease, respectively. Based on the different IR absorption spectrum bands produced by each kind of lubricating grease, the three-dimensional spatial distribution map of the lubricating grease drawn also verifies the accuracy of classification while recognizing the accuracy. This paper demonstrates fast recognition speed and high accuracy, proving that the Kohonen neural network algorithm has an efficient recognition ability for identifying the types of the lubricating grease.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":" 50","pages":""},"PeriodicalIF":6.8,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138485491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on frictional behavior of SiCf/SiC composite clad tube clamping condition under nuclear irradiation 核辐照下SiCf/SiC复合材料包层管夹紧摩擦行为研究
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2023-12-05 DOI: 10.1007/s40544-023-0805-z
Chenglong Xiao, Liangliang Shen, Tianqi Zhu, Jianbo Tang, Ximing Xie, Xinyu Fan, Jian Xu, Zhiying Ren

Silicon carbide fiber reinforced silicon carbide matrix (SiCf/SiC) composite is the key cladding material of nuclear fuel, which determines the safety and reliability of nuclear fuel storage and transportation. The replacement of its storage and transportation scenario needs to be completed by the manipulator, but the application of SiCf/SiC wear, fracture, and nuclear leakage in the snatching process of brittle-flexible-rigid contact in the irradiation environment has been seriously restricted due to unclear understanding of the damage mechanism. Therefore, the effects of irradiation dose and clamping load on the friction characteristics of the contact interface between SiCf/SiC clad tube are studied in this paper, and the effects of irradiation parameters and clamping force on the static friction coefficient of the contact interface between the clad tube and flexible nitrile are obtained. Based on the Greenwood-Williamson tribological model, a numerical model of the shape and structure of the contact micro-convex at the micro-scale of the clamping interface is constructed by introducing the multi-surface integral, and finally verified by experiments. The research results show that there is a unique “Irradiation suppression zone” under the clamping condition of SiCf/SiC cladding tube under the nuclear irradiation environment, and the growth of static friction coefficient slows down until stagnates after irradiation reaches a certain extent (600 kGy), and there will be a decline when the irradiation dose continues to increase, among which the clamping force of 15.2 N within the irradiation interval of 1,000 kGy can meet the safety of nuclear environment operation. The results of this paper can provide an important theoretical basis and application guidance for the safe operation of SiCf/SiC cladding tubes in the storage and transportation clamping process.

碳化硅纤维增强碳化硅基(SiCf/SiC)复合材料是核燃料的关键包层材料,它决定了核燃料储运的安全性和可靠性。其储运场景的更换需要机械手来完成,但由于对损伤机理认识不清,严重限制了SiCf/SiC磨损、断裂、核泄漏在辐照环境中脆-柔-刚接触抓取过程中的应用。因此,本文研究了辐照剂量和夹紧载荷对SiCf/SiC包层管接触界面摩擦特性的影响,得到了辐照参数和夹紧力对包层管与柔性腈接触界面静摩擦系数的影响。在Greenwood-Williamson摩擦学模型的基础上,引入多面积分,建立了夹紧界面微观尺度下接触微凸形状和结构的数值模型,并通过实验进行了验证。研究结果表明:核辐照环境下SiCf/SiC包层管夹紧条件下存在独特的“辐照抑制区”,且在辐照达到一定程度(600 kGy)后,静摩擦系数的增长放缓直至停滞,随着辐照剂量的继续增加,静摩擦系数会出现下降;其中,在1000 kGy辐照区间内,15.2 N的夹紧力可以满足核环境运行的安全要求。研究结果可为SiCf/SiC包层管在储运夹紧过程中的安全运行提供重要的理论依据和应用指导。
{"title":"Study on frictional behavior of SiCf/SiC composite clad tube clamping condition under nuclear irradiation","authors":"Chenglong Xiao, Liangliang Shen, Tianqi Zhu, Jianbo Tang, Ximing Xie, Xinyu Fan, Jian Xu, Zhiying Ren","doi":"10.1007/s40544-023-0805-z","DOIUrl":"https://doi.org/10.1007/s40544-023-0805-z","url":null,"abstract":"<p>Silicon carbide fiber reinforced silicon carbide matrix (SiC<sub>f</sub>/SiC) composite is the key cladding material of nuclear fuel, which determines the safety and reliability of nuclear fuel storage and transportation. The replacement of its storage and transportation scenario needs to be completed by the manipulator, but the application of SiC<sub>f</sub>/SiC wear, fracture, and nuclear leakage in the snatching process of brittle-flexible-rigid contact in the irradiation environment has been seriously restricted due to unclear understanding of the damage mechanism. Therefore, the effects of irradiation dose and clamping load on the friction characteristics of the contact interface between SiCf/SiC clad tube are studied in this paper, and the effects of irradiation parameters and clamping force on the static friction coefficient of the contact interface between the clad tube and flexible nitrile are obtained. Based on the Greenwood-Williamson tribological model, a numerical model of the shape and structure of the contact micro-convex at the micro-scale of the clamping interface is constructed by introducing the multi-surface integral, and finally verified by experiments. The research results show that there is a unique “Irradiation suppression zone” under the clamping condition of SiC<sub>f</sub>/SiC cladding tube under the nuclear irradiation environment, and the growth of static friction coefficient slows down until stagnates after irradiation reaches a certain extent (600 kGy), and there will be a decline when the irradiation dose continues to increase, among which the clamping force of 15.2 N within the irradiation interval of 1,000 kGy can meet the safety of nuclear environment operation. The results of this paper can provide an important theoretical basis and application guidance for the safe operation of SiCf/SiC cladding tubes in the storage and transportation clamping process.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":" 51","pages":""},"PeriodicalIF":6.8,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138485490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-frictional mechano-reinforcing porous nanowires scaffolds 纳米摩擦机械增强多孔纳米线支架
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2023-12-04 DOI: 10.1007/s40544-023-0815-x
Licheng Hua, Conghu Hu, Jingkang Zhang, Jin Li, Chenjie Gu, Bin Huang, Guangyong Li, Jianke Du, Wanlin Guo

Artificial biomaterials with dynamic mechano-responsive behaviors similar to those of biological tissues have been drawing great attention. In this study, we report a TiO2-based nanowire (TiO2NWs) scaffolds, which exhibit dynamic mechano-responsive behaviors varying with the number and amplitude of nano-deformation cycles. It is found that the elastic and adhesive forces in the TiO2NWs scaffolds can increase significantly after multiple cycles of nano-deformation. Further nanofriction experiments show the triboelectric effect of increasing elastic and adhesive forces during the nano-deformation cycles of TiO2NWs scaffolds. These properties allow the TiO2NW scaffolds to be designed and applied as intelligent artificial biomaterials to simulate biological tissues in the future.

具有类似于生物组织的动态力学响应行为的人工生物材料已引起人们的广泛关注。在这项研究中,我们报道了一种基于tio2的纳米线(TiO2NWs)支架,其表现出随纳米变形循环次数和振幅变化的动态力学响应行为。研究发现,经过多次纳米变形循环后,tio2 - nws支架的弹性和黏附力显著增加。进一步的纳米摩擦实验表明,在纳米变形循环过程中,二氧化钛纳米硅支架的弹性和粘附力增加了摩擦电效应。这些特性使得TiO2NW支架在未来可以作为模拟生物组织的智能人工生物材料进行设计和应用。
{"title":"Nano-frictional mechano-reinforcing porous nanowires scaffolds","authors":"Licheng Hua, Conghu Hu, Jingkang Zhang, Jin Li, Chenjie Gu, Bin Huang, Guangyong Li, Jianke Du, Wanlin Guo","doi":"10.1007/s40544-023-0815-x","DOIUrl":"https://doi.org/10.1007/s40544-023-0815-x","url":null,"abstract":"<p>Artificial biomaterials with dynamic mechano-responsive behaviors similar to those of biological tissues have been drawing great attention. In this study, we report a TiO<sub>2</sub>-based nanowire (TiO<sub>2</sub>NWs) scaffolds, which exhibit dynamic mechano-responsive behaviors varying with the number and amplitude of nano-deformation cycles. It is found that the elastic and adhesive forces in the TiO<sub>2</sub>NWs scaffolds can increase significantly after multiple cycles of nano-deformation. Further nanofriction experiments show the triboelectric effect of increasing elastic and adhesive forces during the nano-deformation cycles of TiO<sub>2</sub>NWs scaffolds. These properties allow the TiO<sub>2</sub>NW scaffolds to be designed and applied as intelligent artificial biomaterials to simulate biological tissues in the future.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":" 48","pages":""},"PeriodicalIF":6.8,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138485493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite element analysis and experimental validation of polymer–metal contacts in block-on-ring configuration 块环结构聚合物-金属接触的有限元分析与实验验证
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2023-12-04 DOI: 10.1007/s40544-023-0795-x
K. Y. Eayal Awwad, Khosro Fallahnezhad, B. F. Yousif, Ahmad Mostafa, Omar Alajarmeh, A. Shalwan, Xuesen Zeng

The wear profile analysis, obtained by different tribometers, is essential to characterise the wear mechanisms. However, most of the available methods did not take the stress distribution over the wear profile in consideration, which causes inaccurate analysis. In this study, the wear profile of polymer–metal contact, obtained by block-on-ring configuration under dry sliding conditions, was analysed using finite element modelling (FEM) and experimental investigation. Archard’s wear equation was integrated into a developed FORTRAN–UMESHMOTION code linked with Abaqus software. A varying wear coefficient (k) values covering both running-in and steady state regions, and a range of applied loads involving both mild and severe wear regions were measured and implemented in the FEM. The FEM was in good agreement with the experiments. The model reproduced the stress distribution profiles under variable testing conditions, while their values were affected by the sliding direction and maximum wear depth (hmax). The largest area of the wear profile, exposed to the average contact stresses, is defined as the normal zone. Whereas the critical zones were characterized by high stress concentrations reaching up to 10 times of that at the normal zone. The wear profile was mapped to identify the critical zone where the stress concentration is the key point in this definition. The surface features were examined in different regions using scanning electron microscope (SEM). Ultimately, SEM analysis showed severer damage features in the critical zone than that in the normal zone as proven by FEM. However, the literature data presented and considered the wear features the same at any point of the wear profile. In this study, the normal zone was determined at a stress value of about 0.5 MPa, whereas the critical zone was at about 5.5 MPa. The wear behaviour of these two zones showed totally different features from one another.

由不同的摩擦计获得的磨损轮廓分析对于表征磨损机制至关重要。然而,现有的方法大多没有考虑磨损剖面上的应力分布,导致分析不准确。在本研究中,采用有限元模型(FEM)和实验研究相结合的方法,分析了干滑动条件下由块环结构获得的聚合物-金属接触磨损轮廓。Archard的磨损方程被集成到与Abaqus软件链接的开发FORTRAN-UMESHMOTION代码中。在FEM中测量和实现了涵盖磨合和稳态区域的不同磨损系数(k)值,以及涉及轻度和重度磨损区域的一系列施加载荷。有限元计算结果与实验结果吻合较好。该模型再现了不同试验条件下的应力分布曲线,其数值受滑动方向和最大磨损深度(hmax)的影响。暴露在平均接触应力下的磨损轮廓的最大区域被定义为正常区域。而临界带的特点是应力浓度高,达到正常带的10倍。通过绘制磨损轮廓来确定应力集中的关键区域,这是该定义的关键点。利用扫描电子显微镜(SEM)观察了不同区域的表面特征。SEM分析结果表明,临界区损伤特征比正常区损伤特征更为严重。然而,文献数据提出并认为磨损特征在磨损曲线的任何一点都是相同的。本研究在0.5 MPa左右的应力值下确定了正常区,在5.5 MPa左右的应力值下确定了临界区。这两个区域的磨损行为表现出完全不同的特征。
{"title":"Finite element analysis and experimental validation of polymer–metal contacts in block-on-ring configuration","authors":"K. Y. Eayal Awwad, Khosro Fallahnezhad, B. F. Yousif, Ahmad Mostafa, Omar Alajarmeh, A. Shalwan, Xuesen Zeng","doi":"10.1007/s40544-023-0795-x","DOIUrl":"https://doi.org/10.1007/s40544-023-0795-x","url":null,"abstract":"<p>The wear profile analysis, obtained by different tribometers, is essential to characterise the wear mechanisms. However, most of the available methods did not take the stress distribution over the wear profile in consideration, which causes inaccurate analysis. In this study, the wear profile of polymer–metal contact, obtained by block-on-ring configuration under dry sliding conditions, was analysed using finite element modelling (FEM) and experimental investigation. Archard’s wear equation was integrated into a developed FORTRAN–UMESHMOTION code linked with Abaqus software. A varying wear coefficient (<i>k</i>) values covering both running-in and steady state regions, and a range of applied loads involving both mild and severe wear regions were measured and implemented in the FEM. The FEM was in good agreement with the experiments. The model reproduced the stress distribution profiles under variable testing conditions, while their values were affected by the sliding direction and maximum wear depth (<i>h</i><sub>max</sub>). The largest area of the wear profile, exposed to the average contact stresses, is defined as the normal zone. Whereas the critical zones were characterized by high stress concentrations reaching up to 10 times of that at the normal zone. The wear profile was mapped to identify the critical zone where the stress concentration is the key point in this definition. The surface features were examined in different regions using scanning electron microscope (SEM). Ultimately, SEM analysis showed severer damage features in the critical zone than that in the normal zone as proven by FEM. However, the literature data presented and considered the wear features the same at any point of the wear profile. In this study, the normal zone was determined at a stress value of about 0.5 MPa, whereas the critical zone was at about 5.5 MPa. The wear behaviour of these two zones showed totally different features from one another.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":" 68","pages":""},"PeriodicalIF":6.8,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138485416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydration lubrication modulated by water structure at TiO2-aqueous interfaces 水结构对tio2 -水界面水化润滑的调节作用
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2023-12-04 DOI: 10.1007/s40544-023-0750-x
Pingsu Ma, Yuan Liu, Ke Han, Yu Tian, Liran Ma

The nature of solid–liquid interfaces is of great significance in lubrication. Remarkable advances have been made in lubrication based on hydration effects. However, a detailed molecular-level understanding is still lacking. Here, we investigated water molecule behaviors at the TiO2–aqueous interfaces by the sum-frequency generation vibrational spectroscopy (SFG-VS) and atomic force microscope (AFM) to elucidate the fundamental role of solid–liquid interfaces in lubrication. Combined contributions of water structures and hydration effects were revealed, where water structures played the dominant role in lubrication for TiO2 surfaces of varying hydrophilicity, while hydration effects dominated with the increasing of ion concentrations. Superior lubrication is observed on the initial TiO2 surfaces with strongly H-bonded water molecules compared to the hydrophilic TiO2 surfaces with more disordered water. The stable ordered water arrangement with strong hydrogen bonds and the shear plane occurring between the ordered water layer and subsequent water layer may play a significant role in achieving lower friction. More adsorbed hydrated molecules with the increasing ionic concentration perturb ordered water but lead to the enhancement of hydration effects, which is the main reason for the improved lubrication for both TiO2. This work provides more insights into the detailed molecular-level understanding of the mechanism of hydration lubrication.

固液界面的性质在润滑中具有重要意义。基于水化效应的润滑已取得显著进展。然而,在分子水平上的详细认识仍然缺乏。本文采用和频产生振动谱(SFG-VS)和原子力显微镜(AFM)研究了水分子在tio2 -水界面上的行为,以阐明固液界面在润滑中的基本作用。结果表明,水结构和水化效应对不同亲水性TiO2表面的润滑起主导作用,而水化效应则随着离子浓度的增加而起主导作用。与具有更多无序水的亲水性TiO2表面相比,具有强h键水分子的初始TiO2表面具有更好的润滑作用。具有强氢键的稳定有序水排列以及有序水层与后续水层之间的剪切面可能对实现低摩擦起重要作用。随着离子浓度的增加,吸附的水合分子增多,有序水受到干扰,水化效果增强,这是两种TiO2润滑性能提高的主要原因。这项工作为水化润滑机理的详细分子水平理解提供了更多的见解。
{"title":"Hydration lubrication modulated by water structure at TiO2-aqueous interfaces","authors":"Pingsu Ma, Yuan Liu, Ke Han, Yu Tian, Liran Ma","doi":"10.1007/s40544-023-0750-x","DOIUrl":"https://doi.org/10.1007/s40544-023-0750-x","url":null,"abstract":"<p>The nature of solid–liquid interfaces is of great significance in lubrication. Remarkable advances have been made in lubrication based on hydration effects. However, a detailed molecular-level understanding is still lacking. Here, we investigated water molecule behaviors at the TiO<sub>2</sub>–aqueous interfaces by the sum-frequency generation vibrational spectroscopy (SFG-VS) and atomic force microscope (AFM) to elucidate the fundamental role of solid–liquid interfaces in lubrication. Combined contributions of water structures and hydration effects were revealed, where water structures played the dominant role in lubrication for TiO<sub>2</sub> surfaces of varying hydrophilicity, while hydration effects dominated with the increasing of ion concentrations. Superior lubrication is observed on the initial TiO<sub>2</sub> surfaces with strongly H-bonded water molecules compared to the hydrophilic TiO<sub>2</sub> surfaces with more disordered water. The stable ordered water arrangement with strong hydrogen bonds and the shear plane occurring between the ordered water layer and subsequent water layer may play a significant role in achieving lower friction. More adsorbed hydrated molecules with the increasing ionic concentration perturb ordered water but lead to the enhancement of hydration effects, which is the main reason for the improved lubrication for both TiO<sub>2</sub>. This work provides more insights into the detailed molecular-level understanding of the mechanism of hydration lubrication.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":" 49","pages":""},"PeriodicalIF":6.8,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138485492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating synthetic as-built additive manufacturing surface topography using progressive growing generative adversarial networks 利用渐进生长生成式对抗网络生成合成竣工增材制造表面地形图
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2023-12-04 DOI: 10.1007/s40544-023-0826-7
Junhyeon Seo, Prahalada Rao, B. Raeymaekers
{"title":"Generating synthetic as-built additive manufacturing surface topography using progressive growing generative adversarial networks","authors":"Junhyeon Seo, Prahalada Rao, B. Raeymaekers","doi":"10.1007/s40544-023-0826-7","DOIUrl":"https://doi.org/10.1007/s40544-023-0826-7","url":null,"abstract":"","PeriodicalId":12442,"journal":{"name":"Friction","volume":"8 3","pages":""},"PeriodicalIF":6.8,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138603942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoinduced superlubricity on TiO2 surfaces 二氧化钛表面的光诱导超润滑性
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2023-12-04 DOI: 10.1007/s40544-023-0736-8
Ke Han, Liran Ma, Yu Tian, Jianbin Luo
{"title":"Photoinduced superlubricity on TiO2 surfaces","authors":"Ke Han, Liran Ma, Yu Tian, Jianbin Luo","doi":"10.1007/s40544-023-0736-8","DOIUrl":"https://doi.org/10.1007/s40544-023-0736-8","url":null,"abstract":"","PeriodicalId":12442,"journal":{"name":"Friction","volume":"17 19","pages":"428 - 438"},"PeriodicalIF":6.8,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138604118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular design of recyclable thermosetting polyimide and its composite with excellent mechanical and tribological properties 具有优异机械和摩擦学特性的可回收热固性聚酰亚胺及其复合材料的分子设计
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2023-12-04 DOI: 10.1007/s40544-023-0770-6
Xiaoyue Wang, Zenghui Yang, Tingmei Wang, Qihua Wang, Xinrui Zhang, Song Li
{"title":"Molecular design of recyclable thermosetting polyimide and its composite with excellent mechanical and tribological properties","authors":"Xiaoyue Wang, Zenghui Yang, Tingmei Wang, Qihua Wang, Xinrui Zhang, Song Li","doi":"10.1007/s40544-023-0770-6","DOIUrl":"https://doi.org/10.1007/s40544-023-0770-6","url":null,"abstract":"","PeriodicalId":12442,"journal":{"name":"Friction","volume":"38 11","pages":"452 - 461"},"PeriodicalIF":6.8,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138603765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-temperature tribological performance of functionally graded Stellite 6/WC metal matrix composite coatings manufactured by laser-directed energy deposition 激光定向能沉积制备功能梯度Stellite 6/WC金属基复合涂层的高温摩擦学性能
IF 6.8 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2023-12-04 DOI: 10.1007/s40544-023-0790-2
Marta Ostolaza, Alaitz Zabala, Jon Iñaki Arrizubieta, Iñigo Llavori, Nagore Otegi, Aitzol Lamikiz

Wear-driven tool failure is one of the main hurdles in the industry. This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites. However, the maximum ceramic content is limited by cracking. In this work, the tribological behaviour of the functionally graded WC-ceramic-particle-reinforced Stellite 6 coatings is studied. To that end, the wear resistance at room temperature and 400 °C is investigated. Moreover, the tribological analysis is supported by crack sensitivity and hardness evaluation, which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement. Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content, hence improving the tribological behaviour, most notably at high temperatures. Additionally, a shift from abrasive to oxidative wear is observed in high-temperature wear testing.

磨损驱动的工具故障是该行业的主要障碍之一。这一问题可以通过陶瓷增强金属基复合材料的表面涂层来解决。然而,最大陶瓷含量受到裂纹的限制。本文研究了功能梯度wc -陶瓷颗粒增强钨铬钴合金6涂层的摩擦学性能。为此,对其在室温和400℃下的耐磨性进行了研究。此外,裂纹敏感性和硬度评价是摩擦学分析的基础,这在陶瓷颗粒增强复合材料的加工中至关重要。结果表明,功能梯度材料可以提高最大允许WC含量,从而改善摩擦性能,尤其是在高温下。此外,在高温磨损测试中观察到从磨料磨损到氧化磨损的转变。
{"title":"High-temperature tribological performance of functionally graded Stellite 6/WC metal matrix composite coatings manufactured by laser-directed energy deposition","authors":"Marta Ostolaza, Alaitz Zabala, Jon Iñaki Arrizubieta, Iñigo Llavori, Nagore Otegi, Aitzol Lamikiz","doi":"10.1007/s40544-023-0790-2","DOIUrl":"https://doi.org/10.1007/s40544-023-0790-2","url":null,"abstract":"<p>Wear-driven tool failure is one of the main hurdles in the industry. This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites. However, the maximum ceramic content is limited by cracking. In this work, the tribological behaviour of the functionally graded WC-ceramic-particle-reinforced Stellite 6 coatings is studied. To that end, the wear resistance at room temperature and 400 °C is investigated. Moreover, the tribological analysis is supported by crack sensitivity and hardness evaluation, which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement. Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content, hence improving the tribological behaviour, most notably at high temperatures. Additionally, a shift from abrasive to oxidative wear is observed in high-temperature wear testing.\u0000</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":" 67","pages":""},"PeriodicalIF":6.8,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138485417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Friction
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1