首页 > 最新文献

Frontiers of Optoelectronics最新文献

英文 中文
Light response and adsorption interaction of black phosphorus quantum dots and single-layer graphene phototransistor. 黑磷量子点与单层石墨烯光电晶体管的光响应及吸附相互作用。
IF 5.4 3区 工程技术 Q1 Engineering Pub Date : 2023-05-24 DOI: 10.1007/s12200-023-00065-4
Qi Han, Yadong Jiang, Xianchao Liu, Chaoyi Zhang, Jun Wang

Black phosphorus quantum dots (BPQDs) are synthesized and combined with graphene sheet. The fabricated BPQDs/graphene devices are capable of detecting visible and near infrared radiation. The adsorption effect of BPQDs in graphene is clarified by the relationship of the photocurrent and the shift of the Dirac point with different substrate. The Dirac point moves toward a neutral point under illumination with both SiO2/Si and Si3N4/Si substrates, indicating an anti-doped feature of photo-excitation. To our knowledge, this provides the first observation of photoresist induced photocurrent in such systems. Without the influence of the photoresist the device can respond to infrared light up to 980 nm wavelength in vacuum in a cryostat, in which the photocurrent is positive and photoconduction effect is believed to dominate the photocurrent. Finally, the adsorption effect is modeled using a first-principle method to give a picture of charge transfer and orbital contribution in the interaction of phosphorus atoms and single-layer graphene.

合成了黑磷量子点(BPQDs)并与石墨烯片结合。制备的bpqd /石墨烯器件能够检测可见光和近红外辐射。通过光电流与Dirac点位移的关系,阐明了BPQDs在石墨烯中的吸附效果。在SiO2/Si和Si3N4/Si衬底的光照下,Dirac点向中性点移动,表明光激发具有抗掺杂特性。据我们所知,这提供了在这种系统中第一次观察光刻胶诱导光电流。在不受光刻胶影响的情况下,该器件可以在真空低温恒温器中响应波长高达980 nm的红外光,其中光电流为正,并且光导效应被认为是主导光电流。最后,利用第一性原理方法对磷原子与单层石墨烯相互作用中的电荷转移和轨道贡献进行了建模。
{"title":"Light response and adsorption interaction of black phosphorus quantum dots and single-layer graphene phototransistor.","authors":"Qi Han,&nbsp;Yadong Jiang,&nbsp;Xianchao Liu,&nbsp;Chaoyi Zhang,&nbsp;Jun Wang","doi":"10.1007/s12200-023-00065-4","DOIUrl":"https://doi.org/10.1007/s12200-023-00065-4","url":null,"abstract":"<p><p>Black phosphorus quantum dots (BPQDs) are synthesized and combined with graphene sheet. The fabricated BPQDs/graphene devices are capable of detecting visible and near infrared radiation. The adsorption effect of BPQDs in graphene is clarified by the relationship of the photocurrent and the shift of the Dirac point with different substrate. The Dirac point moves toward a neutral point under illumination with both SiO<sub>2</sub>/Si and Si<sub>3</sub>N<sub>4</sub>/Si substrates, indicating an anti-doped feature of photo-excitation. To our knowledge, this provides the first observation of photoresist induced photocurrent in such systems. Without the influence of the photoresist the device can respond to infrared light up to 980 nm wavelength in vacuum in a cryostat, in which the photocurrent is positive and photoconduction effect is believed to dominate the photocurrent. Finally, the adsorption effect is modeled using a first-principle method to give a picture of charge transfer and orbital contribution in the interaction of phosphorus atoms and single-layer graphene.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209371/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9526233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient soluble PTCBI-type non-fullerene acceptor materials for organic solar cells. 有机太阳能电池用高效可溶性ptcbi型非富勒烯受体材料。
IF 5.4 3区 工程技术 Q1 Engineering Pub Date : 2023-04-23 DOI: 10.1007/s12200-023-00063-6
Xiang Gao, Fengbo Sun, Xinzhu Tong, Xufan Zheng, Yinuo Wang, Cong Xiao, Pengcheng Li, Renqiang Yang, Xunchang Wang, Zhitian Liu

Single perylene diimide (PDI) used as a non-fullerene acceptor (NFA) in organic solar cells (OSCs) is enticing because of its low cost and excellent stability. To improve the photovoltaic performance, it is vital to narrow the bandgap and regulate the stacking behavior. To address this challenge, we synthesize soluble perylenetetracarboxylic bisbenzimidazole (PTCBI) molecules with a bulky side chain at the bay region, by replacing the widely used "swallow tail" type alkyl chains at the imide position of PDI molecules with a planar benzimidazole structure. Compared with PDI molecules, PTCBI molecules exhibit red-shifted UV-vis absorption spectra with larger extinction coefficient, and one magnitude higher electron mobility. Finally, OSCs based on one soluble PTCBI-type NFA, namely MAS-7, exhibit a champion power conversion efficiency (PCE) of 4.34%, which is significantly higher than that of the corresponding PDI-based OSCs and is the highest PCE of PTCBI-based OSCs reported. These results highlight the potential of soluble PTCBI derivatives as NFAs in OSCs.

在有机太阳能电池(OSCs)中,单苝二酰亚胺(PDI)作为非富勒烯受体(NFA)具有低廉的成本和优异的稳定性。为了提高光电性能,缩小带隙和调节堆叠行为是至关重要的。为了解决这一问题,我们用一个平面苯并咪唑结构取代PDI分子亚胺位置广泛使用的“燕尾”型烷基链,合成了在海湾区具有大侧链的可溶性苝四羧基双苯并咪唑(PTCBI)分子。与PDI分子相比,PTCBI分子的紫外-可见吸收光谱红移,消光系数大,电子迁移率高一个数量级。最后,基于一种可溶ptcbi型NFA (MAS-7)的OSCs表现出4.34%的冠军功率转换效率(PCE),显著高于相应的pdi型OSCs,是目前报道的ptcbi型OSCs中最高的PCE。这些结果突出了可溶性PTCBI衍生物在OSCs中作为NFAs的潜力。
{"title":"Efficient soluble PTCBI-type non-fullerene acceptor materials for organic solar cells.","authors":"Xiang Gao,&nbsp;Fengbo Sun,&nbsp;Xinzhu Tong,&nbsp;Xufan Zheng,&nbsp;Yinuo Wang,&nbsp;Cong Xiao,&nbsp;Pengcheng Li,&nbsp;Renqiang Yang,&nbsp;Xunchang Wang,&nbsp;Zhitian Liu","doi":"10.1007/s12200-023-00063-6","DOIUrl":"https://doi.org/10.1007/s12200-023-00063-6","url":null,"abstract":"<p><p>Single perylene diimide (PDI) used as a non-fullerene acceptor (NFA) in organic solar cells (OSCs) is enticing because of its low cost and excellent stability. To improve the photovoltaic performance, it is vital to narrow the bandgap and regulate the stacking behavior. To address this challenge, we synthesize soluble perylenetetracarboxylic bisbenzimidazole (PTCBI) molecules with a bulky side chain at the bay region, by replacing the widely used \"swallow tail\" type alkyl chains at the imide position of PDI molecules with a planar benzimidazole structure. Compared with PDI molecules, PTCBI molecules exhibit red-shifted UV-vis absorption spectra with larger extinction coefficient, and one magnitude higher electron mobility. Finally, OSCs based on one soluble PTCBI-type NFA, namely MAS-7, exhibit a champion power conversion efficiency (PCE) of 4.34%, which is significantly higher than that of the corresponding PDI-based OSCs and is the highest PCE of PTCBI-based OSCs reported. These results highlight the potential of soluble PTCBI derivatives as NFAs in OSCs.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9423006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-supervised zero-shot dehazing network based on dark channel prior. 基于暗信道先验的自监督零射除雾网络。
IF 5.4 3区 工程技术 Q1 Engineering Pub Date : 2023-04-14 DOI: 10.1007/s12200-023-00062-7
Xinjie Xiao, Yuanhong Ren, Zhiwei Li, Nannan Zhang, Wuneng Zhou

Most learning-based methods previously used in image dehazing employ a supervised learning strategy, which is time-consuming and requires a large-scale dataset. However, large-scale datasets are difficult to obtain. Here, we propose a self-supervised zero-shot dehazing network (SZDNet) based on dark channel prior, which uses a hazy image generated from the output dehazed image as a pseudo-label to supervise the optimization process of the network. Additionally, we use a novel multichannel quad-tree algorithm to estimate atmospheric light values, which is more accurate than previous methods. Furthermore, the sum of the cosine distance and the mean squared error between the pseudo-label and the input image is applied as a loss function to enhance the quality of the dehazed image. The most significant advantage of the SZDNet is that it does not require a large dataset for training before performing the dehazing task. Extensive testing shows promising performances of the proposed method in both qualitative and quantitative evaluations when compared with state-of-the-art methods.

以前用于图像去雾的大多数基于学习的方法采用监督学习策略,这种方法耗时且需要大规模的数据集。然而,大规模的数据集很难获得。在此,我们提出了一种基于暗通道先验的自监督零镜头去雾网络(SZDNet),该网络使用由输出去雾图像生成的模糊图像作为伪标签来监督网络的优化过程。此外,我们还使用了一种新的多通道四叉树算法来估计大气光值,该算法比以前的方法更准确。此外,伪标签与输入图像之间的余弦距离和均方误差之和作为损失函数,以提高去雾图像的质量。SZDNet最显著的优点是,在执行去雾任务之前,它不需要一个大的数据集进行训练。广泛的测试表明,与最先进的方法相比,所提出的方法在定性和定量评估方面都具有良好的性能。
{"title":"Self-supervised zero-shot dehazing network based on dark channel prior.","authors":"Xinjie Xiao,&nbsp;Yuanhong Ren,&nbsp;Zhiwei Li,&nbsp;Nannan Zhang,&nbsp;Wuneng Zhou","doi":"10.1007/s12200-023-00062-7","DOIUrl":"https://doi.org/10.1007/s12200-023-00062-7","url":null,"abstract":"<p><p>Most learning-based methods previously used in image dehazing employ a supervised learning strategy, which is time-consuming and requires a large-scale dataset. However, large-scale datasets are difficult to obtain. Here, we propose a self-supervised zero-shot dehazing network (SZDNet) based on dark channel prior, which uses a hazy image generated from the output dehazed image as a pseudo-label to supervise the optimization process of the network. Additionally, we use a novel multichannel quad-tree algorithm to estimate atmospheric light values, which is more accurate than previous methods. Furthermore, the sum of the cosine distance and the mean squared error between the pseudo-label and the input image is applied as a loss function to enhance the quality of the dehazed image. The most significant advantage of the SZDNet is that it does not require a large dataset for training before performing the dehazing task. Extensive testing shows promising performances of the proposed method in both qualitative and quantitative evaluations when compared with state-of-the-art methods.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102283/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9309418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated contra-directionally coupled chirped Bragg grating waveguide with a linear group delay spectrum. 具有线性群延迟谱的集成对向耦合啁啾布拉格光栅波导。
IF 5.4 3区 工程技术 Q1 Engineering Pub Date : 2023-04-10 DOI: 10.1007/s12200-023-00061-8
Xudong Gao, Zhenzhu Xu, Yupeng Zhu, Chengkun Yang, Shoubao Han, Zongming Duan, Fan Zhang, Jianji Dong

Due to the advantages of low propagation loss, wide operation bandwidth, continuous delay tuning, fast tuning speed, and compact footprints, chirped Bragg grating waveguide has great application potential in wideband phased array beamforming systems. However, the disadvantage of large group delay error hinders their practical applications. The nonlinear group delay spectrum is one of the main factors causing large group delay errors. To solve this problem, waveguides with nonlinear gradient widths are adopted in this study to compensate for the nonlinear effect of the grating apodization on the mode effective index. As a result, a linear group delay spectrum is obtained in the experiment, and the group delay error is halved.

啁啾布拉格光栅波导具有传播损耗低、工作带宽宽、连续延迟调谐、调谐速度快、体积小等优点,在宽带相控阵波束形成系统中具有很大的应用潜力。然而,群延迟误差大的缺点阻碍了它们的实际应用。非线性群时延谱是造成大群时延误差的主要因素之一。为了解决这一问题,本研究采用了非线性梯度宽度的波导来补偿光栅顶点化对模式有效指数的非线性影响。实验得到了线性群延迟谱,使群延迟误差减半。
{"title":"Integrated contra-directionally coupled chirped Bragg grating waveguide with a linear group delay spectrum.","authors":"Xudong Gao,&nbsp;Zhenzhu Xu,&nbsp;Yupeng Zhu,&nbsp;Chengkun Yang,&nbsp;Shoubao Han,&nbsp;Zongming Duan,&nbsp;Fan Zhang,&nbsp;Jianji Dong","doi":"10.1007/s12200-023-00061-8","DOIUrl":"https://doi.org/10.1007/s12200-023-00061-8","url":null,"abstract":"<p><p>Due to the advantages of low propagation loss, wide operation bandwidth, continuous delay tuning, fast tuning speed, and compact footprints, chirped Bragg grating waveguide has great application potential in wideband phased array beamforming systems. However, the disadvantage of large group delay error hinders their practical applications. The nonlinear group delay spectrum is one of the main factors causing large group delay errors. To solve this problem, waveguides with nonlinear gradient widths are adopted in this study to compensate for the nonlinear effect of the grating apodization on the mode effective index. As a result, a linear group delay spectrum is obtained in the experiment, and the group delay error is halved.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086080/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9289592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and modeling of high-performance mid-wave infrared InAsSb-based nBn photodetector using barrier band engineering approaches. 基于势垒带工程方法的高性能中波红外inassb nBn光电探测器的设计与建模。
IF 5.4 3区 工程技术 Q1 Engineering Pub Date : 2023-04-06 DOI: 10.1007/s12200-023-00060-9
Maryam Shaveisi, Peiman Aliparast

We report a new nBn photodetector (nBn-PD) design based on the InAlSb/AlSb/InAlSb/InAsSb material systems for mid-wavelength infrared (MWIR) applications. In this structure, delta-doped compositionally graded barrier (δ-DCGB) layers are suggested, the advantage of which is creation of a near zero valence band offset in nBn photodetectors. The design of the δ-DCGB nBn-PD device includes a 3 µm absorber layer (n-InAs0.81Sb0.19), a unipolar barrier layer (AlSb), and 0.2 μm contact layer (n-InAs0.81Sb0.19) as well as a 0.116 µm linear grading region (InAlSb) from the contact to the barrier layer and also from the barrier to the absorber layer. The analysis includes various dark current contributions, such as the Shockley-Read-Hall (SRH), trap-assisted tunneling (TAT), Auger, and Radiative recombination mechanisms, to acquire more precise results. Consequently, we show that the method used in the nBn device design leads to diffusion-limited dark current so that the dark current density is 2.596 × 10-8 A/cm2 at 150 K and a bias voltage of - 0.2 V. The proposed nBn detector exhibits a 50% cutoff wavelength of more than 5 µm, the peak current responsivity is 1.6 A/W at a wavelength of 4.5 µm and a - 0.2 V bias with 0.05 W/cm2 backside illumination without anti-reflective coating. The maximum quantum efficiency at 4.5 µm is about 48.6%, and peak specific detectivity (D*) is of 3.37 × 1010 cm⋅Hz1/2/W. Next, to solve the reflection concern in this nBn devices, we use a BaF2 anti-reflection coating layer due to its high transmittance in the MWIR window. It leads to an increase of almost 100% in the optical response metrics, such as the current responsivity, quantum efficiency, and detectivity, compared to the optical response without an anti-reflection coating layer.

本文报道了一种基于InAlSb/AlSb/InAlSb/InAsSb材料体系的新型nBn光探测器(nBn- pd)设计,用于中波长红外(MWIR)应用。在这种结构中,提出了δ掺杂的成分梯度势垒(δ-DCGB)层,其优点是在nBn光电探测器中产生接近零的价带偏移。δ-DCGB nBn-PD器件的设计包括3 μm的吸收层(n-InAs0.81Sb0.19)、单极势垒层(AlSb)、0.2 μm的接触层(n-InAs0.81Sb0.19)以及从接触层到势垒层和势垒到吸收层的0.116 μm线性分级区(InAlSb)。分析包括各种暗电流贡献,如肖克利-里德-霍尔(SRH),陷阱辅助隧道(TAT),俄钻和辐射重组机制,以获得更精确的结果。因此,我们证明了在nBn器件设计中使用的方法导致了扩散限制的暗电流,因此在150 K和- 0.2 V的偏置电压下,暗电流密度为2.596 × 10-8 A/cm2。该nBn探测器的50%截止波长大于5µm,在波长为4.5µm时的峰值电流响应率为1.6 a /W,在无抗反射涂层的情况下,背面照度为0.05 W/cm2,偏置为- 0.2 V。在4.5µm处的最大量子效率约为48.6%,峰值比探测率(D*)为3.37 × 1010 cm·Hz1/2/W。其次,为了解决nBn器件的反射问题,我们使用了BaF2抗反射涂层,因为它在MWIR窗口具有高透射率。与没有增透镀膜层的光学响应相比,它可以使光学响应指标(如电流响应率、量子效率和探测性)提高近100%。
{"title":"Design and modeling of high-performance mid-wave infrared InAsSb-based nBn photodetector using barrier band engineering approaches.","authors":"Maryam Shaveisi,&nbsp;Peiman Aliparast","doi":"10.1007/s12200-023-00060-9","DOIUrl":"https://doi.org/10.1007/s12200-023-00060-9","url":null,"abstract":"<p><p>We report a new nBn photodetector (nBn-PD) design based on the InAlSb/AlSb/InAlSb/InAsSb material systems for mid-wavelength infrared (MWIR) applications. In this structure, delta-doped compositionally graded barrier (δ-DCGB) layers are suggested, the advantage of which is creation of a near zero valence band offset in nBn photodetectors. The design of the δ-DCGB nBn-PD device includes a 3 µm absorber layer (n-InAs<sub>0.81</sub>Sb<sub>0.19</sub>), a unipolar barrier layer (AlSb), and 0.2 μm contact layer (n-InAs<sub>0.81</sub>Sb<sub>0.19</sub>) as well as a 0.116 µm linear grading region (InAlSb) from the contact to the barrier layer and also from the barrier to the absorber layer. The analysis includes various dark current contributions, such as the Shockley-Read-Hall (SRH), trap-assisted tunneling (TAT), Auger, and Radiative recombination mechanisms, to acquire more precise results. Consequently, we show that the method used in the nBn device design leads to diffusion-limited dark current so that the dark current density is 2.596 × 10<sup>-8</sup> A/cm<sup>2</sup> at 150 K and a bias voltage of - 0.2 V. The proposed nBn detector exhibits a 50% cutoff wavelength of more than 5 µm, the peak current responsivity is 1.6 A/W at a wavelength of 4.5 µm and a - 0.2 V bias with 0.05 W/cm<sup>2</sup> backside illumination without anti-reflective coating. The maximum quantum efficiency at 4.5 µm is about 48.6%, and peak specific detectivity (D*) is of 3.37 × 10<sup>10</sup> cm⋅Hz<sup>1/2</sup>/W. Next, to solve the reflection concern in this nBn devices, we use a BaF<sub>2</sub> anti-reflection coating layer due to its high transmittance in the MWIR window. It leads to an increase of almost 100% in the optical response metrics, such as the current responsivity, quantum efficiency, and detectivity, compared to the optical response without an anti-reflection coating layer.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9261074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
High-resolution silicon photonic sensor based on a narrowband microwave photonic filter. 基于窄带微波光子滤波器的高分辨率硅光子传感器。
IF 5.4 3区 工程技术 Q1 Engineering Pub Date : 2023-03-27 DOI: 10.1007/s12200-023-00059-2
Haiyan Luo, Lu Xu, Jie Yan, Qiansheng Wang, Wenwu Wang, Xi Xiao

Microwave photonic sensors are promising for improving sensing resolution and speed of optical sensors. In this paper, a high-sensitivity, high-resolution temperature sensor based on microwave photonic filter (MPF) is proposed and demonstrated. A micro-ring resonator (MRR) based on silicon-on-insulator is used as the sensing probe to convert the wavelength shift caused by temperature change to microwave frequency variation via the MPF system. By analyzing the frequency shift with high-speed and high-resolution monitors, the temperature change can be detected. The MRR is designed with multi-mode ridge waveguides to reduce propagation loss and achieves an ultra-high Q factor of 1.01 × 106. The proposed MPF has a single passband with a narrow bandwidth of 192 MHz. With clear peak-frequency shift, the sensitivity of the MPF-based temperature sensor is measured to be 10.22 GHz/°C. Due to higher sensitivity and ultra-narrow bandwidth of the MPF, the sensing resolution of the proposed temperature sensor is as high as 0.019 °C.

微波光子传感器在提高光学传感器的传感分辨率和速度方面具有广阔的应用前景。本文提出并演示了一种基于微波光子滤波器的高灵敏度、高分辨率温度传感器。采用基于绝缘体上硅的微环谐振器(MRR)作为传感探头,通过MPF系统将温度变化引起的波长位移转换为微波频率变化。利用高速、高分辨率的监测器对频移进行分析,可以检测到温度的变化。MRR采用多模脊波导设计,降低了传输损耗,并实现了1.01 × 106的超高Q因子。建议的强积金只有一个192兆赫的窄带。基于mpf的温度传感器具有明显的峰值频移,测量灵敏度为10.22 GHz/°C。由于MPF具有更高的灵敏度和超窄的带宽,所提出的温度传感器的传感分辨率高达0.019°C。
{"title":"High-resolution silicon photonic sensor based on a narrowband microwave photonic filter.","authors":"Haiyan Luo,&nbsp;Lu Xu,&nbsp;Jie Yan,&nbsp;Qiansheng Wang,&nbsp;Wenwu Wang,&nbsp;Xi Xiao","doi":"10.1007/s12200-023-00059-2","DOIUrl":"https://doi.org/10.1007/s12200-023-00059-2","url":null,"abstract":"<p><p>Microwave photonic sensors are promising for improving sensing resolution and speed of optical sensors. In this paper, a high-sensitivity, high-resolution temperature sensor based on microwave photonic filter (MPF) is proposed and demonstrated. A micro-ring resonator (MRR) based on silicon-on-insulator is used as the sensing probe to convert the wavelength shift caused by temperature change to microwave frequency variation via the MPF system. By analyzing the frequency shift with high-speed and high-resolution monitors, the temperature change can be detected. The MRR is designed with multi-mode ridge waveguides to reduce propagation loss and achieves an ultra-high Q factor of 1.01 × 10<sup>6</sup>. The proposed MPF has a single passband with a narrow bandwidth of 192 MHz. With clear peak-frequency shift, the sensitivity of the MPF-based temperature sensor is measured to be 10.22 GHz/°C. Due to higher sensitivity and ultra-narrow bandwidth of the MPF, the sensing resolution of the proposed temperature sensor is as high as 0.019 °C.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043093/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9208817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piezoelectric fibers for flexible and wearable electronics. 用于柔性和可穿戴电子设备的压电纤维。
IF 5.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-03-22 DOI: 10.1007/s12200-023-00058-3
Shengtai Qian, Xingbei Wang, Wei Yan

Flexible and wearable electronics represent paramount technologies offering revolutionized solutions for medical diagnosis and therapy, nerve and organ interfaces, fabric computation, robot-in-medicine and metaverse. Being ubiquitous in everyday life, piezoelectric materials and devices play a vital role in flexible and wearable electronics with their intriguing functionalities, including energy harvesting, sensing and actuation, personal health care and communications. As a new emerging flexible and wearable technology, fiber-shaped piezoelectric devices offer unique advantages over conventional thin-film counterparts. In this review, we survey the recent scientific and technological breakthroughs in thermally drawn piezoelectric fibers and fiber-enabled intelligent fabrics. We highlight the fiber materials, fiber architecture, fabrication, device integration as well as functions that deliver higher forms of unique applications across smart sensing, health care, space security, actuation and energy domains. We conclude with a critical analysis of existing challenges and opportunities that will be important for the continued progress of this field.

柔性和可穿戴电子设备是最重要的技术,可为医疗诊断和治疗、神经和器官接口、织物计算、医疗机器人和元宇宙提供革命性的解决方案。压电材料和器件在日常生活中无处不在,在柔性和可穿戴电子设备中发挥着重要作用,具有能量收集、传感和驱动、个人医疗保健和通信等引人入胜的功能。作为一种新兴的柔性和可穿戴技术,纤维状压电器件与传统的薄膜器件相比具有独特的优势。在这篇综述中,我们将介绍热拉压电纤维和纤维智能织物领域近期取得的科学和技术突破。我们重点介绍了纤维材料、纤维结构、制造、设备集成以及在智能传感、医疗保健、空间安全、驱动和能源领域提供更高形式独特应用的功能。最后,我们对现有的挑战和机遇进行了批判性分析,这些挑战和机遇对该领域的持续发展至关重要。
{"title":"Piezoelectric fibers for flexible and wearable electronics.","authors":"Shengtai Qian,&nbsp;Xingbei Wang,&nbsp;Wei Yan","doi":"10.1007/s12200-023-00058-3","DOIUrl":"https://doi.org/10.1007/s12200-023-00058-3","url":null,"abstract":"<p><p>Flexible and wearable electronics represent paramount technologies offering revolutionized solutions for medical diagnosis and therapy, nerve and organ interfaces, fabric computation, robot-in-medicine and metaverse. Being ubiquitous in everyday life, piezoelectric materials and devices play a vital role in flexible and wearable electronics with their intriguing functionalities, including energy harvesting, sensing and actuation, personal health care and communications. As a new emerging flexible and wearable technology, fiber-shaped piezoelectric devices offer unique advantages over conventional thin-film counterparts. In this review, we survey the recent scientific and technological breakthroughs in thermally drawn piezoelectric fibers and fiber-enabled intelligent fabrics. We highlight the fiber materials, fiber architecture, fabrication, device integration as well as functions that deliver higher forms of unique applications across smart sensing, health care, space security, actuation and energy domains. We conclude with a critical analysis of existing challenges and opportunities that will be important for the continued progress of this field.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030726/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9174042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Thermally activated delayed fluorescent small molecule sensitized fluorescent polymers with reduced concentration-quenching for efficient electroluminescence. 热激活延迟荧光小分子敏化荧光聚合物与降低浓度猝灭高效电致发光。
IF 5.4 3区 工程技术 Q1 Engineering Pub Date : 2023-03-21 DOI: 10.1007/s12200-022-00056-x
Qin Xue, Mingfang Huo, Guohua Xie

Thermally activated delayed fluorescence (TADF) small molecule bis-[3-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone (m-ACSO2) was used as a universal host to sensitize three conventional fluorescent polymers for maximizing the electroluminescent performance. The excitons were utilized via inter-molecular energy transfer and the non-radiative decays were successfully refrained in the condensed states. Therefore, the significant enhancement of the electroluminescent efficiencies was demonstrated. For instance, after doping poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) into m-ACSO2, the external quantum efficiency (EQE) was improved by a factor of 17.0 in the solution-processed organic light-emitting device (OLED), as compared with the device with neat F8BT. In terms of the other well-known fluorescent polymers, i.e., poly (para-phenylene vinylene) copolymer (Super Yellow, SY) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), their EQEs in the devices were respectively enhanced by 70% and 270%, compared with the reference devices based on the conventional host 1,3-di(9H-carbazol-9-yl) benzene (mCP). Besides the improved charge balance in the bipolar TADF host, these were partially ascribed to reduced fluorescence quenching in the mixed films.

以热激活延迟荧光(TADF)小分子双-[3-(9,9-二甲基-9,10-二氢吖啶)-苯基]-砜(m-ACSO2)为通用载体,对三种传统荧光聚合物进行了致敏,使其电致发光性能最大化。激子通过分子间能量传递被利用,在凝聚态中成功地抑制了非辐射衰变。因此,电致发光效率得到了显著的提高。例如,在m-ACSO2中掺杂聚(9,9-二辛基芴-共苯并噻唑)(F8BT)后,溶液处理有机发光器件(OLED)的外量子效率(EQE)比纯F8BT器件提高了17.0倍。对于其他知名的荧光聚合物,即聚(对苯基乙烯)共聚物(超级黄,SY)和聚[2-甲氧基-5-(2-乙基己氧基)-1,4-苯基乙烯](MEH-PPV),与基于传统宿主1,3-二(9h -卡唑-9-基)苯(mCP)的参考装置相比,它们在装置中的EQEs分别提高了70%和270%。除了改善了双极性TADF主体中的电荷平衡外,这部分归因于混合膜中荧光猝灭的减少。
{"title":"Thermally activated delayed fluorescent small molecule sensitized fluorescent polymers with reduced concentration-quenching for efficient electroluminescence.","authors":"Qin Xue,&nbsp;Mingfang Huo,&nbsp;Guohua Xie","doi":"10.1007/s12200-022-00056-x","DOIUrl":"https://doi.org/10.1007/s12200-022-00056-x","url":null,"abstract":"<p><p>Thermally activated delayed fluorescence (TADF) small molecule bis-[3-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone (m-ACSO2) was used as a universal host to sensitize three conventional fluorescent polymers for maximizing the electroluminescent performance. The excitons were utilized via inter-molecular energy transfer and the non-radiative decays were successfully refrained in the condensed states. Therefore, the significant enhancement of the electroluminescent efficiencies was demonstrated. For instance, after doping poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) into m-ACSO2, the external quantum efficiency (EQE) was improved by a factor of 17.0 in the solution-processed organic light-emitting device (OLED), as compared with the device with neat F8BT. In terms of the other well-known fluorescent polymers, i.e., poly (para-phenylene vinylene) copolymer (Super Yellow, SY) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), their EQEs in the devices were respectively enhanced by 70% and 270%, compared with the reference devices based on the conventional host 1,3-di(9H-carbazol-9-yl) benzene (mCP). Besides the improved charge balance in the bipolar TADF host, these were partially ascribed to reduced fluorescence quenching in the mixed films.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027968/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9509720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Co-packaged optics (CPO): status, challenges, and solutions. 共封装光学(CPO):现状、挑战和解决方案。
IF 5.4 3区 工程技术 Q1 Engineering Pub Date : 2023-03-20 DOI: 10.1007/s12200-022-00055-y
Min Tan, Jiang Xu, Siyang Liu, Junbo Feng, Hua Zhang, Chaonan Yao, Shixi Chen, Hangyu Guo, Gengshi Han, Zhanhao Wen, Bao Chen, Yu He, Xuqiang Zheng, Da Ming, Yaowen Tu, Qiang Fu, Nan Qi, Dan Li, Li Geng, Song Wen, Fenghe Yang, Huimin He, Fengman Liu, Haiyun Xue, Yuhang Wang, Ciyuan Qiu, Guangcan Mi, Yanbo Li, Tianhai Chang, Mingche Lai, Luo Zhang, Qinfen Hao, Mengyuan Qin

Due to the rise of 5G, IoT, AI, and high-performance computing applications, datacenter traffic has grown at a compound annual growth rate of nearly 30%. Furthermore, nearly three-fourths of the datacenter traffic resides within datacenters. The conventional pluggable optics increases at a much slower rate than that of datacenter traffic. The gap between application requirements and the capability of conventional pluggable optics keeps increasing, a trend that is unsustainable. Co-packaged optics (CPO) is a disruptive approach to increasing the interconnecting bandwidth density and energy efficiency by dramatically shortening the electrical link length through advanced packaging and co-optimization of electronics and photonics. CPO is widely regarded as a promising solution for future datacenter interconnections, and silicon platform is the most promising platform for large-scale integration. Leading international companies (e.g., Intel, Broadcom and IBM) have heavily investigated in CPO technology, an inter-disciplinary research field that involves photonic devices, integrated circuits design, packaging, photonic device modeling, electronic-photonic co-simulation, applications, and standardization. This review aims to provide the readers a comprehensive overview of the state-of-the-art progress of CPO in silicon platform, identify the key challenges, and point out the potential solutions, hoping to encourage collaboration between different research fields to accelerate the development of CPO technology.

由于5G、物联网、人工智能和高性能计算应用的兴起,数据中心流量以近30%的年复合增长率增长。此外,近四分之三的数据中心流量驻留在数据中心内。传统的可插拔光学器件的增长速度远低于数据中心流量的增长速度。传统可插拔光学器件的应用需求与性能之间的差距越来越大,这种趋势是不可持续的。共封装光学(CPO)是一种颠覆性的方法,通过先进的封装和电子和光子学的协同优化,大大缩短电链路长度,从而提高互连带宽密度和能量效率。CPO被广泛认为是未来数据中心互连的一种很有前途的解决方案,而硅平台是大规模集成最有前途的平台。领先的国际公司(如英特尔、博通和IBM)已经对CPO技术进行了大量研究,这是一个跨学科的研究领域,涉及光子器件、集成电路设计、封装、光子器件建模、电子-光子联合仿真、应用和标准化。本文旨在为读者提供硅平台上CPO的最新进展的全面概述,识别关键挑战,并指出潜在的解决方案,希望鼓励不同研究领域之间的合作,以加速CPO技术的发展。
{"title":"Co-packaged optics (CPO): status, challenges, and solutions.","authors":"Min Tan,&nbsp;Jiang Xu,&nbsp;Siyang Liu,&nbsp;Junbo Feng,&nbsp;Hua Zhang,&nbsp;Chaonan Yao,&nbsp;Shixi Chen,&nbsp;Hangyu Guo,&nbsp;Gengshi Han,&nbsp;Zhanhao Wen,&nbsp;Bao Chen,&nbsp;Yu He,&nbsp;Xuqiang Zheng,&nbsp;Da Ming,&nbsp;Yaowen Tu,&nbsp;Qiang Fu,&nbsp;Nan Qi,&nbsp;Dan Li,&nbsp;Li Geng,&nbsp;Song Wen,&nbsp;Fenghe Yang,&nbsp;Huimin He,&nbsp;Fengman Liu,&nbsp;Haiyun Xue,&nbsp;Yuhang Wang,&nbsp;Ciyuan Qiu,&nbsp;Guangcan Mi,&nbsp;Yanbo Li,&nbsp;Tianhai Chang,&nbsp;Mingche Lai,&nbsp;Luo Zhang,&nbsp;Qinfen Hao,&nbsp;Mengyuan Qin","doi":"10.1007/s12200-022-00055-y","DOIUrl":"https://doi.org/10.1007/s12200-022-00055-y","url":null,"abstract":"<p><p>Due to the rise of 5G, IoT, AI, and high-performance computing applications, datacenter traffic has grown at a compound annual growth rate of nearly 30%. Furthermore, nearly three-fourths of the datacenter traffic resides within datacenters. The conventional pluggable optics increases at a much slower rate than that of datacenter traffic. The gap between application requirements and the capability of conventional pluggable optics keeps increasing, a trend that is unsustainable. Co-packaged optics (CPO) is a disruptive approach to increasing the interconnecting bandwidth density and energy efficiency by dramatically shortening the electrical link length through advanced packaging and co-optimization of electronics and photonics. CPO is widely regarded as a promising solution for future datacenter interconnections, and silicon platform is the most promising platform for large-scale integration. Leading international companies (e.g., Intel, Broadcom and IBM) have heavily investigated in CPO technology, an inter-disciplinary research field that involves photonic devices, integrated circuits design, packaging, photonic device modeling, electronic-photonic co-simulation, applications, and standardization. This review aims to provide the readers a comprehensive overview of the state-of-the-art progress of CPO in silicon platform, identify the key challenges, and point out the potential solutions, hoping to encourage collaboration between different research fields to accelerate the development of CPO technology.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10643793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Preface to the special issue on "Recent Advances in Functional Fibers". 功能纤维的最新进展 "特刊序言。
IF 5.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-12-29 DOI: 10.1007/s12200-022-00054-z
Lei Wei, Guangming Tao, Chong Hou, Wei Yan
{"title":"Preface to the special issue on \"Recent Advances in Functional Fibers\".","authors":"Lei Wei,&nbsp;Guangming Tao,&nbsp;Chong Hou,&nbsp;Wei Yan","doi":"10.1007/s12200-022-00054-z","DOIUrl":"https://doi.org/10.1007/s12200-022-00054-z","url":null,"abstract":"","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10522082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers of Optoelectronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1