首页 > 最新文献

Frontiers of Optoelectronics最新文献

英文 中文
Piezoelectric fibers for flexible and wearable electronics. 用于柔性和可穿戴电子设备的压电纤维。
IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-03-22 DOI: 10.1007/s12200-023-00058-3
Shengtai Qian, Xingbei Wang, Wei Yan

Flexible and wearable electronics represent paramount technologies offering revolutionized solutions for medical diagnosis and therapy, nerve and organ interfaces, fabric computation, robot-in-medicine and metaverse. Being ubiquitous in everyday life, piezoelectric materials and devices play a vital role in flexible and wearable electronics with their intriguing functionalities, including energy harvesting, sensing and actuation, personal health care and communications. As a new emerging flexible and wearable technology, fiber-shaped piezoelectric devices offer unique advantages over conventional thin-film counterparts. In this review, we survey the recent scientific and technological breakthroughs in thermally drawn piezoelectric fibers and fiber-enabled intelligent fabrics. We highlight the fiber materials, fiber architecture, fabrication, device integration as well as functions that deliver higher forms of unique applications across smart sensing, health care, space security, actuation and energy domains. We conclude with a critical analysis of existing challenges and opportunities that will be important for the continued progress of this field.

柔性和可穿戴电子设备是最重要的技术,可为医疗诊断和治疗、神经和器官接口、织物计算、医疗机器人和元宇宙提供革命性的解决方案。压电材料和器件在日常生活中无处不在,在柔性和可穿戴电子设备中发挥着重要作用,具有能量收集、传感和驱动、个人医疗保健和通信等引人入胜的功能。作为一种新兴的柔性和可穿戴技术,纤维状压电器件与传统的薄膜器件相比具有独特的优势。在这篇综述中,我们将介绍热拉压电纤维和纤维智能织物领域近期取得的科学和技术突破。我们重点介绍了纤维材料、纤维结构、制造、设备集成以及在智能传感、医疗保健、空间安全、驱动和能源领域提供更高形式独特应用的功能。最后,我们对现有的挑战和机遇进行了批判性分析,这些挑战和机遇对该领域的持续发展至关重要。
{"title":"Piezoelectric fibers for flexible and wearable electronics.","authors":"Shengtai Qian, Xingbei Wang, Wei Yan","doi":"10.1007/s12200-023-00058-3","DOIUrl":"10.1007/s12200-023-00058-3","url":null,"abstract":"<p><p>Flexible and wearable electronics represent paramount technologies offering revolutionized solutions for medical diagnosis and therapy, nerve and organ interfaces, fabric computation, robot-in-medicine and metaverse. Being ubiquitous in everyday life, piezoelectric materials and devices play a vital role in flexible and wearable electronics with their intriguing functionalities, including energy harvesting, sensing and actuation, personal health care and communications. As a new emerging flexible and wearable technology, fiber-shaped piezoelectric devices offer unique advantages over conventional thin-film counterparts. In this review, we survey the recent scientific and technological breakthroughs in thermally drawn piezoelectric fibers and fiber-enabled intelligent fabrics. We highlight the fiber materials, fiber architecture, fabrication, device integration as well as functions that deliver higher forms of unique applications across smart sensing, health care, space security, actuation and energy domains. We conclude with a critical analysis of existing challenges and opportunities that will be important for the continued progress of this field.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"16 1","pages":"3"},"PeriodicalIF":4.1,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030726/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9174042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermally activated delayed fluorescent small molecule sensitized fluorescent polymers with reduced concentration-quenching for efficient electroluminescence. 热激活延迟荧光小分子敏化荧光聚合物与降低浓度猝灭高效电致发光。
IF 5.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-03-21 DOI: 10.1007/s12200-022-00056-x
Qin Xue, Mingfang Huo, Guohua Xie

Thermally activated delayed fluorescence (TADF) small molecule bis-[3-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone (m-ACSO2) was used as a universal host to sensitize three conventional fluorescent polymers for maximizing the electroluminescent performance. The excitons were utilized via inter-molecular energy transfer and the non-radiative decays were successfully refrained in the condensed states. Therefore, the significant enhancement of the electroluminescent efficiencies was demonstrated. For instance, after doping poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) into m-ACSO2, the external quantum efficiency (EQE) was improved by a factor of 17.0 in the solution-processed organic light-emitting device (OLED), as compared with the device with neat F8BT. In terms of the other well-known fluorescent polymers, i.e., poly (para-phenylene vinylene) copolymer (Super Yellow, SY) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), their EQEs in the devices were respectively enhanced by 70% and 270%, compared with the reference devices based on the conventional host 1,3-di(9H-carbazol-9-yl) benzene (mCP). Besides the improved charge balance in the bipolar TADF host, these were partially ascribed to reduced fluorescence quenching in the mixed films.

以热激活延迟荧光(TADF)小分子双-[3-(9,9-二甲基-9,10-二氢吖啶)-苯基]-砜(m-ACSO2)为通用载体,对三种传统荧光聚合物进行了致敏,使其电致发光性能最大化。激子通过分子间能量传递被利用,在凝聚态中成功地抑制了非辐射衰变。因此,电致发光效率得到了显著的提高。例如,在m-ACSO2中掺杂聚(9,9-二辛基芴-共苯并噻唑)(F8BT)后,溶液处理有机发光器件(OLED)的外量子效率(EQE)比纯F8BT器件提高了17.0倍。对于其他知名的荧光聚合物,即聚(对苯基乙烯)共聚物(超级黄,SY)和聚[2-甲氧基-5-(2-乙基己氧基)-1,4-苯基乙烯](MEH-PPV),与基于传统宿主1,3-二(9h -卡唑-9-基)苯(mCP)的参考装置相比,它们在装置中的EQEs分别提高了70%和270%。除了改善了双极性TADF主体中的电荷平衡外,这部分归因于混合膜中荧光猝灭的减少。
{"title":"Thermally activated delayed fluorescent small molecule sensitized fluorescent polymers with reduced concentration-quenching for efficient electroluminescence.","authors":"Qin Xue,&nbsp;Mingfang Huo,&nbsp;Guohua Xie","doi":"10.1007/s12200-022-00056-x","DOIUrl":"https://doi.org/10.1007/s12200-022-00056-x","url":null,"abstract":"<p><p>Thermally activated delayed fluorescence (TADF) small molecule bis-[3-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone (m-ACSO2) was used as a universal host to sensitize three conventional fluorescent polymers for maximizing the electroluminescent performance. The excitons were utilized via inter-molecular energy transfer and the non-radiative decays were successfully refrained in the condensed states. Therefore, the significant enhancement of the electroluminescent efficiencies was demonstrated. For instance, after doping poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) into m-ACSO2, the external quantum efficiency (EQE) was improved by a factor of 17.0 in the solution-processed organic light-emitting device (OLED), as compared with the device with neat F8BT. In terms of the other well-known fluorescent polymers, i.e., poly (para-phenylene vinylene) copolymer (Super Yellow, SY) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), their EQEs in the devices were respectively enhanced by 70% and 270%, compared with the reference devices based on the conventional host 1,3-di(9H-carbazol-9-yl) benzene (mCP). Besides the improved charge balance in the bipolar TADF host, these were partially ascribed to reduced fluorescence quenching in the mixed films.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"16 1","pages":"2"},"PeriodicalIF":5.4,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027968/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9509720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Co-packaged optics (CPO): status, challenges, and solutions. 共封装光学(CPO):现状、挑战和解决方案。
IF 5.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-03-20 DOI: 10.1007/s12200-022-00055-y
Min Tan, Jiang Xu, Siyang Liu, Junbo Feng, Hua Zhang, Chaonan Yao, Shixi Chen, Hangyu Guo, Gengshi Han, Zhanhao Wen, Bao Chen, Yu He, Xuqiang Zheng, Da Ming, Yaowen Tu, Qiang Fu, Nan Qi, Dan Li, Li Geng, Song Wen, Fenghe Yang, Huimin He, Fengman Liu, Haiyun Xue, Yuhang Wang, Ciyuan Qiu, Guangcan Mi, Yanbo Li, Tianhai Chang, Mingche Lai, Luo Zhang, Qinfen Hao, Mengyuan Qin

Due to the rise of 5G, IoT, AI, and high-performance computing applications, datacenter traffic has grown at a compound annual growth rate of nearly 30%. Furthermore, nearly three-fourths of the datacenter traffic resides within datacenters. The conventional pluggable optics increases at a much slower rate than that of datacenter traffic. The gap between application requirements and the capability of conventional pluggable optics keeps increasing, a trend that is unsustainable. Co-packaged optics (CPO) is a disruptive approach to increasing the interconnecting bandwidth density and energy efficiency by dramatically shortening the electrical link length through advanced packaging and co-optimization of electronics and photonics. CPO is widely regarded as a promising solution for future datacenter interconnections, and silicon platform is the most promising platform for large-scale integration. Leading international companies (e.g., Intel, Broadcom and IBM) have heavily investigated in CPO technology, an inter-disciplinary research field that involves photonic devices, integrated circuits design, packaging, photonic device modeling, electronic-photonic co-simulation, applications, and standardization. This review aims to provide the readers a comprehensive overview of the state-of-the-art progress of CPO in silicon platform, identify the key challenges, and point out the potential solutions, hoping to encourage collaboration between different research fields to accelerate the development of CPO technology.

由于5G、物联网、人工智能和高性能计算应用的兴起,数据中心流量以近30%的年复合增长率增长。此外,近四分之三的数据中心流量驻留在数据中心内。传统的可插拔光学器件的增长速度远低于数据中心流量的增长速度。传统可插拔光学器件的应用需求与性能之间的差距越来越大,这种趋势是不可持续的。共封装光学(CPO)是一种颠覆性的方法,通过先进的封装和电子和光子学的协同优化,大大缩短电链路长度,从而提高互连带宽密度和能量效率。CPO被广泛认为是未来数据中心互连的一种很有前途的解决方案,而硅平台是大规模集成最有前途的平台。领先的国际公司(如英特尔、博通和IBM)已经对CPO技术进行了大量研究,这是一个跨学科的研究领域,涉及光子器件、集成电路设计、封装、光子器件建模、电子-光子联合仿真、应用和标准化。本文旨在为读者提供硅平台上CPO的最新进展的全面概述,识别关键挑战,并指出潜在的解决方案,希望鼓励不同研究领域之间的合作,以加速CPO技术的发展。
{"title":"Co-packaged optics (CPO): status, challenges, and solutions.","authors":"Min Tan,&nbsp;Jiang Xu,&nbsp;Siyang Liu,&nbsp;Junbo Feng,&nbsp;Hua Zhang,&nbsp;Chaonan Yao,&nbsp;Shixi Chen,&nbsp;Hangyu Guo,&nbsp;Gengshi Han,&nbsp;Zhanhao Wen,&nbsp;Bao Chen,&nbsp;Yu He,&nbsp;Xuqiang Zheng,&nbsp;Da Ming,&nbsp;Yaowen Tu,&nbsp;Qiang Fu,&nbsp;Nan Qi,&nbsp;Dan Li,&nbsp;Li Geng,&nbsp;Song Wen,&nbsp;Fenghe Yang,&nbsp;Huimin He,&nbsp;Fengman Liu,&nbsp;Haiyun Xue,&nbsp;Yuhang Wang,&nbsp;Ciyuan Qiu,&nbsp;Guangcan Mi,&nbsp;Yanbo Li,&nbsp;Tianhai Chang,&nbsp;Mingche Lai,&nbsp;Luo Zhang,&nbsp;Qinfen Hao,&nbsp;Mengyuan Qin","doi":"10.1007/s12200-022-00055-y","DOIUrl":"https://doi.org/10.1007/s12200-022-00055-y","url":null,"abstract":"<p><p>Due to the rise of 5G, IoT, AI, and high-performance computing applications, datacenter traffic has grown at a compound annual growth rate of nearly 30%. Furthermore, nearly three-fourths of the datacenter traffic resides within datacenters. The conventional pluggable optics increases at a much slower rate than that of datacenter traffic. The gap between application requirements and the capability of conventional pluggable optics keeps increasing, a trend that is unsustainable. Co-packaged optics (CPO) is a disruptive approach to increasing the interconnecting bandwidth density and energy efficiency by dramatically shortening the electrical link length through advanced packaging and co-optimization of electronics and photonics. CPO is widely regarded as a promising solution for future datacenter interconnections, and silicon platform is the most promising platform for large-scale integration. Leading international companies (e.g., Intel, Broadcom and IBM) have heavily investigated in CPO technology, an inter-disciplinary research field that involves photonic devices, integrated circuits design, packaging, photonic device modeling, electronic-photonic co-simulation, applications, and standardization. This review aims to provide the readers a comprehensive overview of the state-of-the-art progress of CPO in silicon platform, identify the key challenges, and point out the potential solutions, hoping to encourage collaboration between different research fields to accelerate the development of CPO technology.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"16 1","pages":"1"},"PeriodicalIF":5.4,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10643793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Preface to the special issue on "Recent Advances in Functional Fibers". 功能纤维的最新进展 "特刊序言。
IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-12-29 DOI: 10.1007/s12200-022-00054-z
Lei Wei, Guangming Tao, Chong Hou, Wei Yan
{"title":"Preface to the special issue on \"Recent Advances in Functional Fibers\".","authors":"Lei Wei, Guangming Tao, Chong Hou, Wei Yan","doi":"10.1007/s12200-022-00054-z","DOIUrl":"10.1007/s12200-022-00054-z","url":null,"abstract":"","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"15 1","pages":"53"},"PeriodicalIF":4.1,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10522082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A "light chaser" and his dream of Optics Valley of China : --To commemorate Prof. Dexiu Huang. “追光者”与他的中国光谷梦——纪念黄德秀教授。
IF 5.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-12-28 DOI: 10.1007/s12200-022-00053-0
Wei Hong, Zhen Wang, Jianji Dong
{"title":"A \"light chaser\" and his dream of Optics Valley of China : --To commemorate Prof. Dexiu Huang.","authors":"Wei Hong,&nbsp;Zhen Wang,&nbsp;Jianji Dong","doi":"10.1007/s12200-022-00053-0","DOIUrl":"https://doi.org/10.1007/s12200-022-00053-0","url":null,"abstract":"","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"15 1","pages":"52"},"PeriodicalIF":5.4,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10528938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic optoelectronics creating new opportunities for science and applications. 有机光电子学为科学和应用创造新机遇。
IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-12-26 DOI: 10.1007/s12200-022-00052-1
Yinhua Zhou, Chengliang Wang
{"title":"Organic optoelectronics creating new opportunities for science and applications.","authors":"Yinhua Zhou, Chengliang Wang","doi":"10.1007/s12200-022-00052-1","DOIUrl":"10.1007/s12200-022-00052-1","url":null,"abstract":"","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"15 1","pages":"51"},"PeriodicalIF":4.1,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9790823/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10530600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic photodiodes: device engineering and applications. 有机光电二极管:器件工程与应用。
IF 5.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-12-19 DOI: 10.1007/s12200-022-00049-w
Tong Shan, Xiao Hou, Xiaokuan Yin, Xiaojun Guo

Organic photodiodes (OPDs) have shown great promise for potential applications in optical imaging, sensing, and communication due to their wide-range tunable photoelectrical properties, low-temperature facile processes, and excellent mechanical flexibility. Extensive research work has been carried out on exploring materials, device structures, physical mechanisms, and processing approaches to improve the performance of OPDs to the level of their inorganic counterparts. In addition, various system prototypes have been built based on the exhibited and attractive features of OPDs. It is vital to link the device optimal design and engineering to the system requirements and examine the existing deficiencies of OPDs towards practical applications, so this review starts from discussions on the required key performance metrics for different envisioned applications. Then the fundamentals of the OPD device structures and operation mechanisms are briefly introduced, and the latest development of OPDs for improving the key performance merits is reviewed. Finally, the trials of OPDs for various applications including wearable medical diagnostics, optical imagers, spectrometers, and light communications are reviewed, and both the promises and challenges are revealed.

有机光电二极管(OPDs)由于其宽范围可调的光电特性、低温易加工和优异的机械灵活性,在光学成像、传感和通信领域显示出巨大的应用前景。在探索材料、器件结构、物理机制和加工方法方面进行了大量的研究工作,以提高opd的性能,使其达到无机同类产品的水平。此外,根据opd的展示和吸引人的特点,建立了各种系统原型。将器件优化设计和工程与系统需求联系起来,并检查opd在实际应用中的现有缺陷,这一点至关重要,因此本文将从讨论不同预期应用所需的关键性能指标开始。然后简要介绍了OPD器件结构和工作机理的基本原理,综述了OPD器件在提高关键性能方面的最新进展。最后,回顾了opd在可穿戴医疗诊断、光学成像仪、光谱仪和光通信等各种应用领域的试验,并揭示了opd的前景和挑战。
{"title":"Organic photodiodes: device engineering and applications.","authors":"Tong Shan,&nbsp;Xiao Hou,&nbsp;Xiaokuan Yin,&nbsp;Xiaojun Guo","doi":"10.1007/s12200-022-00049-w","DOIUrl":"https://doi.org/10.1007/s12200-022-00049-w","url":null,"abstract":"<p><p>Organic photodiodes (OPDs) have shown great promise for potential applications in optical imaging, sensing, and communication due to their wide-range tunable photoelectrical properties, low-temperature facile processes, and excellent mechanical flexibility. Extensive research work has been carried out on exploring materials, device structures, physical mechanisms, and processing approaches to improve the performance of OPDs to the level of their inorganic counterparts. In addition, various system prototypes have been built based on the exhibited and attractive features of OPDs. It is vital to link the device optimal design and engineering to the system requirements and examine the existing deficiencies of OPDs towards practical applications, so this review starts from discussions on the required key performance metrics for different envisioned applications. Then the fundamentals of the OPD device structures and operation mechanisms are briefly introduced, and the latest development of OPDs for improving the key performance merits is reviewed. Finally, the trials of OPDs for various applications including wearable medical diagnostics, optical imagers, spectrometers, and light communications are reviewed, and both the promises and challenges are revealed.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"15 1","pages":"49"},"PeriodicalIF":5.4,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9183952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Advanced functional nanofibers: strategies to improve performance and expand functions. 高级功能纳米纤维:提高性能和扩展功能的策略。
IF 5.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-12-19 eCollection Date: 2022-12-01 DOI: 10.1007/s12200-022-00051-2
Xinyu Chen, Honghao Cao, Yue He, Qili Zhou, Zhangcheng Li, Wen Wang, Yu He, Guangming Tao, Chong Hou

Nanofibers have a wide range of applications in many fields such as energy generation and storage, environmental sensing and treatment, biomedical and health, thanks to their large specific surface area, excellent flexibility, and superior mechanical properties. With the expansion of application fields and the upgrade of application requirements, there is an inevitable trend of improving the performance and functions of nanofibers. Over the past few decades, numerous studies have demonstrated how nanofibers can be adapted to more complex needs through modifications of their structures, materials, and assembly. Thus, it is necessary to systematically review the field of nanofibers in which new ideas and technologies are emerging. Here we summarize the recent advanced strategies to improve the performances and expand the functions of nanofibers. We first introduce the common methods of preparing nanofibers, then summarize the advances in the field of nanofibers, especially up-to-date strategies for further enhancing their functionalities. We classify these strategies into three categories: design of nanofiber structures, tuning of nanofiber materials, and improvement of nanofibers assemblies. Finally, the optimization methods, materials, application areas, and fabrication methods are summarized, and existing challenges and future research directions are discussed. We hope this review can provide useful guidance for subsequent related work.

Graphical abstract:

纳米纤维由于其大的比表面积、优异的柔韧性和优异的机械性能,在能源生产和储存、环境传感和处理、生物医学和健康等领域有着广泛的应用。随着应用领域的拓展和应用需求的升级,提高纳米纤维的性能和功能是必然的趋势。在过去的几十年里,大量研究表明,纳米纤维如何通过改变其结构、材料和组装来适应更复杂的需求。因此,有必要系统地回顾纳米纤维领域,新的想法和技术正在涌现。在这里,我们总结了最近提高纳米纤维性能和扩展其功能的先进策略。我们首先介绍了制备纳米纤维的常用方法,然后总结了纳米纤维领域的进展,特别是进一步增强其功能的最新策略。我们将这些策略分为三类:纳米纤维结构的设计、纳米纤维材料的调整和纳米纤维组件的改进。最后,总结了优化方法、材料、应用领域和制造方法,并讨论了存在的挑战和未来的研究方向。我们希望这次审查能够为后续的相关工作提供有益的指导。图形摘要:
{"title":"Advanced functional nanofibers: strategies to improve performance and expand functions.","authors":"Xinyu Chen, Honghao Cao, Yue He, Qili Zhou, Zhangcheng Li, Wen Wang, Yu He, Guangming Tao, Chong Hou","doi":"10.1007/s12200-022-00051-2","DOIUrl":"10.1007/s12200-022-00051-2","url":null,"abstract":"<p><p>Nanofibers have a wide range of applications in many fields such as energy generation and storage, environmental sensing and treatment, biomedical and health, thanks to their large specific surface area, excellent flexibility, and superior mechanical properties. With the expansion of application fields and the upgrade of application requirements, there is an inevitable trend of improving the performance and functions of nanofibers. Over the past few decades, numerous studies have demonstrated how nanofibers can be adapted to more complex needs through modifications of their structures, materials, and assembly. Thus, it is necessary to systematically review the field of nanofibers in which new ideas and technologies are emerging. Here we summarize the recent advanced strategies to improve the performances and expand the functions of nanofibers. We first introduce the common methods of preparing nanofibers, then summarize the advances in the field of nanofibers, especially up-to-date strategies for further enhancing their functionalities. We classify these strategies into three categories: design of nanofiber structures, tuning of nanofiber materials, and improvement of nanofibers assemblies. Finally, the optimization methods, materials, application areas, and fabrication methods are summarized, and existing challenges and future research directions are discussed. We hope this review can provide useful guidance for subsequent related work.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"15 1","pages":"50"},"PeriodicalIF":5.4,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9761053/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9803864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissipative Kerr single soliton generation with extremely high probability via spectral mode depletion. 耗散克尔单孤子产生具有极高的概率通过谱模式损耗。
IF 5.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-12-01 DOI: 10.1007/s12200-022-00047-y
Boqing Zhang, Nuo Chen, Xinda Lu, Yuntian Chen, Xinliang Zhang, Jing Xu

Optical Kerr solitons generation based on microresonators is essential in nonlinear optics. Among various soliton generation processes, the single soliton generation plays a pivotal role since it ensures rigorous mode-locking on each comb line whose interval equals the free spectral range (FSR) of the microresonator. Current studies show that single soliton generation is challenging due to cavity instability. Here, we propose a new method to greatly improve single soliton generation probalility in the anomalous group velocity dispersion (GVD) regime in a micro-ring resonator based on silicon nitride. The improvement is realized by introducing mode depletion through an integrated coupled filter. It is convenient to introduce controllable single mode depletion in a micro-ring resonator by adjusting the response function of a coupled filter. We show that spectral mode depletion (SMD) can significantly boost the single soliton generation probability. The effect of SMD on the dynamics of optical Kerr solitons generation are also discussed. The proposed method offers a straightforward and simple way to facilitate robust single soliton generation, and will have an impact on the research development in optical Kerr soliton generation and on-chip optical frequency mode manipulation.

基于微谐振腔的光学克尔孤子生成在非线性光学中是必不可少的。在各种孤子产生过程中,单孤子产生起着关键作用,因为它保证了每条梳线的严格锁模,其间隔等于微谐振器的自由频谱范围。目前的研究表明,由于腔的不稳定性,单孤子的产生是具有挑战性的。本文提出了一种在氮化硅基微环谐振器中大大提高异常群速度色散(GVD)区单孤子产生概率的新方法。改进是通过集成耦合滤波器引入模式损耗来实现的。通过调整耦合滤波器的响应函数,可以方便地在微环谐振器中引入可控单模耗尽。我们发现谱模式损耗(SMD)可以显著提高单孤子产生的概率。讨论了SMD对光学克尔孤子生成动力学的影响。该方法为实现单孤子的鲁棒生成提供了一种简单明了的方法,将对光学克尔孤子生成和片上光学频模操作的研究发展产生影响。
{"title":"Dissipative Kerr single soliton generation with extremely high probability via spectral mode depletion.","authors":"Boqing Zhang,&nbsp;Nuo Chen,&nbsp;Xinda Lu,&nbsp;Yuntian Chen,&nbsp;Xinliang Zhang,&nbsp;Jing Xu","doi":"10.1007/s12200-022-00047-y","DOIUrl":"https://doi.org/10.1007/s12200-022-00047-y","url":null,"abstract":"<p><p>Optical Kerr solitons generation based on microresonators is essential in nonlinear optics. Among various soliton generation processes, the single soliton generation plays a pivotal role since it ensures rigorous mode-locking on each comb line whose interval equals the free spectral range (FSR) of the microresonator. Current studies show that single soliton generation is challenging due to cavity instability. Here, we propose a new method to greatly improve single soliton generation probalility in the anomalous group velocity dispersion (GVD) regime in a micro-ring resonator based on silicon nitride. The improvement is realized by introducing mode depletion through an integrated coupled filter. It is convenient to introduce controllable single mode depletion in a micro-ring resonator by adjusting the response function of a coupled filter. We show that spectral mode depletion (SMD) can significantly boost the single soliton generation probability. The effect of SMD on the dynamics of optical Kerr solitons generation are also discussed. The proposed method offers a straightforward and simple way to facilitate robust single soliton generation, and will have an impact on the research development in optical Kerr soliton generation and on-chip optical frequency mode manipulation.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"15 1","pages":"48"},"PeriodicalIF":5.4,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9189644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper-based metal halides for X-ray and photodetection. x射线和光探测用铜基金属卤化物。
IF 5.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-11-21 DOI: 10.1007/s12200-022-00048-x
Fu Qiu, Yutian Lei, Zhiwen Jin

Copper-based metal halides have become important materials in the field of X-ray and photodetection due to their excellent optical properties, good environmental stability and low toxicity. This review presents the progress of research on crystal structure/morphology, photophysics/optical properties and applications of copper-based metal halides. We also discuss the challenges of copper-based metal halides with a perspective of their future research directions.

铜基金属卤化物具有优异的光学性能、良好的环境稳定性和低毒性,已成为x射线和光探测领域的重要材料。本文综述了铜基金属卤化物的晶体结构/形态、光物理/光学性质及应用研究进展。我们还讨论了铜基金属卤化物面临的挑战,并展望了其未来的研究方向。
{"title":"Copper-based metal halides for X-ray and photodetection.","authors":"Fu Qiu,&nbsp;Yutian Lei,&nbsp;Zhiwen Jin","doi":"10.1007/s12200-022-00048-x","DOIUrl":"https://doi.org/10.1007/s12200-022-00048-x","url":null,"abstract":"<p><p>Copper-based metal halides have become important materials in the field of X-ray and photodetection due to their excellent optical properties, good environmental stability and low toxicity. This review presents the progress of research on crystal structure/morphology, photophysics/optical properties and applications of copper-based metal halides. We also discuss the challenges of copper-based metal halides with a perspective of their future research directions.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"15 1","pages":"47"},"PeriodicalIF":5.4,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9189641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Frontiers of Optoelectronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1