Yang Yang, Wenming Xu, Anguo Gao, Qingshan Yang, Yuqing Gao
Considering the weak noise resistance and low identification efficiency of traditional bridge damage identification methods, a data-driven approach based on synchronous statistical moment theory and vehicle–bridge interaction vibration theory is proposed. This method involves two main steps. First, a two-axle test vehicle is used to collect acceleration response signals synchronously from adjacent designated measurement points while stationary. This operation is repeated to calculate the second-order statistical moment curvature (SOSMC) difference of entire bridge points corresponding signals in different states. By comparing with the reference value, the preliminary damage location of the bridge can be obtained. Second, the first-order modal shape curve is constructed using the second-order statistical moment (SOSM). The refined identification of bridge damage is then based on an improved direct stiffness back calculation of the bridge's stiffness. This article proposes the synchronization theory for the first time and combines it with the statistical moment clustering method, forming an innovative approach to obtaining structural vibration modes. The effectiveness of this method has been well validated through numerical simulations with different parameters and on-site bridge tests. The research results indicate that SOSMC indicators have better noise resistance and higher recognition efficiency in identifying damage locations, compared to modal curvature and flexibility curvature indicators. Additionally, compared to transfer rate and random subspace methods, the SOSM method results in smaller error and higher identification efficiency.
{"title":"Bridge damage identification based on synchronous statistical moment theory of vehicle–bridge interaction","authors":"Yang Yang, Wenming Xu, Anguo Gao, Qingshan Yang, Yuqing Gao","doi":"10.1111/mice.13298","DOIUrl":"https://doi.org/10.1111/mice.13298","url":null,"abstract":"Considering the weak noise resistance and low identification efficiency of traditional bridge damage identification methods, a data-driven approach based on synchronous statistical moment theory and vehicle–bridge interaction vibration theory is proposed. This method involves two main steps. First, a two-axle test vehicle is used to collect acceleration response signals synchronously from adjacent designated measurement points while stationary. This operation is repeated to calculate the second-order statistical moment curvature (SOSMC) difference of entire bridge points corresponding signals in different states. By comparing with the reference value, the preliminary damage location of the bridge can be obtained. Second, the first-order modal shape curve is constructed using the second-order statistical moment (SOSM). The refined identification of bridge damage is then based on an improved direct stiffness back calculation of the bridge's stiffness. This article proposes the synchronization theory for the first time and combines it with the statistical moment clustering method, forming an innovative approach to obtaining structural vibration modes. The effectiveness of this method has been well validated through numerical simulations with different parameters and on-site bridge tests. The research results indicate that SOSMC indicators have better noise resistance and higher recognition efficiency in identifying damage locations, compared to modal curvature and flexibility curvature indicators. Additionally, compared to transfer rate and random subspace methods, the SOSM method results in smaller error and higher identification efficiency.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"24 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper introduces an enhanced you only look once (YOLO) v5s‐D network customized for detecting various categories of damage to post‐fire reinforced concrete (RC) components. These damage types encompass surface soot, cracks, concrete spalling, and rebar exposure. A dataset containing 1536 images depicting damaged RC components was compiled. By integrating ShuffleNet, adaptive attention mechanisms, and a feature enhancement module, the capability of the network for multi‐scale feature extraction in complex backgrounds was improved, alongside a reduction in model parameters. Consequently, YOLOv5s‐D achieved a detection accuracy of 93%, marking an 11% enhancement over the baseline YOLOv5s network. Comparison and ablation tests conducted on different modules, varying dataset sizes, against other state‐of‐the‐art networks, and on public datasets validate the resilience, superiority, and generalization capability of YOLOv5s‐D. Finally, an application leveraging YOLOv5s‐D was developed and integrated into a mobile device to facilitate real‐time detection of post‐fire damaged RC components. This application can integrate diverse fire scenarios and data types, expanding its scope in future. The proposed detection method compensates for the subjective limitations of manual inspections, providing a reference for damage assessment.
{"title":"Multicategory fire damage detection of post‐fire reinforced concrete structural components","authors":"Pengfei Wang, Caiwei Liu, Xinyu Wang, Libin Tian, Jijun Miao, Yanchun Liu","doi":"10.1111/mice.13314","DOIUrl":"https://doi.org/10.1111/mice.13314","url":null,"abstract":"This paper introduces an enhanced you only look once (YOLO) v5s‐D network customized for detecting various categories of damage to post‐fire reinforced concrete (RC) components. These damage types encompass surface soot, cracks, concrete spalling, and rebar exposure. A dataset containing 1536 images depicting damaged RC components was compiled. By integrating ShuffleNet, adaptive attention mechanisms, and a feature enhancement module, the capability of the network for multi‐scale feature extraction in complex backgrounds was improved, alongside a reduction in model parameters. Consequently, YOLOv5s‐D achieved a detection accuracy of 93%, marking an 11% enhancement over the baseline YOLOv5s network. Comparison and ablation tests conducted on different modules, varying dataset sizes, against other state‐of‐the‐art networks, and on public datasets validate the resilience, superiority, and generalization capability of YOLOv5s‐D. Finally, an application leveraging YOLOv5s‐D was developed and integrated into a mobile device to facilitate real‐time detection of post‐fire damaged RC components. This application can integrate diverse fire scenarios and data types, expanding its scope in future. The proposed detection method compensates for the subjective limitations of manual inspections, providing a reference for damage assessment.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"10 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Most masonry constructions exhibit significant crack patterns caused by differential foundation settlements. While modern numerical methods effectively address forward displacement-based problems, identifying the settlement causing a specific crack pattern remains an unsolved yet crucial challenge. For the first time, this research solves this highly non-linear back-engineering problem by proposing a robust and automated methodology synergizing artificial neural networks (ANNs) and the piecewise rigid displacement (PRD) method. The PRD's fast computational solving allows the generation of large datasets used to train specific ANNs through Levenberg–Marquardt and conjugate gradient algorithms. Using the location and widths of the main structural cracks as input, the proposed approach offers an instantaneous and accurate ANN-based identification of foundation settlements that cause the detected damage scenario. The method is first validated on semicircular arches, and after that, its potential and effectiveness are demonstrated in a real engineering scenario, represented by the Deba bridge in Spain.
大多数砌体建筑都会因不同的地基沉降而出现明显的裂缝。虽然现代数值方法能有效解决基于正向位移的问题,但识别导致特定裂缝模式的沉降仍是一项尚未解决的关键挑战。本研究首次提出了一种将人工神经网络(ANN)和片断刚性位移(PRD)方法相结合的稳健、自动化方法,从而解决了这一高度非线性的逆向工程问题。PRD 的快速计算求解允许生成大型数据集,用于通过 Levenberg-Marquardt 和共轭梯度算法训练特定的人工神经网络。利用主要结构裂缝的位置和宽度作为输入,所提出的方法可基于 ANN 即时准确地识别导致检测到的损坏情况的地基沉降。该方法首先在半圆形拱桥上进行了验证,然后在以西班牙 Deba 桥为代表的真实工程场景中展示了其潜力和有效性。
{"title":"A neural network-based automated methodology to identify the crack causes in masonry structures","authors":"A. Iannuzzo, V. Musone, E. Ruocco","doi":"10.1111/mice.13311","DOIUrl":"https://doi.org/10.1111/mice.13311","url":null,"abstract":"Most masonry constructions exhibit significant crack patterns caused by differential foundation settlements. While modern numerical methods effectively address forward displacement-based problems, identifying the settlement causing a specific crack pattern remains an unsolved yet crucial challenge. For the first time, this research solves this highly non-linear back-engineering problem by proposing a robust and automated methodology synergizing artificial neural networks (ANNs) and the piecewise rigid displacement (PRD) method. The PRD's fast computational solving allows the generation of large datasets used to train specific ANNs through Levenberg–Marquardt and conjugate gradient algorithms. Using the location and widths of the main structural cracks as input, the proposed approach offers an instantaneous and accurate ANN-based identification of foundation settlements that cause the detected damage scenario. The method is first validated on semicircular arches, and after that, its potential and effectiveness are demonstrated in a real engineering scenario, represented by the Deba bridge in Spain.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"22 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The cover image is based on the Research Article 365-day sectional work zone schedule optimization for road networks considering economies of scale and user cost by Yuto Nakazato and Daijiro Mizutani et al., https://doi.org/10.1111/mice.13273.