In this study, we utilized graphene oxide (GO) loaded with cerium oxide (CeO 2 ) to synthesize GO-CeO 2 catalysts using a hydrothermal method and high-temperature calcination. The performance of the catalyst was evaluated by characterization of the catalyst material and testing for nitrogen oxide (NOx) conversion rates and nitrogen gas adsorption isotherm in mixed flue gas. The results demonstrated that increasing the ratio of NO 2 in the NO+NO 2 mixture significantly enhanced the conversion rate of NOx. Notably, when the proportion of NO 2 reached 0.4, the denitrified gas displayed a remarkable increase in NOx conversion rate, exceeding 98%. This finding highlighted that even low concentrations of NO 2 can accelerate denitrification reactions. Moreover, increasing the oxygen concentration in the gas exhibited considerable potential to elevate the NOx conversion rate. The oxygen concentration played a vital role in the process of denitrification, and the GO-CeO 2 catalyst exhibited a high oxygen storage capacity. Moreover, the GO-CeO 2 catalyst maintained a high denitrification efficiency even under high-temperature conditions and demonstrated excellent NOx conversion performance. The catalyst also demonstrated good stability and strong water resistance under varying proportions and temperatures while maintaining a consistent denitrification efficiency. These findings indicated the significant adsorption effect of the graphene oxide loaded with CeO 2 catalyst on NOx, suggesting promising potential for application and widespread use.
{"title":"Adsorption of NOx by graphene oxide loaded with CeO<sub>2</sub> as a catalyst for atmospheric pollution control","authors":"Fan Yang, Dongnan Li, Qiang Xia, Ziqi Qin, Lu Yu","doi":"10.1166/mex.2023.2529","DOIUrl":"https://doi.org/10.1166/mex.2023.2529","url":null,"abstract":"In this study, we utilized graphene oxide (GO) loaded with cerium oxide (CeO 2 ) to synthesize GO-CeO 2 catalysts using a hydrothermal method and high-temperature calcination. The performance of the catalyst was evaluated by characterization of the catalyst material and testing for nitrogen oxide (NOx) conversion rates and nitrogen gas adsorption isotherm in mixed flue gas. The results demonstrated that increasing the ratio of NO 2 in the NO+NO 2 mixture significantly enhanced the conversion rate of NOx. Notably, when the proportion of NO 2 reached 0.4, the denitrified gas displayed a remarkable increase in NOx conversion rate, exceeding 98%. This finding highlighted that even low concentrations of NO 2 can accelerate denitrification reactions. Moreover, increasing the oxygen concentration in the gas exhibited considerable potential to elevate the NOx conversion rate. The oxygen concentration played a vital role in the process of denitrification, and the GO-CeO 2 catalyst exhibited a high oxygen storage capacity. Moreover, the GO-CeO 2 catalyst maintained a high denitrification efficiency even under high-temperature conditions and demonstrated excellent NOx conversion performance. The catalyst also demonstrated good stability and strong water resistance under varying proportions and temperatures while maintaining a consistent denitrification efficiency. These findings indicated the significant adsorption effect of the graphene oxide loaded with CeO 2 catalyst on NOx, suggesting promising potential for application and widespread use.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":"105 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monitoring nucleic acid contamination in laboratories is essential for ensuring the accuracy and reliability of polymerase chain reaction (PCR) assay results. Compared to traditional chemical reagent-based extraction, magnetic bead extraction is a targeted adsorption method for extracting DNA, offering greater efficiency and minor hazard. However, the effectiveness of this method in detecting nucleic acid contaminations in laboratory remains unclear. This study aimed to develop a PCR-based laboratory environmental monitoring method to investigate the effectiveness of magnetic bead extraction for detecting nucleic acid contamination. To mimic nucleic acid contamination, Staphylococcus aureus was aerosolized in a PCR laboratory. Following sampling, nucleic acid extraction was performed using the magnetic bead extraction method. Samples were analyzed using quantitative real-time fluorescence PCR (qPCR), and the concordance between the magnetic bead extraction results and theoretical results was assessed. This study presents a PCR laboratory nucleic acid contamination monitoring protocol. The results demonstrated that the nucleic acid detection outcomes obtained using the magnetic bead extraction method were consistent with the theoretical results across all regions tested using this protocol. The magnetic bead extraction method demonstrated comparable detection outcomes to the theoretical results in monitoring laboratory environments. This approach provides a more efficient and environmental friendly method of monitoring the laboratory environment.
{"title":"Study on monitoring nucleic acid contamination in laboratory and its application","authors":"Yanyu Cai, Kaizhen Wen","doi":"10.1166/mex.2023.2542","DOIUrl":"https://doi.org/10.1166/mex.2023.2542","url":null,"abstract":"Monitoring nucleic acid contamination in laboratories is essential for ensuring the accuracy and reliability of polymerase chain reaction (PCR) assay results. Compared to traditional chemical reagent-based extraction, magnetic bead extraction is a targeted adsorption method for extracting DNA, offering greater efficiency and minor hazard. However, the effectiveness of this method in detecting nucleic acid contaminations in laboratory remains unclear. This study aimed to develop a PCR-based laboratory environmental monitoring method to investigate the effectiveness of magnetic bead extraction for detecting nucleic acid contamination. To mimic nucleic acid contamination, Staphylococcus aureus was aerosolized in a PCR laboratory. Following sampling, nucleic acid extraction was performed using the magnetic bead extraction method. Samples were analyzed using quantitative real-time fluorescence PCR (qPCR), and the concordance between the magnetic bead extraction results and theoretical results was assessed. This study presents a PCR laboratory nucleic acid contamination monitoring protocol. The results demonstrated that the nucleic acid detection outcomes obtained using the magnetic bead extraction method were consistent with the theoretical results across all regions tested using this protocol. The magnetic bead extraction method demonstrated comparable detection outcomes to the theoretical results in monitoring laboratory environments. This approach provides a more efficient and environmental friendly method of monitoring the laboratory environment.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":"107 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The frequent occurrence of geological disasters poses a significant threat to human life and the safety of property. To enhance the seismic performance and reduce noise in buildings, this study proposes the design of building floor structures with a new composite vibration isolation pad. Carbon nanocoils/styrene-butadiene composites are utilized to create vibration reduction devices. Experimental results demonstrate that the compression set rates of carbon nanocoil composite rubber are 4.83% and 2.07% at filling amounts of 1% and 3%, respectively. Additionally, the compression set rates of carbon nanotube composite rubber are 13.79% and 6.90%, respectively. Among these materials, styrene-butadiene exhibits the most significant performance improvement when combined with carbon nano coil. With an optimal layout of 25 devices, the floor dynamic amplification coefficient can be reduced by 8.4% and the building floor noise can be reduced by approximately 75%. This optimization significantly reduces the dynamic response and also provides a certain level of noise reduction effect.
{"title":"Vibration and noise reduction for building floor structures based on new composite material vibration isolation pads","authors":"Li Zhang","doi":"10.1166/mex.2023.2530","DOIUrl":"https://doi.org/10.1166/mex.2023.2530","url":null,"abstract":"The frequent occurrence of geological disasters poses a significant threat to human life and the safety of property. To enhance the seismic performance and reduce noise in buildings, this study proposes the design of building floor structures with a new composite vibration isolation pad. Carbon nanocoils/styrene-butadiene composites are utilized to create vibration reduction devices. Experimental results demonstrate that the compression set rates of carbon nanocoil composite rubber are 4.83% and 2.07% at filling amounts of 1% and 3%, respectively. Additionally, the compression set rates of carbon nanotube composite rubber are 13.79% and 6.90%, respectively. Among these materials, styrene-butadiene exhibits the most significant performance improvement when combined with carbon nano coil. With an optimal layout of 25 devices, the floor dynamic amplification coefficient can be reduced by 8.4% and the building floor noise can be reduced by approximately 75%. This optimization significantly reduces the dynamic response and also provides a certain level of noise reduction effect.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":"104 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pre-alfacalcidol is an active substance, and the UV response of pre-alfacalcidol and alfacalcidol is different, there will be errors in the content determination process. The main reason is that pre-alfacalcidol is very unstable and easy to tautomerize with alfacalcidol at room temperature. Therefore, it is very necessary to control the content of pre-alfacalcidol and alfacalcidol when determining the content of alfacalcitol tablets. In order to fully study the quality of Alfacalcidol tablets, here, we reported a preparation method of pre-alfacalcidol. In this study, pre-alfacalcidol was prepared by directional degradation and purified by high performance liquid chromatography (HPLC) and its structure was identified by high resolution mass spectrometer (HRMS) and nuclear magnetic resonance (NMR). The preparation process is simple, and the cycle is short at a low cost with a high yield. The purity of pre-alfacalcidol is more than 95%, which can meet the requirements of standard products. At the same time, under the condition of high temperature preparation, the undamaged alfacalcidol can be collected and recovered, which greatly improves the availability and reduces the cost. In summary, this method has important significance to strictly control the quality of raw materials and preparations of alfacalcidol and improve the efficacy of alfacalcidol tablets.
{"title":"The preparation of pre-alphacalcidol by high performance liquid chromatography","authors":"Yanchuan Qiu, Lian Ma, Hui Wang","doi":"10.1166/mex.2023.2538","DOIUrl":"https://doi.org/10.1166/mex.2023.2538","url":null,"abstract":"Pre-alfacalcidol is an active substance, and the UV response of pre-alfacalcidol and alfacalcidol is different, there will be errors in the content determination process. The main reason is that pre-alfacalcidol is very unstable and easy to tautomerize with alfacalcidol at room temperature. Therefore, it is very necessary to control the content of pre-alfacalcidol and alfacalcidol when determining the content of alfacalcitol tablets. In order to fully study the quality of Alfacalcidol tablets, here, we reported a preparation method of pre-alfacalcidol. In this study, pre-alfacalcidol was prepared by directional degradation and purified by high performance liquid chromatography (HPLC) and its structure was identified by high resolution mass spectrometer (HRMS) and nuclear magnetic resonance (NMR). The preparation process is simple, and the cycle is short at a low cost with a high yield. The purity of pre-alfacalcidol is more than 95%, which can meet the requirements of standard products. At the same time, under the condition of high temperature preparation, the undamaged alfacalcidol can be collected and recovered, which greatly improves the availability and reduces the cost. In summary, this method has important significance to strictly control the quality of raw materials and preparations of alfacalcidol and improve the efficacy of alfacalcidol tablets.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":"107 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weigang Zhang, Yuping Lv, Dandan Lv, Lulu Pan, Ziti Sun
In this study, a low infrared emissivity coating with good mechanical properties and salt water resistance was prepared by the glass rod coating method, using epoxy resin, flake Ag powder, and graphene as a functional pigment, binder, and interface modifier, respectively. The study systematically investigated the impact of Ag powder particle size, as well as the addition of silver powder and graphene, on the coating properties. The larger particle size of the Ag powder led to a significant decrease in emissivity and enhancement of the mechanical properties of the coating. The coating had optimal emissivity and mechanical properties at an Ag particle size of 10 μ m. The emissivity and glossiness of the coating can be significantly reduced with the increase in added Ag powder, and the mechanical properties will be significantly improved. The increase in added graphene significantly reduced the glossiness and improved the flexibility of the coating. With a graphene content of 8 wt%, the coating has the best emissivity, glossiness, and mechanical properties at the same time. The epoxy resin/Ag composite coating, modified by graphene, showed good salt water resistance. After being corroded by salt water for 21 days, the emissivity, glossiness, adhesion strength, flexibility, and impact strength of the coating reached 0.535, 14.7, grade 1, 2 mm, and 50 kg · cm, respectively.
{"title":"Low infrared emissivity epoxy resin/Ag composite coating with outstanding mechanical properties and saltwater resistance","authors":"Weigang Zhang, Yuping Lv, Dandan Lv, Lulu Pan, Ziti Sun","doi":"10.1166/mex.2023.2534","DOIUrl":"https://doi.org/10.1166/mex.2023.2534","url":null,"abstract":"In this study, a low infrared emissivity coating with good mechanical properties and salt water resistance was prepared by the glass rod coating method, using epoxy resin, flake Ag powder, and graphene as a functional pigment, binder, and interface modifier, respectively. The study systematically investigated the impact of Ag powder particle size, as well as the addition of silver powder and graphene, on the coating properties. The larger particle size of the Ag powder led to a significant decrease in emissivity and enhancement of the mechanical properties of the coating. The coating had optimal emissivity and mechanical properties at an Ag particle size of 10 μ m. The emissivity and glossiness of the coating can be significantly reduced with the increase in added Ag powder, and the mechanical properties will be significantly improved. The increase in added graphene significantly reduced the glossiness and improved the flexibility of the coating. With a graphene content of 8 wt%, the coating has the best emissivity, glossiness, and mechanical properties at the same time. The epoxy resin/Ag composite coating, modified by graphene, showed good salt water resistance. After being corroded by salt water for 21 days, the emissivity, glossiness, adhesion strength, flexibility, and impact strength of the coating reached 0.535, 14.7, grade 1, 2 mm, and 50 kg · cm, respectively.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":"104 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, we have described the green supported of CuO NPs over Thymus vulgaris (CuNPs) as a reducing/stabilizing nanocomposite in alkaline medium. In the cellular and molecular part of the recent study, the treated cells with CuNPs were assessed to determine the cytotoxicity and anti-human prostate carcinoma properties on prostate carcinoma cell lines i.e., LNCaP clone FGC-Luc2, 22Rv1, and NCI-H660. The morphological and physicochemical features of the prepared nanocomposite were determined using several advanced techniques as Field Emission Scanning Electron Microscopes (FE-SEM), Ultraviolet–visible spectroscopy (UV-Vis), and fourier transform infrared spectroscopy (FTIR) studies. In the antioxidant test, the IC50 of CuNPs and butylated hydroxytoluene (BHT) against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals were 94 and 88 μ g/mL, respectively. The IC50 of CuNPs were 191, 275, and 250 μ g/mL against LNCaP clone FGC-Luc2, 22Rv1, and NCI-H660 cell lines, respectively. In conclusion, our data suggest that the malignant prostate cell lines viability decreased in the CuNPs presence.
{"title":"Antioxidant, cytotoxicity, and anti-prostate carcinoma effects of CuO nanoparticles containing <i>Thymus vulgaris</i>","authors":"Bing Li, Yufeng Wang, Yukun Bian, Zhizhang Gao","doi":"10.1166/mex.2023.2540","DOIUrl":"https://doi.org/10.1166/mex.2023.2540","url":null,"abstract":"In this work, we have described the green supported of CuO NPs over Thymus vulgaris (CuNPs) as a reducing/stabilizing nanocomposite in alkaline medium. In the cellular and molecular part of the recent study, the treated cells with CuNPs were assessed to determine the cytotoxicity and anti-human prostate carcinoma properties on prostate carcinoma cell lines i.e., LNCaP clone FGC-Luc2, 22Rv1, and NCI-H660. The morphological and physicochemical features of the prepared nanocomposite were determined using several advanced techniques as Field Emission Scanning Electron Microscopes (FE-SEM), Ultraviolet–visible spectroscopy (UV-Vis), and fourier transform infrared spectroscopy (FTIR) studies. In the antioxidant test, the IC50 of CuNPs and butylated hydroxytoluene (BHT) against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals were 94 and 88 μ g/mL, respectively. The IC50 of CuNPs were 191, 275, and 250 μ g/mL against LNCaP clone FGC-Luc2, 22Rv1, and NCI-H660 cell lines, respectively. In conclusion, our data suggest that the malignant prostate cell lines viability decreased in the CuNPs presence.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":"107 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft soil is widely distributed in coastal areas and needs to be treated first when used as a foundation. A method of incorporating nano SiO 2 particles and nano Fe 3 O 4 solution is proposed to address the consolidation problem of geological soft soil. During the process, nanomaterials are selected and a preparation method for incorporating nanomaterial soil is designed. Subsequently, the experimental device is designed and the main instrument usage methods are specified, resulting in a complete experimental process design. The experimental results showed that in the generation of electron microscope images of soil, the soil mixed with nano SiO 2 particles or nano Fe 3 O 4 solution has a denser characterization; In the experiment of current variation in soil, the maximum current of the soil mixed with nano SiO 2 particles is 0.1052 A at 72 hours; In the soil drainage test, the maximum total drainage of the soil mixed with nano Fe 3 O 4 material at the end reached 1907 mL; In the soil pH value experiment, the pH value of the soil is higher when the proportion of nano SiO 2 material added is 3‰ and the proportion of nano Fe 3 O 4 material added is 2‰. The above results indicate that the geological soft soil consolidation method designed by the research institute incorporating nano SiO 2 materials or nano Fe 3 O 4 materials can effectively improve the drainage and mechanical properties of the soil.
软土在沿海地区分布广泛,作为基础需要先进行处理。为解决地质软土的固结问题,提出了一种纳米sio2颗粒与纳米fe3o4溶液复合的方法。在此过程中,选择了纳米材料,设计了掺入纳米土的制备方法。随后,设计了实验装置,明确了主要仪器的使用方法,完成了实验流程设计。实验结果表明,在土壤的电子显微镜图像生成中,混合纳米sio2颗粒或纳米fe3o4溶液的土壤具有更致密的表征;在土壤电流变化实验中,掺入纳米sio2颗粒的土壤在72小时的最大电流为0.1052 A;在土壤排水试验中,掺入纳米铁3 O 4材料的土壤最终最大总排水达到1907 mL;在土壤pH值实验中,纳米sio2材料添加比例为3‰,纳米fe3o4材料添加比例为2‰时,土壤pH值较高。上述结果表明,研究所设计的采用纳米sio2材料或纳米fe3o4材料的地质软土固结方法可以有效改善土壤的排水性能和力学性能。
{"title":"Influence of SiO<sub>2</sub> nanoparticles and Fe<sub>3</sub>O<sub>4</sub> solution on the consolidation of geological soft soil","authors":"Cong Yu, GuanJun Zhang, Yangzi Liu","doi":"10.1166/mex.2023.2548","DOIUrl":"https://doi.org/10.1166/mex.2023.2548","url":null,"abstract":"Soft soil is widely distributed in coastal areas and needs to be treated first when used as a foundation. A method of incorporating nano SiO 2 particles and nano Fe 3 O 4 solution is proposed to address the consolidation problem of geological soft soil. During the process, nanomaterials are selected and a preparation method for incorporating nanomaterial soil is designed. Subsequently, the experimental device is designed and the main instrument usage methods are specified, resulting in a complete experimental process design. The experimental results showed that in the generation of electron microscope images of soil, the soil mixed with nano SiO 2 particles or nano Fe 3 O 4 solution has a denser characterization; In the experiment of current variation in soil, the maximum current of the soil mixed with nano SiO 2 particles is 0.1052 A at 72 hours; In the soil drainage test, the maximum total drainage of the soil mixed with nano Fe 3 O 4 material at the end reached 1907 mL; In the soil pH value experiment, the pH value of the soil is higher when the proportion of nano SiO 2 material added is 3‰ and the proportion of nano Fe 3 O 4 material added is 2‰. The above results indicate that the geological soft soil consolidation method designed by the research institute incorporating nano SiO 2 materials or nano Fe 3 O 4 materials can effectively improve the drainage and mechanical properties of the soil.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":"105 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To obtain high-performance Fe–W alloy plating instead of environmentally hazardous chromium plating, the effects of the cathode material, electrolyte pH, temperature, current density, plating time and rotational speed on the cathode current efficiency and alloy plating are investigated in this paper. The results show that the pH and current density of the plating solution greatly influence the morphology and current efficiency of the cathode. The current efficiency of the cathode can reach 63.56%, and the tungsten content can reach 55% at pH = 8, 60 °C, 12 A/dm 2 , 100 r/min, 75 min, 0.1 mol/l of Fe 2+ and 0.2 mol/l of W 6+ . After XRD analysis, the plating is found to consist of the Fe7W6 amorphous phase. In addition, La is added to the Fe–W alloy under optimal conditions. By analyzing the polarization curve, the potential of the Fe–W(La) alloy is positively shifted by 0.039 V compared with the Fe–W alloy, which has good corrosion resistance.
{"title":"Study of the process of preparing amorphous Fe–W(La) alloy plating by induced co-deposition","authors":"Liang Tian, Jidong Li, Hongxuan Xing, Lingfeng Yue, Zhen Li, Yiyong Wang","doi":"10.1166/mex.2023.2511","DOIUrl":"https://doi.org/10.1166/mex.2023.2511","url":null,"abstract":"To obtain high-performance Fe–W alloy plating instead of environmentally hazardous chromium plating, the effects of the cathode material, electrolyte pH, temperature, current density, plating time and rotational speed on the cathode current efficiency and alloy plating are investigated in this paper. The results show that the pH and current density of the plating solution greatly influence the morphology and current efficiency of the cathode. The current efficiency of the cathode can reach 63.56%, and the tungsten content can reach 55% at pH = 8, 60 °C, 12 A/dm 2 , 100 r/min, 75 min, 0.1 mol/l of Fe 2+ and 0.2 mol/l of W 6+ . After XRD analysis, the plating is found to consist of the Fe7W6 amorphous phase. In addition, La is added to the Fe–W alloy under optimal conditions. By analyzing the polarization curve, the potential of the Fe–W(La) alloy is positively shifted by 0.039 V compared with the Fe–W alloy, which has good corrosion resistance.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":"113 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135323173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shoaib Nazir, Jian-Min Zhang, Numan Abbas, Majid Niaz Akhtar, Shahroz Saleem, Kamran Qadir, Oscar Chijioke Nkwazema, Muhammad Nauman, Gideon F. B. Solre
This work demonstrated the effects of Cu 2+ ion doping on the morphological, structural, vibrational, optical, dielectric, and electrical characteristics of barium oxide (BaO) nanoparticles. The XRD analysis revealed the high purity and crystallinity of the prepared Cu doped BaO samples. The crystallite size of the Cu doped BaO nanoparticles was in the range of 6.51 nm to 8.49 nm and increased as the Cu 2+ increased. The SEM micrographs revealed the irregular and spongy like morphology of the Cu doped BaO samples. Agglomeration and porosity were decreased due to the addition of Cu 2+ doping content. Raman spectra revealed the enhancement in the vibrational bands with the Cu 2+ substitution. The FTIR study showed the band obtained between 680–880 cm −1 and were attributed to Ba–O bonding vibrations which confirm the formation of BaO samples. FTIR and Raman spectra results are in the good agreement with XRD results. Optical characteristics were examined through UV-Vis spectra, results revealed that band gap was declined from 1.41 eV to 1.20 eV because the incorporation of Cu 2+ ions in BaO lattice. The electrical properties revealed that conductivity increased from 2.39×10 −7 S cm −1 to 4.44×10 −4 S cm −1 while resistivity decreased from 4.18×10 6 Ω cm to 2.25×10 3 Ω cm with the increase of Cu 2+ content up to 2%. The dielectric study revealed that dielectric constant value reduced with the increase of Cu 2+ concentration. The obtained structural, morphological, vibrational, electrical, dielectric, and optical characteristics of the BaO nanoparticles with Cu 2+ doping content make them a promising material for the electronic device applications.
{"title":"Improvements in the physicochemical and electrical characteristics of BaO nanoparticles by Cu doping for electronic device applications","authors":"Shoaib Nazir, Jian-Min Zhang, Numan Abbas, Majid Niaz Akhtar, Shahroz Saleem, Kamran Qadir, Oscar Chijioke Nkwazema, Muhammad Nauman, Gideon F. B. Solre","doi":"10.1166/mex.2023.2508","DOIUrl":"https://doi.org/10.1166/mex.2023.2508","url":null,"abstract":"This work demonstrated the effects of Cu 2+ ion doping on the morphological, structural, vibrational, optical, dielectric, and electrical characteristics of barium oxide (BaO) nanoparticles. The XRD analysis revealed the high purity and crystallinity of the prepared Cu doped BaO samples. The crystallite size of the Cu doped BaO nanoparticles was in the range of 6.51 nm to 8.49 nm and increased as the Cu 2+ increased. The SEM micrographs revealed the irregular and spongy like morphology of the Cu doped BaO samples. Agglomeration and porosity were decreased due to the addition of Cu 2+ doping content. Raman spectra revealed the enhancement in the vibrational bands with the Cu 2+ substitution. The FTIR study showed the band obtained between 680–880 cm −1 and were attributed to Ba–O bonding vibrations which confirm the formation of BaO samples. FTIR and Raman spectra results are in the good agreement with XRD results. Optical characteristics were examined through UV-Vis spectra, results revealed that band gap was declined from 1.41 eV to 1.20 eV because the incorporation of Cu 2+ ions in BaO lattice. The electrical properties revealed that conductivity increased from 2.39×10 −7 S cm −1 to 4.44×10 −4 S cm −1 while resistivity decreased from 4.18×10 6 Ω cm to 2.25×10 3 Ω cm with the increase of Cu 2+ content up to 2%. The dielectric study revealed that dielectric constant value reduced with the increase of Cu 2+ concentration. The obtained structural, morphological, vibrational, electrical, dielectric, and optical characteristics of the BaO nanoparticles with Cu 2+ doping content make them a promising material for the electronic device applications.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135324304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Zhang, Jian Fang, Hongbin Wang, Fangzhou Hao, Xiang Lin, Yong Wang
This study aims to improve the real-time monitoring and fault diagnosis of distribution transformers by utilizing a combination of five thin film gas detectors, these detectors include metal-modified graphene composite films and SnO 2 /RGO humidity sensors, which were prepared using the hydrothermal method. The experiment focused on investigating humidity and main fault characteristic gases that can reflect the insulation status of transformers. Additionally, a gas sensor array was constructed using a deep confidence neural network model. Based on the analysis of dissolved gas in transformer oil, the study extensively discusses the insulation fault diagnosis model and constructs the transformer fault diagnosis model using various methods including TRM, Particle swarm optimization support vector machine. The results demonstrated that the SnO 2 /RGO thin film humidity sensor exhibited high humidity sensitivity, and the other thin film gas sensors also exhibited good sensitivity. The average accuracy of the three classification methods mentioned is 80%, 92%, and 96%, respectively. These findings highlighted that the vector machine model not only improved the fault diagnosis accuracy but also possessed the characteristics of fewer parameters and a fast rate of convergence. Consequently, it effectively addressed the issue of early diagnosis of potential transformer faults. This study was of significant practical importance for ensuring the secure operation of the power grid.
{"title":"Application of graphene gas sensor technological convergence PSO-SVM in distribution transformer insulation condition monitoring and fault diagnosis","authors":"Min Zhang, Jian Fang, Hongbin Wang, Fangzhou Hao, Xiang Lin, Yong Wang","doi":"10.1166/mex.2023.2517","DOIUrl":"https://doi.org/10.1166/mex.2023.2517","url":null,"abstract":"This study aims to improve the real-time monitoring and fault diagnosis of distribution transformers by utilizing a combination of five thin film gas detectors, these detectors include metal-modified graphene composite films and SnO 2 /RGO humidity sensors, which were prepared using the hydrothermal method. The experiment focused on investigating humidity and main fault characteristic gases that can reflect the insulation status of transformers. Additionally, a gas sensor array was constructed using a deep confidence neural network model. Based on the analysis of dissolved gas in transformer oil, the study extensively discusses the insulation fault diagnosis model and constructs the transformer fault diagnosis model using various methods including TRM, Particle swarm optimization support vector machine. The results demonstrated that the SnO 2 /RGO thin film humidity sensor exhibited high humidity sensitivity, and the other thin film gas sensors also exhibited good sensitivity. The average accuracy of the three classification methods mentioned is 80%, 92%, and 96%, respectively. These findings highlighted that the vector machine model not only improved the fault diagnosis accuracy but also possessed the characteristics of fewer parameters and a fast rate of convergence. Consequently, it effectively addressed the issue of early diagnosis of potential transformer faults. This study was of significant practical importance for ensuring the secure operation of the power grid.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135323174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}