Abstract The purpose of this paper is to present the Monte-Carlo calculations performed to design a special element called gamma blocker (GB), necessary to stop the gamma radiation in the Accelerator-to-Target (A2T) section of European Spallation Source (ESS) linac. Very high levels of gamma radiation emitted backward from the activated target through the beam pipe could effectively block any human intervention close to the beam transport system. The residual dose rate in the linac tunnel was calculated without and with different GBs as a function of time. The final GB material and dimensions are proposed.
{"title":"Gamma radiation calculations and gamma blocker design for the high-energy beam transport region of the European Spallation Source","authors":"Karol S. Szymczyk, S. Wronka","doi":"10.2478/nuka-2021-0014","DOIUrl":"https://doi.org/10.2478/nuka-2021-0014","url":null,"abstract":"Abstract The purpose of this paper is to present the Monte-Carlo calculations performed to design a special element called gamma blocker (GB), necessary to stop the gamma radiation in the Accelerator-to-Target (A2T) section of European Spallation Source (ESS) linac. Very high levels of gamma radiation emitted backward from the activated target through the beam pipe could effectively block any human intervention close to the beam transport system. The residual dose rate in the linac tunnel was calculated without and with different GBs as a function of time. The final GB material and dimensions are proposed.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"66 1","pages":"99 - 102"},"PeriodicalIF":0.7,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49000978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract A new kind of 125I seeds with a core-shell structure were synthesized by an easy assembling–disassembling coaxial capillaries microfluidic device. The dose distribution of a 125I brachytherapy source fabricated by arranging six 125I seeds collinearly within a cylindrical titanium capsule was simulated by modelling the source in a water phantom using Monte Carlo N-Particle Transport code. The influence of the motion and the core size of the 125I seeds on the dose distribution was also studied in this work.
{"title":"Design and fabrication of 125I seeds for brachytherapy using capillary-based microfluidic technique","authors":"Yuan-Yuan Wang, Miao Zhang, Tong Song, Zhenqi Chang","doi":"10.2478/nuka-2021-0007","DOIUrl":"https://doi.org/10.2478/nuka-2021-0007","url":null,"abstract":"Abstract A new kind of 125I seeds with a core-shell structure were synthesized by an easy assembling–disassembling coaxial capillaries microfluidic device. The dose distribution of a 125I brachytherapy source fabricated by arranging six 125I seeds collinearly within a cylindrical titanium capsule was simulated by modelling the source in a water phantom using Monte Carlo N-Particle Transport code. The influence of the motion and the core size of the 125I seeds on the dose distribution was also studied in this work.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"66 1","pages":"55 - 60"},"PeriodicalIF":0.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43489311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Chałupnik, K. Skubacz, M. Wysocka, J. Mazur, M. Bonczyk, K. Kozak, D. Grządziel, P. Urban, D. Tchorz-Trzeciakiewicz, B. Kozłowska, A. Walencik-Łata, A. Podstawczyńska, J. Olszewski, J. Bartak, M. Karpińska, K. Wołoszczuk, M. Dohojda, Jakub Nowak, M. Długosz-Lisiecka, E. Foerster, T. Przylibski
{"title":"Erratum to “Radon incomparison tests – Katowice, 2016” [Nukleonika 2020;65(2):127-132, doi:10.2478/nuka-2020-0020]","authors":"S. Chałupnik, K. Skubacz, M. Wysocka, J. Mazur, M. Bonczyk, K. Kozak, D. Grządziel, P. Urban, D. Tchorz-Trzeciakiewicz, B. Kozłowska, A. Walencik-Łata, A. Podstawczyńska, J. Olszewski, J. Bartak, M. Karpińska, K. Wołoszczuk, M. Dohojda, Jakub Nowak, M. Długosz-Lisiecka, E. Foerster, T. Przylibski","doi":"10.2478/nuka-2021-0011","DOIUrl":"https://doi.org/10.2478/nuka-2021-0011","url":null,"abstract":"","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"66 1","pages":"80 - 80"},"PeriodicalIF":0.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43112215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Abolaban, E. Banoqitah, Eslam M. Taha, A. Alhawsawi, F. Djouider, A. Nisbet
Abstract Actinium-225 is used in nuclear medicine for the treatment of malignant tumours. It can be applied to produce Bi-213 in a reusable generator or can be used alone as an agent for radiation therapy, in particular for targeted alpha therapy. However, the availability of Ac-225 for worldwide use, particularly in low- and middle-income countries, is limited. We present a feasibility study employing GATE, an open-source Monte Carlo simulation toolkit, on the production of Ac-225 from a neutron generator. This work suggests that a design consisting of three concentric cylinders, the innermost a Cf-252 neutron source, the middle nickel cylinder acting as a proton-producing target and the outer cylinder a RaCl2 target may provide a feasible design outline for an Ac-225 generator.
{"title":"Production of actinium-225 from a (n,p) reaction: Feasibility and pre-design studies","authors":"F. Abolaban, E. Banoqitah, Eslam M. Taha, A. Alhawsawi, F. Djouider, A. Nisbet","doi":"10.2478/nuka-2021-0008","DOIUrl":"https://doi.org/10.2478/nuka-2021-0008","url":null,"abstract":"Abstract Actinium-225 is used in nuclear medicine for the treatment of malignant tumours. It can be applied to produce Bi-213 in a reusable generator or can be used alone as an agent for radiation therapy, in particular for targeted alpha therapy. However, the availability of Ac-225 for worldwide use, particularly in low- and middle-income countries, is limited. We present a feasibility study employing GATE, an open-source Monte Carlo simulation toolkit, on the production of Ac-225 from a neutron generator. This work suggests that a design consisting of three concentric cylinders, the innermost a Cf-252 neutron source, the middle nickel cylinder acting as a proton-producing target and the outer cylinder a RaCl2 target may provide a feasible design outline for an Ac-225 generator.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"66 1","pages":"61 - 67"},"PeriodicalIF":0.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48196835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract To assure the credibility of commodity transfer operations in the oil and gas industry, calibrated flow meters are used to quantify the movement of fluids in the pipelines. The purpose of this paper is to validate the transient time method (TTM) to calibrate oil flow meters installed in restricted areas, using the 123I-labelled oil as a radiotracer. Traditionally, as proposed by the standard ISO 2975-7:1977 [1] for experiments in an aqueous medium, the TTM is employed by positioning two detectors at separate locations. However, in industrial plants, it is not always possible to install detectors at the distances recommended by the ISO 2975-7. The method proposed in this paper uses four scintillator detectors separated one from each other by 0.30 m and three injections containing 5.0 ml of 123I-labelled oil. The experiments were carried out in an oil flow rig with a turbulent flow profile. The results have reached an uncertainty which is lower than 1.0%.
摘要为了保证油气行业商品输送作业的可靠性,采用标定流量计对管道中流体的运动进行量化。本文的目的是验证瞬态时间法(TTM)校准安装在限制区域的油流量计,使用123i标记的油作为放射性示踪剂。传统上,根据标准ISO 2975- 7:20 77[1]的建议,在水介质中进行实验,TTM是通过将两个探测器定位在不同的位置来使用的。然而,在工业厂房中,并不总是能够按照ISO 2975-7推荐的距离安装探测器。本文提出的方法使用四个闪烁体探测器,每个探测器相隔0.30 m,并注入含有5.0 ml 123i标记油的三次注射。实验是在紊流剖面的油流钻机上进行的。结果的不确定度小于1.0%。
{"title":"Validation of transient time method to calibrate oil flow meters in closed conduits using 123I as the radiotracer","authors":"E. Goncalves, L. E. Brandão, D. Braz","doi":"10.2478/nuka-2021-0009","DOIUrl":"https://doi.org/10.2478/nuka-2021-0009","url":null,"abstract":"Abstract To assure the credibility of commodity transfer operations in the oil and gas industry, calibrated flow meters are used to quantify the movement of fluids in the pipelines. The purpose of this paper is to validate the transient time method (TTM) to calibrate oil flow meters installed in restricted areas, using the 123I-labelled oil as a radiotracer. Traditionally, as proposed by the standard ISO 2975-7:1977 [1] for experiments in an aqueous medium, the TTM is employed by positioning two detectors at separate locations. However, in industrial plants, it is not always possible to install detectors at the distances recommended by the ISO 2975-7. The method proposed in this paper uses four scintillator detectors separated one from each other by 0.30 m and three injections containing 5.0 ml of 123I-labelled oil. The experiments were carried out in an oil flow rig with a turbulent flow profile. The results have reached an uncertainty which is lower than 1.0%.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"66 1","pages":"69 - 74"},"PeriodicalIF":0.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48670710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grzegorz Szaciłowski, Małgorzata Dymecka, Maria Prusińska, Katarzyna Rzemek, J. Ośko, Magdalena Mądry, Michalina Kostecka, A. Araszkiewicz
Abstract In recent years, naturally occurring radioactive materials (NORM) have become an important topic from the perspective of environmental protection. The list of isotopes that should be monitored in the environment is constantly growing as new amendments to international legislation are introduced. One of the often studied NORM elements is 210Po. In this study, a process of elaborating of a new method of 210Po determination in soil was presented. In the proposed method, several analytical aspects, like the influence of silica decomposition or optimization of an electrode material, were revised. The obtained procedure allows performance of complete radiochemical analysis in a single day, with the chemical efficiency of over 85% and great reduction of costs. Further, the influence of the use of phosphate fertilizers on polonium concentration in soil was also confirmed.
{"title":"Optimization of 210Po determination in soil","authors":"Grzegorz Szaciłowski, Małgorzata Dymecka, Maria Prusińska, Katarzyna Rzemek, J. Ośko, Magdalena Mądry, Michalina Kostecka, A. Araszkiewicz","doi":"10.2478/nuka-2021-0010","DOIUrl":"https://doi.org/10.2478/nuka-2021-0010","url":null,"abstract":"Abstract In recent years, naturally occurring radioactive materials (NORM) have become an important topic from the perspective of environmental protection. The list of isotopes that should be monitored in the environment is constantly growing as new amendments to international legislation are introduced. One of the often studied NORM elements is 210Po. In this study, a process of elaborating of a new method of 210Po determination in soil was presented. In the proposed method, several analytical aspects, like the influence of silica decomposition or optimization of an electrode material, were revised. The obtained procedure allows performance of complete radiochemical analysis in a single day, with the chemical efficiency of over 85% and great reduction of costs. Further, the influence of the use of phosphate fertilizers on polonium concentration in soil was also confirmed.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"66 1","pages":"75 - 79"},"PeriodicalIF":0.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44521334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Dąbrowska-Szewczyk, A. Zawadzka, B. Brzozowska, A. Walewska, P. Kukołowicz
Abstract Purpose According to the available international recommendations, at least one independent verification of the calculations of number of monitor unit (MU) is required for every patient treated by teleradiotherapy. The aim of this study was to estimate the differences of dose distributions calculated with two treatment planning systems: Eclipse (Varian) and Oncentra MasterPlan (Elekta). Materials and methods The analysis was performed for 280 three-dimensional conformal radiotherapy treatment (3D-CRT) plans with photon beams from Varian accelerators: CL 600C/D X6 MV (109 plans), CL 2300C/D X6 MV (43 plans), and CL 2300C/D X15 MV (128 plans). The mean doses in the planning target volume (PTV) and doses at the isocenter point obtained with Eclipse and Oncentra MasterPlan (OMP) were compared with Wilcoxon matched-pairs signed rank test. Additionally, the treatment planning system (TPS) calculations were compared with dosimetric measurements performed in the inhomogeneous phantom. Results Data were analysed for 6 MV plans and for 15 MV plans separately, independently of the treatment machine. The dose values calculated in Eclipse were significantly (p <0.001) higher compared to calculations of OMP system. The average difference of the mean dose to PTV was (1.4 ± 1.0)% for X6 MV and (2.5 ± 0.6)% for X15 MV. Average dose disparities at the isocenter point were (1.3 ± 1.9)% and (2.1 ± 1.0)% for X6 MV and X15 MV beams, respectively. The largest differences were observed in lungs, air cavities, and bone structures. Moreover the variation in dosimetric measurements was less as compared to Eclipse calculations. Conclusions OMP calculations were introduced as the independent MU verification tool with the first action level range equal to 3.5%.
{"title":"Independent verification of treatment planning system calculations","authors":"E. Dąbrowska-Szewczyk, A. Zawadzka, B. Brzozowska, A. Walewska, P. Kukołowicz","doi":"10.2478/nuka-2021-0006","DOIUrl":"https://doi.org/10.2478/nuka-2021-0006","url":null,"abstract":"Abstract Purpose According to the available international recommendations, at least one independent verification of the calculations of number of monitor unit (MU) is required for every patient treated by teleradiotherapy. The aim of this study was to estimate the differences of dose distributions calculated with two treatment planning systems: Eclipse (Varian) and Oncentra MasterPlan (Elekta). Materials and methods The analysis was performed for 280 three-dimensional conformal radiotherapy treatment (3D-CRT) plans with photon beams from Varian accelerators: CL 600C/D X6 MV (109 plans), CL 2300C/D X6 MV (43 plans), and CL 2300C/D X15 MV (128 plans). The mean doses in the planning target volume (PTV) and doses at the isocenter point obtained with Eclipse and Oncentra MasterPlan (OMP) were compared with Wilcoxon matched-pairs signed rank test. Additionally, the treatment planning system (TPS) calculations were compared with dosimetric measurements performed in the inhomogeneous phantom. Results Data were analysed for 6 MV plans and for 15 MV plans separately, independently of the treatment machine. The dose values calculated in Eclipse were significantly (p <0.001) higher compared to calculations of OMP system. The average difference of the mean dose to PTV was (1.4 ± 1.0)% for X6 MV and (2.5 ± 0.6)% for X15 MV. Average dose disparities at the isocenter point were (1.3 ± 1.9)% and (2.1 ± 1.0)% for X6 MV and X15 MV beams, respectively. The largest differences were observed in lungs, air cavities, and bone structures. Moreover the variation in dosimetric measurements was less as compared to Eclipse calculations. Conclusions OMP calculations were introduced as the independent MU verification tool with the first action level range equal to 3.5%.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"66 1","pages":"47 - 53"},"PeriodicalIF":0.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69242519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Alhawsawi, E. I. Shababa, M. Qutub, E. Banoqitah, A. Kinsara
Abstract It is a known fact that phosphate rocks have high levels of natural radioactivity due to the presence of large concentrations of radionuclides. This work aims to estimate radiation exposure and dose levels at Al-Jalamid site in northern Saudi Arabia. Al-Jalamid area is one of the largest reserves of phosphate worldwide. Ma’aden, a Saudi Government public company, owns the mine and is responsible for all mining activities. Phosphate and soil samples collected from Al-Jalamid phosphate mining area have been analysed for their uranium and thorium content by an α-spectrometer using radiochemical techniques. The quantity of radon gas was measured both in groundwater and in the atmosphere (indoor and outdoor) at the site using a portable radiation survey instrument. Groundwater samples collected from wells surrounding the mining area were analysed using a liquid scintillation counter in addition to an α-spectrometer. Finally, it is found that phosphate rock concentrate products cannot be utilized economically based on the standards set by the International Atomic Energy Agency (IAEA), since the average activity concentration does not reach the limit set by IAEA and hence are not commercially feasible.
{"title":"Radiological characterization of the phosphate deposit in Al-Jalamid phosphate mining area, Saudi Arabia","authors":"A. Alhawsawi, E. I. Shababa, M. Qutub, E. Banoqitah, A. Kinsara","doi":"10.2478/nuka-2021-0005","DOIUrl":"https://doi.org/10.2478/nuka-2021-0005","url":null,"abstract":"Abstract It is a known fact that phosphate rocks have high levels of natural radioactivity due to the presence of large concentrations of radionuclides. This work aims to estimate radiation exposure and dose levels at Al-Jalamid site in northern Saudi Arabia. Al-Jalamid area is one of the largest reserves of phosphate worldwide. Ma’aden, a Saudi Government public company, owns the mine and is responsible for all mining activities. Phosphate and soil samples collected from Al-Jalamid phosphate mining area have been analysed for their uranium and thorium content by an α-spectrometer using radiochemical techniques. The quantity of radon gas was measured both in groundwater and in the atmosphere (indoor and outdoor) at the site using a portable radiation survey instrument. Groundwater samples collected from wells surrounding the mining area were analysed using a liquid scintillation counter in addition to an α-spectrometer. Finally, it is found that phosphate rock concentrate products cannot be utilized economically based on the standards set by the International Atomic Energy Agency (IAEA), since the average activity concentration does not reach the limit set by IAEA and hence are not commercially feasible.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"66 1","pages":"35 - 44"},"PeriodicalIF":0.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47618900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. S. Mohammed, E. Banoqitah, Ezzat A. Elmoujarkach, A. Alhawsawi, F. Djouider
Abstract Radioactive sealed sources and radiotracer techniques are used to diagnose industrial process units. This work introduces a workspace to simulate four sealed sources and radiotracer applications, namely, gamma scanning of distillation columns, gamma scanning of pipes, gamma transmission tomography, and radiotracer flow rate measurements. The workspace was created in Geant4 Application for Tomographic Emission (GATE) simulation toolkit and was called Industrial Radioisotope Applications Virtual Laboratory. The flexibility of GATE and the fact that it is an open-source software render it advantageous to radioisotope technology practitioners, educators, and students. The comparison of the simulation results with experimental results that are available in the literature showed the effectiveness of the virtual laboratory.
{"title":"A virtual laboratory for radiotracer and sealed-source applications in industry","authors":"M. S. Mohammed, E. Banoqitah, Ezzat A. Elmoujarkach, A. Alhawsawi, F. Djouider","doi":"10.2478/nuka-2021-0003","DOIUrl":"https://doi.org/10.2478/nuka-2021-0003","url":null,"abstract":"Abstract Radioactive sealed sources and radiotracer techniques are used to diagnose industrial process units. This work introduces a workspace to simulate four sealed sources and radiotracer applications, namely, gamma scanning of distillation columns, gamma scanning of pipes, gamma transmission tomography, and radiotracer flow rate measurements. The workspace was created in Geant4 Application for Tomographic Emission (GATE) simulation toolkit and was called Industrial Radioisotope Applications Virtual Laboratory. The flexibility of GATE and the fact that it is an open-source software render it advantageous to radioisotope technology practitioners, educators, and students. The comparison of the simulation results with experimental results that are available in the literature showed the effectiveness of the virtual laboratory.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"66 1","pages":"21 - 27"},"PeriodicalIF":0.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42212588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The paper discusses the effect of ionizing radiation on the functional properties of the biodegradable starch:PVA films. The analysis is related to the possible use of the material for packing the products (particularly, food) that are predicted for radiation decontamination and to the potential modification of the material by radiation treatment. Our previous results have shown that the influence of ionizing radiation on the films’ properties varied for the specific compositions (differing in starch:PVA ratio or the type of substrates) and depended on irradiation conditions. However, these studies considered only the irradiation performed in gamma chamber or in e-beam using a dose of 25 kGy. Therefore, the present study deals with the effect of the irradiations performed using various doses on the selected promising starch:PVA composition. The films characterized by starch:PVA weight ratio of 45:55 was obtained by solution casting and irradiated with fast electrons in air and with 60Co gamma rays in nitrogen applying the doses of 5, 10, 20, 25, 30, 50, and 75 kGy. No regular dependence has been noticed between the composition of films (differing in the starch and PVA content) and the intensities of the particular bands in the UV-VIS DRS spectra after irradiation. The results indicated strong interaction of the starch and PVA components in the films and the occurrence of specific reactions in each composition upon irradiation. No special differences were observed between tensile strength and Young’s modulus of the non-irradiated films characterized by the starch:PVA ratio equal to 45:55 and the samples irradiated using doses in the range of 5–75 kGy. Similarly, no differences were observed in both cases between the swelling capability of the non-irradiated and the irradiated films. However, it can be deduced that solubility in water increased when the radiation dose increased. The results show that using the doses till the range 25 kGy does not cause an essential change of all the examined properties of the starch:PVA (45:55) films. Accordingly, starch:PVA (45:55) films might be considered suitable for packing food predicted for radiation decontamination.
{"title":"The influence of electron and gamma irradiation on the properties of starch:PVA films – the effect of irradiation dose","authors":"K. Cieśla, Anna Abramowska","doi":"10.2478/nuka-2021-0001","DOIUrl":"https://doi.org/10.2478/nuka-2021-0001","url":null,"abstract":"Abstract The paper discusses the effect of ionizing radiation on the functional properties of the biodegradable starch:PVA films. The analysis is related to the possible use of the material for packing the products (particularly, food) that are predicted for radiation decontamination and to the potential modification of the material by radiation treatment. Our previous results have shown that the influence of ionizing radiation on the films’ properties varied for the specific compositions (differing in starch:PVA ratio or the type of substrates) and depended on irradiation conditions. However, these studies considered only the irradiation performed in gamma chamber or in e-beam using a dose of 25 kGy. Therefore, the present study deals with the effect of the irradiations performed using various doses on the selected promising starch:PVA composition. The films characterized by starch:PVA weight ratio of 45:55 was obtained by solution casting and irradiated with fast electrons in air and with 60Co gamma rays in nitrogen applying the doses of 5, 10, 20, 25, 30, 50, and 75 kGy. No regular dependence has been noticed between the composition of films (differing in the starch and PVA content) and the intensities of the particular bands in the UV-VIS DRS spectra after irradiation. The results indicated strong interaction of the starch and PVA components in the films and the occurrence of specific reactions in each composition upon irradiation. No special differences were observed between tensile strength and Young’s modulus of the non-irradiated films characterized by the starch:PVA ratio equal to 45:55 and the samples irradiated using doses in the range of 5–75 kGy. Similarly, no differences were observed in both cases between the swelling capability of the non-irradiated and the irradiated films. However, it can be deduced that solubility in water increased when the radiation dose increased. The results show that using the doses till the range 25 kGy does not cause an essential change of all the examined properties of the starch:PVA (45:55) films. Accordingly, starch:PVA (45:55) films might be considered suitable for packing food predicted for radiation decontamination.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"66 1","pages":"3 - 9"},"PeriodicalIF":0.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43737911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}