Pub Date : 2024-06-01DOI: 10.1016/j.mne.2024.100263
Kurt Ronse
This article discusses the important role that optical lithography has played in realizing Moore's Law. With the introduction of Artificial Intelligence, Machine Learning, and the Internet of Things, the demand for computing power and data storage capacity has never been as large as today. Optical lithography has been able to keep up with the resolution demand by increasing the Numerical Aperture of the projection Lens, decreasing the wavelength and innovative resist schemes. After the introduction of Immersion lithography and Double patterning, EUV was introduced by the industry. Although the transition from 193 nm lithography to EUV lithography was very difficult, EUV follows the same scaling laws as Optical Lithography. The conclusion is that the scaling laws of Optical Lithography continue to support Moore's Law, through the development of high NA EUV Lithography.
本文讨论了光学光刻技术在实现摩尔定律方面发挥的重要作用。随着人工智能、机器学习和物联网的引入,对计算能力和数据存储容量的需求从未像今天这样大。光学光刻技术通过增加投影透镜的数值孔径、减少波长和创新光刻胶方案,满足了对分辨率的需求。在引入沉浸式光刻技术和双图案技术之后,业界又引入了超紫外光刻技术。虽然从 193 纳米光刻过渡到极紫外光刻非常困难,但极紫外光刻遵循与光学光刻相同的缩放规律。结论是,通过高 NA EUV 光刻技术的发展,光学光刻技术的缩放规律将继续支持摩尔定律。
{"title":"Continued dimensional scaling through projection lithography","authors":"Kurt Ronse","doi":"10.1016/j.mne.2024.100263","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100263","url":null,"abstract":"<div><p>This article discusses the important role that optical lithography has played in realizing Moore's Law. With the introduction of Artificial Intelligence, Machine Learning, and the Internet of Things, the demand for computing power and data storage capacity has never been as large as today. Optical lithography has been able to keep up with the resolution demand by increasing the Numerical Aperture of the projection Lens, decreasing the wavelength and innovative resist schemes. After the introduction of Immersion lithography and Double patterning, EUV was introduced by the industry. Although the transition from 193 nm lithography to EUV lithography was very difficult, EUV follows the same scaling laws as Optical Lithography. The conclusion is that the scaling laws of Optical Lithography continue to support Moore's Law, through the development of high NA EUV Lithography.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100263"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000261/pdfft?md5=c38b058810cf2d8f400b4d14687ef579&pid=1-s2.0-S2590007224000261-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141244516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-27DOI: 10.1016/j.mne.2024.100265
Ch. Bickmann , Ch. Meinecke , T. Korten , H. Sekulla , Ch. Helke , Th. Blaudeck , D. Reuter , St. E. Schulz
In this study, a method for depositing and patterning the thermosensitive polymer poly(N-isopropylacrylamide) on SiO2 surfaces is presented for potential use in nano-sized microfluidic channels. Two approaches based on nanolithographic processes are shown for this purpose. In both cases, a self-assembling monolayer consisting of (3-aminopropyl)-dimethylethoxysilane was bound to the hydroxyl group of the substrate surface and subsequently functionalized with the polymerization initiator α-bromoisobutyryl bromide. In the first approach the silane monolayer itself was patterned using a photoresist and a lift-off process, followed by the selective deposition of the initiator, which starts a substrate-induced atom transfer radical polymerization for the growth of polymer on the silane monolayer. In the second approach, the lift-off takes place after the polymerization on the substrate surface. The result of this study shows the successful application of the process steps for the nano-dimensioned grafting of poly(N-isopropylacrylamide) onto SiO2 substrates. The reaction time of the silane monolayer with the polymerization initiator and the composition of the reaction solution used were found to have the greatest influence of the processes. AFM and XPS analysis of the functionalized surfaces revealed patterned growth of both the self-assembling monolayer and the polymer structures.
{"title":"Fabrication of switchable biocompatible, nano-fluidic devices using a thermoresponsive polymer on nano-patterned surfaces","authors":"Ch. Bickmann , Ch. Meinecke , T. Korten , H. Sekulla , Ch. Helke , Th. Blaudeck , D. Reuter , St. E. Schulz","doi":"10.1016/j.mne.2024.100265","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100265","url":null,"abstract":"<div><p>In this study, a method for depositing and patterning the thermosensitive polymer poly(<em>N</em>-isopropylacrylamide) on SiO<sub>2</sub> surfaces is presented for potential use in nano-sized microfluidic channels. Two approaches based on nanolithographic processes are shown for this purpose. In both cases, a self-assembling monolayer consisting of (3-aminopropyl)-dimethylethoxysilane was bound to the hydroxyl group of the substrate surface and subsequently functionalized with the polymerization initiator α-bromoisobutyryl bromide. In the first approach the silane monolayer itself was patterned using a photoresist and a lift-off process, followed by the selective deposition of the initiator, which starts a substrate-induced atom transfer radical polymerization for the growth of polymer on the silane monolayer. In the second approach, the lift-off takes place after the polymerization on the substrate surface. The result of this study shows the successful application of the process steps for the nano-dimensioned grafting of poly(<em>N</em>-isopropylacrylamide) onto SiO<sub>2</sub> substrates. The reaction time of the silane monolayer with the polymerization initiator and the composition of the reaction solution used were found to have the greatest influence of the processes. AFM and XPS analysis of the functionalized surfaces revealed patterned growth of both the self-assembling monolayer and the polymer structures.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100265"},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000285/pdfft?md5=65d3de0b41fb5be31e5f4007dff14894&pid=1-s2.0-S2590007224000285-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-18DOI: 10.1016/j.mne.2024.100261
Parth Malik , Ruma Rani , Rachna Gupta , Rakesh Kumar Ameta , Tapan Kumar Mukherjee
Over the past few years, water quality monitoring has swiftly emerged as a thrust area for most of the developing nations. Despite its renewable essence, incessant industrialization and urbanization have depleted the natural water resources, culminating in adverse impact on potable water quality. As a consequence, reliable technologies with utmost sensitivity and accurate predictions vis-à-vis authentic qualitative standards are urgently needed. Herein, interest in using gold nanoparticles (Au NPs) biosensors to gauge the qualitative profile of water resources has been quite significant. Major fascinations for Au NPs biosensing driven water quality monitoring are steadfast preparation methodologies, well-understood mechanisms for size-shape modulation and inert sensitivity manifested remarkable functionalization abilities. The size-shape modulated functionalization advances for Au NPs are the dynamic outcomes of their quantum effects, anchored via single or multidimensional quantum confinements (QCs). Morphologies as vibrant as rod, spherical, cylindrical, shells and combinatorial regime have been the backbone aspects of Au NPs based biosensors. With such insights, the present article focuses on last decade noted advances aimed at Au NPs biosensors assessed water quality. The studies discussed herewith were retrieved from Pubmed using the keywords, “Gold Nanoparticle Biosensors for Water Quality Monitoring”. The knowledge shared herein could consolidate the fabrication of future Au nanomaterials based sensing technologies vis-à-vis functionalization mechanisms, cost considerations, precision aspects, integrated possibilities and long-term cautions.
{"title":"Recent progress on gold nanoparticle biosensors monitored water quality: Insights on diversified contaminants and functionalization paradigms","authors":"Parth Malik , Ruma Rani , Rachna Gupta , Rakesh Kumar Ameta , Tapan Kumar Mukherjee","doi":"10.1016/j.mne.2024.100261","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100261","url":null,"abstract":"<div><p>Over the past few years, water quality monitoring has swiftly emerged as a thrust area for most of the developing nations. Despite its renewable essence, incessant industrialization and urbanization have depleted the natural water resources, culminating in adverse impact on potable water quality. As a consequence, reliable technologies with utmost sensitivity and accurate predictions <em>vis-à-vis</em> authentic qualitative standards are urgently needed. Herein, interest in using gold nanoparticles (Au NPs) biosensors to gauge the qualitative profile of water resources has been quite significant. Major fascinations for Au NPs biosensing driven water quality monitoring are steadfast preparation methodologies, well-understood mechanisms for size-shape modulation and inert sensitivity manifested remarkable functionalization abilities. The size-shape modulated functionalization advances for Au NPs are the dynamic outcomes of their quantum effects, anchored <em>via</em> single or multidimensional quantum confinements (QCs). Morphologies as vibrant as rod, spherical, cylindrical, shells and combinatorial regime have been the backbone aspects of Au NPs based biosensors. With such insights, the present article focuses on last decade noted advances aimed at Au NPs biosensors assessed water quality. The studies discussed herewith were retrieved from Pubmed using the keywords, “Gold Nanoparticle Biosensors for Water Quality Monitoring”. The knowledge shared herein could consolidate the fabrication of future Au nanomaterials based sensing technologies <em>vis-à-vis</em> functionalization mechanisms, cost considerations, precision aspects, integrated possibilities and long-term cautions.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100261"},"PeriodicalIF":0.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000248/pdfft?md5=035af649efca26b4d1459d91ee82964f&pid=1-s2.0-S2590007224000248-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141090183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1016/j.mne.2024.100262
Alexander Litke , Elahe Zakizade , Marvin Michel , Sascha Weyers , Anna Lena Schall-Giesecke
Plasmonic metamaterial absorbers (PMAs) designed for multispectral imaging in the infrared (IR) with uncooled microbolometers are investigated. The study presents Fourier transform infrared spectroscopy (FTIR) measurements of PMAs consisting of metal-insulator-metal-stacks (MIM) with square-shaped micropatches as top metal layers. The measurements reveal high absorptances of 82% to 99% for distinct wavelengths within a range from 2 μm to 9.2 μm. The spectra are evaluated with respect to the lateral dimensions of the patches and to the refractive indices of the used dielectrics SiO2, Al2O3 and Ta2O5. Numerical simulations and analytical calculations of the TM010-mode using the transmission line model (TLM) for microstrip antennas show good qualitative agreement with the measurement results. Additionally, bispectral PMAs were fabricated consisting of fields of PMAs with two different patch sizes arranged in a chessboard pattern. The individual fields of this pattern correspond to microbolometers with 12 μm pitch in shape and size. Two distinct absorption maxima can be seen in the spectra measured by FTIR. The choice of materials, deposition methods and patterning processes is suitable for the integration into the existing Fraunhofer IMS's nanotube microbolometer technology to realize multispectral infrared imaging. The fabrication process is CMOS-compatible and carried out on 8-in. wafers.
{"title":"Plasmonic metamaterial absorber for MWIR and LWIR bispectral microbolometers","authors":"Alexander Litke , Elahe Zakizade , Marvin Michel , Sascha Weyers , Anna Lena Schall-Giesecke","doi":"10.1016/j.mne.2024.100262","DOIUrl":"10.1016/j.mne.2024.100262","url":null,"abstract":"<div><p>Plasmonic metamaterial absorbers (PMAs) designed for multispectral imaging in the infrared (IR) with uncooled microbolometers are investigated. The study presents Fourier transform infrared spectroscopy (FTIR) measurements of PMAs consisting of metal-insulator-metal-stacks (MIM) with square-shaped micropatches as top metal layers. The measurements reveal high absorptances of 82% to 99% for distinct wavelengths within a range from 2 μm to 9.2 μm. The spectra are evaluated with respect to the lateral dimensions of the patches and to the refractive indices of the used dielectrics SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> and Ta<sub>2</sub>O<sub>5</sub>. Numerical simulations and analytical calculations of the TM<sub>010</sub>-mode using the transmission line model (TLM) for microstrip antennas show good qualitative agreement with the measurement results. Additionally, bispectral PMAs were fabricated consisting of fields of PMAs with two different patch sizes arranged in a chessboard pattern. The individual fields of this pattern correspond to microbolometers with 12 μm pitch in shape and size. Two distinct absorption maxima can be seen in the spectra measured by FTIR. The choice of materials, deposition methods and patterning processes is suitable for the integration into the existing Fraunhofer IMS's nanotube microbolometer technology to realize multispectral infrared imaging. The fabrication process is CMOS-compatible and carried out on 8-in. wafers.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100262"},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259000722400025X/pdfft?md5=f4203714dbb897b05b563c1db386a14d&pid=1-s2.0-S259000722400025X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141024538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.1016/j.mne.2024.100260
Georgios P. Papageorgiou , Nikolaos Boukos , Maria Androulidaki , Dimitrios Christofilos , Vassilis Psycharis , Maria Katsikini , Fani Pinakidou , Eleni C. Paloura , Christoforos Krontiras , Eleni Makarona
Zinc oxide (ZnO) has emerged as one of the most promising candidates for mass-producing cost-efficient optoelectronic devices. This is primarily because it can be synthesized in high-quality nanostructures on a wide range of substrates through relatively simple chemical methods. However, producing p-type ZnO, regardless of the chosen method, remains an open and controversial issue. In this work, Li-doped ZnO nanostructures of varying Li-cocnentration were produced via a two-step hydrothermal growth synthesis and an in-depth analysis based on with Field Emission Scanning Electron Microscopy (FE-SEM), X-ray diffraction (XRD), Raman Spectroscopy, Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy, and temperature-dependent Photoluminescence (PL) was carried out in an effort to gain insights into the Li-incorporation mechanisms. The findings indicated a strong interplay between the native defects responsible for the inherent n-type character of the material and Li incorporation. It is suggested that this interplay hinders the successful conversion of the Li-doped nanorods into p-type nanostructures and that when employing the hydrothermal approach it is essential to identify the precise conditions necessary for genuine Li incorporation as a Zn substitutional.
氧化锌(ZnO)已成为大规模生产具有成本效益的光电设备的最有前途的候选材料之一。这主要是因为它可以通过相对简单的化学方法在各种基底上合成高质量的纳米结构。然而,无论选择哪种方法,生产 p 型氧化锌仍然是一个开放和有争议的问题。在这项工作中,通过两步水热生长合成法制备了不同锂掺杂浓度的氧化锌纳米结构,并利用场发射扫描电子显微镜(FE-SEM)、X 射线衍射(XRD)、拉曼光谱、扩展 X 射线吸收精细结构(EXAFS)光谱和温度依赖性光致发光(PL)进行了深入分析,以深入了解锂掺杂机制。研究结果表明,造成材料固有 n 型特性的原生缺陷与锂掺杂之间存在着强烈的相互作用。研究表明,这种相互作用阻碍了掺锂纳米棒向 p 型纳米结构的成功转化,因此在采用水热法时,必须确定将锂作为 Zn 替代物进行真正掺入所需的精确条件。
{"title":"Investigation of hydrothermally-produced ZnO nanorods and the mechanisms of Li incorporation as a possible dopant","authors":"Georgios P. Papageorgiou , Nikolaos Boukos , Maria Androulidaki , Dimitrios Christofilos , Vassilis Psycharis , Maria Katsikini , Fani Pinakidou , Eleni C. Paloura , Christoforos Krontiras , Eleni Makarona","doi":"10.1016/j.mne.2024.100260","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100260","url":null,"abstract":"<div><p>Zinc oxide (ZnO) has emerged as one of the most promising candidates for mass-producing cost-efficient optoelectronic devices. This is primarily because it can be synthesized in high-quality nanostructures on a wide range of substrates through relatively simple chemical methods. However, producing p-type ZnO, regardless of the chosen method, remains an open and controversial issue. In this work, Li-doped ZnO nanostructures of varying Li-cocnentration were produced via a two-step hydrothermal growth synthesis and an in-depth analysis based on with Field Emission Scanning Electron Microscopy (FE-SEM), X-ray diffraction (XRD), Raman Spectroscopy, Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy, and temperature-dependent Photoluminescence (PL) was carried out in an effort to gain insights into the Li-incorporation mechanisms. The findings indicated a strong interplay between the native defects responsible for the inherent n-type character of the material and Li incorporation. It is suggested that this interplay hinders the successful conversion of the Li-doped nanorods into p-type nanostructures and that when employing the hydrothermal approach it is essential to identify the precise conditions necessary for genuine Li incorporation as a Zn substitutional.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100260"},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000236/pdfft?md5=9550786a76dde3a2bafc733a00d2da47&pid=1-s2.0-S2590007224000236-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141067393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.1016/j.mne.2024.100258
Aleksandr Zozulia , Jeroen Bolk , Rene van Veldhoven , Gleb Nazarikov , Vadim Pogoretskiy , Samir Rihani , Graham Berry , Kevin Williams , Yuqing Jiao
We present a novel fabrication approach to an integrated nanophotonic platform, based on a III-V membrane bonded to a Si substrate with benzocyclobutene (BCB). The process incorporates a hybrid lithography strategy combining deep-UV and electron-beam lithography on the same wafer. We report for the first time the usage of deep-UV scanner lithography for the fabrication of the active-passive tapers and sub-micron waveguides on the same wafer, which enables better critical dimension control, uniformity, and reproducibility. The platform uses an active-passive butt-joint interface and includes components such as distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers, electro-optical (EO) and electro-absorption (EA) modulators, and sub-micron ultra-confined passive waveguides, all monolithically integrated into a single membrane layer. The active devices have a heat sink achieved by ultra-thin BCB bonding. Lasers demonstrate up to 26 mW of optical power in the waveguide and a direct modulation bandwidth of up to 21 GHz. The modulators show static extinction up to 28.8 dB.
{"title":"Nanophotonic integrated active-passive InP membrane devices and circuits fabricated using ArF scanner lithography","authors":"Aleksandr Zozulia , Jeroen Bolk , Rene van Veldhoven , Gleb Nazarikov , Vadim Pogoretskiy , Samir Rihani , Graham Berry , Kevin Williams , Yuqing Jiao","doi":"10.1016/j.mne.2024.100258","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100258","url":null,"abstract":"<div><p>We present a novel fabrication approach to an integrated nanophotonic platform, based on a III-V membrane bonded to a Si substrate with benzocyclobutene (BCB). The process incorporates a hybrid lithography strategy combining deep-UV and electron-beam lithography on the same wafer. We report for the first time the usage of deep-UV scanner lithography for the fabrication of the active-passive tapers and sub-micron waveguides on the same wafer, which enables better critical dimension control, uniformity, and reproducibility. The platform uses an active-passive butt-joint interface and includes components such as distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers, electro-optical (EO) and electro-absorption (EA) modulators, and sub-micron ultra-confined passive waveguides, all monolithically integrated into a single membrane layer. The active devices have a heat sink achieved by ultra-thin BCB bonding. Lasers demonstrate up to 26 mW of optical power in the waveguide and a direct modulation bandwidth of up to 21 GHz. The modulators show static extinction up to 28.8 dB.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100258"},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000212/pdfft?md5=d5fd93e8bf263fb4464f4415b20d46ae&pid=1-s2.0-S2590007224000212-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.1016/j.mne.2024.100259
Ryohei Hori , Kazuya Fujita , Chun Yi Chen , Tomoyuki Kurioka , Jhen-Yang Wu , Tso-Fu Mark Chang , Katsuyuki Machida , Hiroyuki Ito , Yoshihiro Miyake , Masato Sone
Gold is a promising material for movable components in MEMS devices by the high mass density, which allows reduction of the Brownian noise. Mechanical properties of metallic materials are known to be affected by the sample size effect. When bending test is utilized, the sample geometry effect is another factor. In this study, effects of the shape of the cross-section, or the cross-sectional geometry effect, are evaluated using micro-cantilevers with a trapezoidal cross-section. The yield stresses are ranged from 112 MPa to 185 MPa in micro-cantilevers composed of single crystalline gold, and the yield stresses varied from 372 MPa to 489 MPa in polycrystalline gold micro-cantilevers. The yield stress is found to be higher in the micro-cantilever having a smaller ratio of the top width over the bottom width, which demonstrates the cross-sectional geometry effect. Also, the cross-sectional geometry effect is more significant in the polycrystalline micro-cantilevers.
{"title":"Cross-sectional geometry effect on bending strength of gold micro-cantilever with trapezoidal cross-section","authors":"Ryohei Hori , Kazuya Fujita , Chun Yi Chen , Tomoyuki Kurioka , Jhen-Yang Wu , Tso-Fu Mark Chang , Katsuyuki Machida , Hiroyuki Ito , Yoshihiro Miyake , Masato Sone","doi":"10.1016/j.mne.2024.100259","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100259","url":null,"abstract":"<div><p>Gold is a promising material for movable components in MEMS devices by the high mass density, which allows reduction of the Brownian noise. Mechanical properties of metallic materials are known to be affected by the sample size effect. When bending test is utilized, the sample geometry effect is another factor. In this study, effects of the shape of the cross-section, or the cross-sectional geometry effect, are evaluated using micro-cantilevers with a trapezoidal cross-section. The yield stresses are ranged from 112 MPa to 185 MPa in micro-cantilevers composed of single crystalline gold, and the yield stresses varied from 372 MPa to 489 MPa in polycrystalline gold micro-cantilevers. The yield stress is found to be higher in the micro-cantilever having a smaller ratio of the top width over the bottom width, which demonstrates the cross-sectional geometry effect. Also, the cross-sectional geometry effect is more significant in the polycrystalline micro-cantilevers.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100259"},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000224/pdfft?md5=c975d3baea9813e31a1d20e50884ceb8&pid=1-s2.0-S2590007224000224-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.1016/j.mne.2024.100257
Nicolai Støvring , Babak Rezaei , Arto Heiskanen , Jenny Emnéus , Stephan Sylvest Keller
Maskless UV photolithography is increasingly used, especially in research environments where low turn-around time for new designs improves productivity. Here, we fabricate pyrolytic carbon interdigitated microelectrodes with small interelectrode gaps, good adhesion to the carrier substrate, high surface area and excellent electrochemical properties using maskless UV photolithography with two negative epoxy-based photoresists, namely the commonly used SU-8 and the recently developed mr-DWL. The minimum realizable trench width in 15 μm thick photoresist films is 2.4 ± 0.15 μm for mr-DWL 5 and 3.1 ± 0.10 μm for SU-8 2035. After pyrolysis, the two resulting pyrolytic carbon materials show similar electrochemical properties. However, shrinkage during pyrolysis is significantly lower for mr-DWL compared to SU-8, which is beneficial for the fabrication of interdigitated microelectrodes. Furthermore, delamination of the electrodes during processing and operation is prevented due to the introduction of poly silicon adhesion structures. This work provides valuable insights into maskless UV lithography as well as into the pyrolytic carbon process to increase the yield, performance and productivity for fabrication of microelectrodes.
{"title":"Fabrication of pyrolytic carbon interdigitated microelectrodes by maskless UV photolithography with epoxy-based photoresists SU-8 and mr-DWL","authors":"Nicolai Støvring , Babak Rezaei , Arto Heiskanen , Jenny Emnéus , Stephan Sylvest Keller","doi":"10.1016/j.mne.2024.100257","DOIUrl":"10.1016/j.mne.2024.100257","url":null,"abstract":"<div><p>Maskless UV photolithography is increasingly used, especially in research environments where low turn-around time for new designs improves productivity. Here, we fabricate pyrolytic carbon interdigitated microelectrodes with small interelectrode gaps, good adhesion to the carrier substrate, high surface area and excellent electrochemical properties using maskless UV photolithography with two negative epoxy-based photoresists, namely the commonly used SU-8 and the recently developed mr-DWL. The minimum realizable trench width in 15 μm thick photoresist films is 2.4 ± 0.15 μm for mr-DWL 5 and 3.1 ± 0.10 μm for SU-8 2035. After pyrolysis, the two resulting pyrolytic carbon materials show similar electrochemical properties. However, shrinkage during pyrolysis is significantly lower for mr-DWL compared to SU-8, which is beneficial for the fabrication of interdigitated microelectrodes. Furthermore, delamination of the electrodes during processing and operation is prevented due to the introduction of poly silicon adhesion structures. This work provides valuable insights into maskless UV lithography as well as into the pyrolytic carbon process to increase the yield, performance and productivity for fabrication of microelectrodes.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100257"},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000200/pdfft?md5=60673ebe8420e6820b9903f3d1fe7dce&pid=1-s2.0-S2590007224000200-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141049018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water is a vital component for all living organisms, yet persistent water scarcity remains a global challenge. One potential solution lies in replicating the atmospheric water collection mechanism observed in the Stenocara beetle, characterized by a dorsal surface featuring alternating hydrophilic and hydrophobic regions. In this study, we have designed and examined two distinct biphilic patterned surface configurations, integrating various technologies, to mimic the beetle's water collection strategy. Our investigation evaluates the efficiency of these surfaces in both capturing water from fog and condensing water from dew. For fog collection two parameters were the most impactful: the roughness and the wettability contrast between hydrophilic and hydrophobic zones. In contrast, dew condensation was influenced by additional parameters notably the patterns' size and density that directly affect the water contact angle. It is worth noting, however, that the optimal surface for fog collection may not necessarily coincide with the most effective surface for dew condensation. Furthermore, our research includes a comparative analysis between the theoretically predicted volume of water droplet departure and the empirically observed results.
{"title":"Controlled wettability of biphilic patterned surfaces for enhanced atmospheric water harvesting","authors":"Joyce Estephan, Marie Panabière, Camille Petit-Etienne, Sebastien Labau, Léo Bon, Jean-Hervé Tortai, Cécile Gourgon","doi":"10.1016/j.mne.2024.100255","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100255","url":null,"abstract":"<div><p>Water is a vital component for all living organisms, yet persistent water scarcity remains a global challenge. One potential solution lies in replicating the atmospheric water collection mechanism observed in the Stenocara beetle, characterized by a dorsal surface featuring alternating hydrophilic and hydrophobic regions. In this study, we have designed and examined two distinct biphilic patterned surface configurations, integrating various technologies, to mimic the beetle's water collection strategy. Our investigation evaluates the efficiency of these surfaces in both capturing water from fog and condensing water from dew. For fog collection two parameters were the most impactful: the roughness and the wettability contrast between hydrophilic and hydrophobic zones. In contrast, dew condensation was influenced by additional parameters notably the patterns' size and density that directly affect the water contact angle. It is worth noting, however, that the optimal surface for fog collection may not necessarily coincide with the most effective surface for dew condensation. Furthermore, our research includes a comparative analysis between the theoretically predicted volume of water droplet departure and the empirically observed results.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100255"},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000182/pdfft?md5=ceffce399788bdc2ff24b6d2f8ce8bee&pid=1-s2.0-S2590007224000182-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-28DOI: 10.1016/j.mne.2024.100256
Nico Rademacher , Eros Reato , Lukas Völkel , Annika Grundmann , Michael Heuken , Holger Kalisch , Andrei Vescan , Alwin Daus , Max C. Lemme
This study investigates the interactions between chemical vapor-deposited graphene and metal-organic chemical vapor-deposited molybdenum disulfide (MoS2) in heterostructures assembled via wet transfer. We use Raman spectroscopy to quantitatively determine close coupling between graphene and MoS2 based on the peak separations in graphene. Although annealing seems to be necessary after transfer to establish a close coupling, its parameters do not have a significant impact on the quality of coupling (for 100 °C < T < 400 °C and 5 min < t < 120 min). Furthermore, the method is robust against variations in graphene thickness because bilayers can be distinguished by comparing the full width at half maximum of the graphene 2D peak. We expand our study to mm2-scale areas of graphene-MoS2 heterostructures finding that films assembled via wet-transfer technique exhibit considerable variability in terms of coupling strength. Evaluating such interactions in heterostructures on large areas is important for future practical applications in heterostructure devices.
本研究探讨了化学气相沉积石墨烯和金属有机化学气相沉积二硫化钼(MoS2)在通过湿转移组装的异质结构中的相互作用。我们利用拉曼光谱,根据石墨烯的峰值分离来定量确定石墨烯和 MoS2 之间的紧密耦合。虽然在转移后似乎需要退火才能建立紧密耦合,但退火参数对耦合质量的影响并不大(100 °C < T < 400 °C 和 5 分钟 < t < 120 分钟)。此外,该方法对石墨烯厚度的变化也很稳健,因为通过比较石墨烯二维峰的半最大全宽,就可以区分双层石墨烯。我们将研究扩展到毫米级的石墨烯-MoS2 异质结构区域,发现通过湿转移技术组装的薄膜在耦合强度方面表现出相当大的差异。评估大面积异质结构中的这种相互作用对于未来异质结构器件的实际应用非常重要。
{"title":"CVD graphene-MoS2 Van der Waals heterostructures on the millimeter-scale","authors":"Nico Rademacher , Eros Reato , Lukas Völkel , Annika Grundmann , Michael Heuken , Holger Kalisch , Andrei Vescan , Alwin Daus , Max C. Lemme","doi":"10.1016/j.mne.2024.100256","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100256","url":null,"abstract":"<div><p>This study investigates the interactions between chemical vapor-deposited graphene and metal-organic chemical vapor-deposited molybdenum disulfide (MoS<sub>2</sub>) in heterostructures assembled via wet transfer. We use Raman spectroscopy to quantitatively determine close coupling between graphene and MoS<sub>2</sub> based on the peak separations in graphene. Although annealing seems to be necessary after transfer to establish a close coupling, its parameters do not have a significant impact on the quality of coupling (for 100 °C < <em>T</em> < 400 °C and 5 min < <em>t</em> < 120 min). Furthermore, the method is robust against variations in graphene thickness because bilayers can be distinguished by comparing the full width at half maximum of the graphene 2D peak. We expand our study to mm<sup>2</sup>-scale areas of graphene-MoS<sub>2</sub> heterostructures finding that films assembled via wet-transfer technique exhibit considerable variability in terms of coupling strength. Evaluating such interactions in heterostructures on large areas is important for future practical applications in heterostructure devices.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100256"},"PeriodicalIF":0.0,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000194/pdfft?md5=342c3ffee3f2291ee9ca619303288e95&pid=1-s2.0-S2590007224000194-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}