首页 > 最新文献

IEEE Transactions on Semiconductor Manufacturing最新文献

英文 中文
Fabrication of the Highly Ordered Silicon Nanocone Array With Sub-5 nm Tip Apex by Tapered Silicon Oxide Mask 利用锥形氧化硅掩模制造尖端顶点小于 5 纳米的高有序硅纳米锥阵列
IF 2.7 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-04 DOI: 10.1109/TSM.2024.3372521
Aixi Pan;Chenxu Zhu;Zheng Yan;Xiaoli Zhu;Zhongyi Liu;Bo Cui
In view of the wide range of applications for ultra-sharp silicon (Si) nanocones, extensive research has been conducted on their fabrication processes. However, these conventional methods pose challenges in terms of achieving uniformity, controllability, and cost-efficiency. This study presents a novel approach to fabricating Si nanocone structures through reactive ion etching (RIE) using a tapered silicon dioxide mask, followed by thermal oxidation sharpening to reduce the apex diameter to 4 nm. Here the tapered SiO2 mask with a smooth sidewall was created through a combination of RIE and a buffered oxide etchant (BOE) etching. The lithography of the oxide mask is achieved using a cost-effective (compared to electron beam lithography) maskless aligner system (MLA). Subsequently, a non-switching pseudo-Bosch process, employing sulfur hexafluoride (SF6) gas and octafluorocyclobutane (C4F8) gas, is utilized for the etching the Si nanocone structures, resulting in an average apex diameter of 30 nm. Finally, thermal oxidation followed by oxide removal further sharpens these cones to 4 nm.
鉴于超锐利硅(Si)纳米锥的广泛应用,人们对其制造工艺进行了广泛的研究。然而,这些传统方法在实现均匀性、可控性和成本效益方面存在挑战。本研究提出了一种新方法,通过使用锥形二氧化硅掩模进行反应离子蚀刻(RIE),然后通过热氧化锐化将顶点直径减小到 4 纳米,从而制造出 Si 纳米锥结构。这里的锥形二氧化硅掩膜具有光滑的侧壁,是通过 RIE 和缓冲氧化物蚀刻剂(BOE)蚀刻相结合的方法制作的。氧化物掩模的光刻是通过一种经济有效的(与电子束光刻相比)无掩模对准器系统(MLA)来实现的。随后,使用六氟化硫(SF6)气体和八氟环丁烷(C4F8)气体的非开关伪博世工艺蚀刻硅纳米锥结构,使其平均顶点直径达到 30 纳米。最后,通过热氧化和去除氧化物,这些锥形结构进一步锐化到 4 纳米。
{"title":"Fabrication of the Highly Ordered Silicon Nanocone Array With Sub-5 nm Tip Apex by Tapered Silicon Oxide Mask","authors":"Aixi Pan;Chenxu Zhu;Zheng Yan;Xiaoli Zhu;Zhongyi Liu;Bo Cui","doi":"10.1109/TSM.2024.3372521","DOIUrl":"10.1109/TSM.2024.3372521","url":null,"abstract":"In view of the wide range of applications for ultra-sharp silicon (Si) nanocones, extensive research has been conducted on their fabrication processes. However, these conventional methods pose challenges in terms of achieving uniformity, controllability, and cost-efficiency. This study presents a novel approach to fabricating Si nanocone structures through reactive ion etching (RIE) using a tapered silicon dioxide mask, followed by thermal oxidation sharpening to reduce the apex diameter to 4 nm. Here the tapered SiO2 mask with a smooth sidewall was created through a combination of RIE and a buffered oxide etchant (BOE) etching. The lithography of the oxide mask is achieved using a cost-effective (compared to electron beam lithography) maskless aligner system (MLA). Subsequently, a non-switching pseudo-Bosch process, employing sulfur hexafluoride (SF6) gas and octafluorocyclobutane (C4F8) gas, is utilized for the etching the Si nanocone structures, resulting in an average apex diameter of 30 nm. Finally, thermal oxidation followed by oxide removal further sharpens these cones to 4 nm.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 2","pages":"160-165"},"PeriodicalIF":2.7,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140037422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semantic Segmentation for Noisy and Limited Wafer Transmission Electron Microscope Images 噪声和有限晶片透射电子显微镜图像的语义分割
IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-03 DOI: 10.1109/TSM.2024.3396423
Yongwon Jo;Jinsoo Bae;Hansam Cho;Heejoong Roh;Kyunghye Kim;Munki Jo;Jaeung Tae;Seoung Bum Kim
Semantic segmentation for automated measurement in semiconductor manufacturing, specifically with wafer transmission electron microscopy (TEM) images, poses significant challenges because of the difficulty of acquisition, prevalent noise, and ambiguous object boundaries. However, prior studies focused on broadening the application of semantic segmentation for automated measurement without considering the specific intricacies of TEM images. In this study, we propose a wafer TEM images-specific semantic segmentation and transfer learning (WTEM-SST) framework to address these issues. The proposed WTEM-SST involves a pre-training stage, wafer TEM-specific data augmentation methods, and a boundary-focused loss function. The pre-training stage addresses the difficulty of collecting and annotating wafer TEM images, followed by fine-tuning for process-specific segmentation models. Our data augmentation techniques mitigate challenges related to limited training samples, lots of noise, and unclear boundaries. The boundary-focused loss makes the model more precise in boundary recognition during fine-tuning. We demonstrate that WTEM-SST outperforms conventional segmentation models, with our studies highlighting the effectiveness of the three components in WTEM-SST.
在半导体制造领域,特别是晶圆透射电子显微镜(TEM)图像的自动测量中,语义分割是一项重大挑战,因为采集困难、噪声普遍存在、物体边界模糊不清。然而,之前的研究侧重于扩大语义分割在自动测量中的应用,却没有考虑到 TEM 图像的特殊复杂性。在本研究中,我们提出了晶圆 TEM 图像特定语义分割和迁移学习(WTEM-SST)框架来解决这些问题。拟议的 WTEM-SST 包括预训练阶段、晶圆 TEM 特定数据增强方法和以边界为重点的损失函数。预训练阶段解决了收集和注释晶圆 TEM 图像的困难,随后对特定于流程的分割模型进行微调。我们的数据增强技术可以缓解训练样本有限、噪音大和边界不清晰等难题。在微调过程中,以边界为重点的损失使模型的边界识别更加精确。我们的研究表明,WTEM-SST 优于传统的分割模型,并突出了 WTEM-SST 中三个组件的有效性。
{"title":"Semantic Segmentation for Noisy and Limited Wafer Transmission Electron Microscope Images","authors":"Yongwon Jo;Jinsoo Bae;Hansam Cho;Heejoong Roh;Kyunghye Kim;Munki Jo;Jaeung Tae;Seoung Bum Kim","doi":"10.1109/TSM.2024.3396423","DOIUrl":"10.1109/TSM.2024.3396423","url":null,"abstract":"Semantic segmentation for automated measurement in semiconductor manufacturing, specifically with wafer transmission electron microscopy (TEM) images, poses significant challenges because of the difficulty of acquisition, prevalent noise, and ambiguous object boundaries. However, prior studies focused on broadening the application of semantic segmentation for automated measurement without considering the specific intricacies of TEM images. In this study, we propose a wafer TEM images-specific semantic segmentation and transfer learning (WTEM-SST) framework to address these issues. The proposed WTEM-SST involves a pre-training stage, wafer TEM-specific data augmentation methods, and a boundary-focused loss function. The pre-training stage addresses the difficulty of collecting and annotating wafer TEM images, followed by fine-tuning for process-specific segmentation models. Our data augmentation techniques mitigate challenges related to limited training samples, lots of noise, and unclear boundaries. The boundary-focused loss makes the model more precise in boundary recognition during fine-tuning. We demonstrate that WTEM-SST outperforms conventional segmentation models, with our studies highlighting the effectiveness of the three components in WTEM-SST.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 3","pages":"345-354"},"PeriodicalIF":2.3,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Lightweight Chip-Scale Chemical Mechanical Polishing Model Based on Polynomial Network 基于多项式网络的轻量级芯片级化学机械抛光模型
IF 2.7 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-26 DOI: 10.1109/TSM.2024.3370175
Ruian Ji;Rong Chen;Lan Chen
Chemical mechanical polishing/planarization (CMP) combines physical grinding and chemical reactions to planarize the wafer surface. The complex mechanism of CMP brings great challenges to the mechanism-based modeling process. The data-driven CMP modeling process is limited by insufficient datasets. At the same time, these two types of models generally have high computational complexity. In this paper, we introduce the group method of data handling (GMDH)-type polynomial network to build the CMP model to address the above challenges. We designed and manufactured the test chip using a 28nm process. The measurement data from the test chip shows that compared with the mechanism-based CMP model, the trained CMP model based on GMDH-type polynomial network has higher accuracy and lower computational complexity, with the average simulation speed being 115x faster. Experiments based on silicon data show that this modeling method has a small demand for data, and 20 randomly selected sets of data can meet the needs for modeling the current CMP process.
化学机械抛光/平面化(CMP)结合了物理研磨和化学反应,使晶片表面平面化。CMP 的复杂机理给基于机理的建模过程带来了巨大挑战。数据驱动的 CMP 建模过程受到数据集不足的限制。同时,这两类模型的计算复杂度普遍较高。本文引入数据处理组法(GMDH)型多项式网络来构建 CMP 模型,以解决上述难题。我们采用 28 纳米工艺设计并制造了测试芯片。测试芯片的测量数据表明,与基于机制的 CMP 模型相比,基于 GMDH 型多项式网络训练的 CMP 模型具有更高的精度和更低的计算复杂度,平均仿真速度提高了 115 倍。基于硅片数据的实验表明,这种建模方法对数据的需求较小,随机选取 20 组数据即可满足当前 CMP 过程建模的需要。
{"title":"A Lightweight Chip-Scale Chemical Mechanical Polishing Model Based on Polynomial Network","authors":"Ruian Ji;Rong Chen;Lan Chen","doi":"10.1109/TSM.2024.3370175","DOIUrl":"10.1109/TSM.2024.3370175","url":null,"abstract":"Chemical mechanical polishing/planarization (CMP) combines physical grinding and chemical reactions to planarize the wafer surface. The complex mechanism of CMP brings great challenges to the mechanism-based modeling process. The data-driven CMP modeling process is limited by insufficient datasets. At the same time, these two types of models generally have high computational complexity. In this paper, we introduce the group method of data handling (GMDH)-type polynomial network to build the CMP model to address the above challenges. We designed and manufactured the test chip using a 28nm process. The measurement data from the test chip shows that compared with the mechanism-based CMP model, the trained CMP model based on GMDH-type polynomial network has higher accuracy and lower computational complexity, with the average simulation speed being 115x faster. Experiments based on silicon data show that this modeling method has a small demand for data, and 20 randomly selected sets of data can meet the needs for modeling the current CMP process.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 2","pages":"139-145"},"PeriodicalIF":2.7,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139977641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-Friendly Dry-Cleaning and Diagnostics of Silicon Dioxide Deposition Chamber 二氧化硅沉积室的环保干洗和诊断技术
IF 2.7 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-14 DOI: 10.1109/TSM.2024.3365827
Surin An;Jeong Eun Choi;Ju Eun Kang;Jiseok Lee;Sang Jeen Hong
Semiconductor industry is experiencing a rising demand for environmentally friendly processes with the emphasis on green policies and worldwide environmental sustainability. Nitrogen trifluoride (NF3), the most common plasma chamber cleaning agent gas, poses a significant concern as a potent greenhouse gas since it has global warming potential (GWP), 740 times and 6 times higher than that CO2 and N2O. This study investigated the exhaust gas using quadrupole mass spectroscopy (QMS) and analyzed the change in cleaning speed and the type of exhaust gas through plasma monitoring using optical mass spectroscopy (OES). The objective is to lower the use of the amount of NF3 gas in chamber cleaning process to partially contribute the environmental sustainability in the point of semiconductor manufacturing. When a small amount of N2 was added to NF3 whose ratio of 7:23, the cleaning efficiency reached to 90% compared to NF3 gas alone. Addition of N2 positively affected electron density and temperature to increase the F-radical in remote plasma system. In conclusion, 18% of NF3 usage amount was reduced during the Sio2 deposition chamber cleaning process.
随着对绿色政策和全球环境可持续性的重视,半导体行业对环保工艺的需求日益增长。三氟化氮(NF3)是最常见的等离子体室清洗剂气体,由于其全球升温潜能值(GWP)比二氧化碳和一氧化二氮分别高出 740 倍和 6 倍,因此作为一种强烈的温室气体而备受关注。本研究使用四极质谱(QMS)对废气进行了调查,并通过使用光学质谱(OES)对等离子体进行监测,分析了清洗速度的变化和废气的类型。目的是在腔室清洗过程中降低 NF3 气体的使用量,从而在一定程度上促进半导体制造点的环境可持续性。当在比例为 7:23 的 NF3 中加入少量 N2 时,与单独使用 NF3 气体相比,清洗效率达到 90%。N2 的加入对电子密度和温度产生了积极影响,从而增加了远程等离子体系统中的 F-自由基。总之,在 Sio2 沉积室清洗过程中,NF3 的用量减少了 18%。
{"title":"Eco-Friendly Dry-Cleaning and Diagnostics of Silicon Dioxide Deposition Chamber","authors":"Surin An;Jeong Eun Choi;Ju Eun Kang;Jiseok Lee;Sang Jeen Hong","doi":"10.1109/TSM.2024.3365827","DOIUrl":"10.1109/TSM.2024.3365827","url":null,"abstract":"Semiconductor industry is experiencing a rising demand for environmentally friendly processes with the emphasis on green policies and worldwide environmental sustainability. Nitrogen trifluoride (NF3), the most common plasma chamber cleaning agent gas, poses a significant concern as a potent greenhouse gas since it has global warming potential (GWP), 740 times and 6 times higher than that CO2 and N2O. This study investigated the exhaust gas using quadrupole mass spectroscopy (QMS) and analyzed the change in cleaning speed and the type of exhaust gas through plasma monitoring using optical mass spectroscopy (OES). The objective is to lower the use of the amount of NF3 gas in chamber cleaning process to partially contribute the environmental sustainability in the point of semiconductor manufacturing. When a small amount of N2 was added to NF3 whose ratio of 7:23, the cleaning efficiency reached to 90% compared to NF3 gas alone. Addition of N2 positively affected electron density and temperature to increase the F-radical in remote plasma system. In conclusion, 18% of NF3 usage amount was reduced during the Sio2 deposition chamber cleaning process.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 2","pages":"207-221"},"PeriodicalIF":2.7,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139954668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curvilinear Standard Cell Design for Semiconductor Manufacturing 用于半导体制造的曲线标准单元设计
IF 2.7 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-06 DOI: 10.1109/TSM.2024.3362900
Ryoung-Han Kim;Soobin Hwang;Apoorva Oak;Yasser Shirazi;Hsinlan Chang;Kiho Yang;Gioele Mirabelli
Curvilinear design was applied to standard cell layout to improve electrical characteristics and reduce manufacturing costs. Its implementation was intelligently co-optimized with 1-D Manhattan shapes and photolithography process to preserve the standard cell area equivalent to that of 1-D Manhattan-only designs. B-spline curve representation was employed to realize the curvilinear design. Curvilinear pathfinding was carried out through the Voronoi diagram to find the optimum routing path, and the A* routing algorithm to determine the shortest path. In the curvilinear-designed standard cells, the majority of standard cells exhibited reduced total metal length, decreased number of vias, and eliminated the need for an extra metal layer when compared to 1-D Manhattan-only standard cell designs. Manufacturability of curvilinear designs was evaluated, and potential solutions are proposed in the context of design rule, design rules check (DRC) and optical proximity correction (OPC). DRC and OPC were carried out within the currently employed electronic design automation (EDA) tools to verify the curvilinear designs.
曲线设计应用于标准单元布局,以改善电气特性并降低制造成本。该设计的实施与一维曼哈顿形状和光刻工艺进行了智能优化,从而使标准单元面积与纯一维曼哈顿设计的面积相当。采用 B-样条曲线表示法实现曲线设计。曲线寻路通过 Voronoi 图找到最佳路由路径,并通过 A* 路由算法确定最短路径。在曲线设计的标准单元中,与纯一维曼哈顿标准单元设计相比,大多数标准单元的金属总长度缩短,通孔数量减少,并且无需额外的金属层。对曲线设计的可制造性进行了评估,并结合设计规则、设计规则检查(DRC)和光学邻近校正(OPC)提出了潜在的解决方案。在目前使用的电子设计自动化(EDA)工具中进行了 DRC 和 OPC,以验证曲线设计。
{"title":"Curvilinear Standard Cell Design for Semiconductor Manufacturing","authors":"Ryoung-Han Kim;Soobin Hwang;Apoorva Oak;Yasser Shirazi;Hsinlan Chang;Kiho Yang;Gioele Mirabelli","doi":"10.1109/TSM.2024.3362900","DOIUrl":"10.1109/TSM.2024.3362900","url":null,"abstract":"Curvilinear design was applied to standard cell layout to improve electrical characteristics and reduce manufacturing costs. Its implementation was intelligently co-optimized with 1-D Manhattan shapes and photolithography process to preserve the standard cell area equivalent to that of 1-D Manhattan-only designs. B-spline curve representation was employed to realize the curvilinear design. Curvilinear pathfinding was carried out through the Voronoi diagram to find the optimum routing path, and the A* routing algorithm to determine the shortest path. In the curvilinear-designed standard cells, the majority of standard cells exhibited reduced total metal length, decreased number of vias, and eliminated the need for an extra metal layer when compared to 1-D Manhattan-only standard cell designs. Manufacturability of curvilinear designs was evaluated, and potential solutions are proposed in the context of design rule, design rules check (DRC) and optical proximity correction (OPC). DRC and OPC were carried out within the currently employed electronic design automation (EDA) tools to verify the curvilinear designs.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 2","pages":"152-159"},"PeriodicalIF":2.7,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Semiconductor Manufacturing Information for Authors IEEE Transactions on Semiconductor Manufacturing 为作者提供的信息
IF 2.7 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-05 DOI: 10.1109/TSM.2023.3334414
{"title":"IEEE Transactions on Semiconductor Manufacturing Information for Authors","authors":"","doi":"10.1109/TSM.2023.3334414","DOIUrl":"https://doi.org/10.1109/TSM.2023.3334414","url":null,"abstract":"","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 1","pages":"C3-C3"},"PeriodicalIF":2.7,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419383","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139694970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Semiconductor Manufacturing Publication Information 电气和电子工程师学会半导体制造期刊》出版信息
IF 2.7 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-05 DOI: 10.1109/TSM.2023.3334410
{"title":"IEEE Transactions on Semiconductor Manufacturing Publication Information","authors":"","doi":"10.1109/TSM.2023.3334410","DOIUrl":"https://doi.org/10.1109/TSM.2023.3334410","url":null,"abstract":"","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 1","pages":"C2-C2"},"PeriodicalIF":2.7,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419867","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Call for Papers for IEEE Transactions on Materials for Electron Devices 电气和电子工程师学会《电子器件材料学报》征稿启事
IF 2.7 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-05 DOI: 10.1109/TSM.2024.3359520
{"title":"Call for Papers for IEEE Transactions on Materials for Electron Devices","authors":"","doi":"10.1109/TSM.2024.3359520","DOIUrl":"https://doi.org/10.1109/TSM.2024.3359520","url":null,"abstract":"","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 1","pages":"138-138"},"PeriodicalIF":2.7,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419869","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint Call for Papers for IEEE Transactions on Semiconductor Manufacturing and IEEE Transactions on Electron Devices: Special Issue on Semiconductor Design for Manufacturing (DFM) IEEE Transactions on Semiconductor Manufacturing》和《IEEE Transactions on Electron Devices》杂志联合征稿:半导体制造设计 (DFM) 特刊
IF 2.7 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-05 DOI: 10.1109/TSM.2024.3356972
{"title":"Joint Call for Papers for IEEE Transactions on Semiconductor Manufacturing and IEEE Transactions on Electron Devices: Special Issue on Semiconductor Design for Manufacturing (DFM)","authors":"","doi":"10.1109/TSM.2024.3356972","DOIUrl":"https://doi.org/10.1109/TSM.2024.3356972","url":null,"abstract":"","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 1","pages":"137-137"},"PeriodicalIF":2.7,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419386","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SnS₂ and ZnO Nanocomposite Prepared by Dispersion Method for Photodetector Application 用分散法制备的用于光探测器的 SnS₂ 和 ZnO 纳米复合材料
IF 2.7 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-27 DOI: 10.1109/TSM.2023.3347606
Ajay Kumar Dwivedi;Satyabrata Jit;Shweta Tripathi
This letter reports a SnS2 and ZnO nanocomposite (NC) prepared by dispersion method. The nanocomposite shows promising characteristics for optoelectronic application. SnS2:ZnO NC shows a wide absorption spectrum covering ultraviolet (UV)-visible-near infrared (NIR) regions. Hence, using the proposed nanocomposite a broadband photodetector with a structure comprising Al/ SnS2:ZnO/PEDOT:PSS/ Indium Tin Oxide (ITO) is fabricated. At a bias voltage of 1 V, the measured responsivity values (A/W) of the proposed device are 140.41, 848.63, and 1094.48 at 350 nm (UV), 750 nm (visible) and 900 nm (NIR), respectively.
这封信报告了一种通过分散法制备的 SnS2 和 ZnO 纳米复合材料(NC)。该纳米复合材料在光电应用方面表现出良好的特性。SnS2:ZnO NC 显示出覆盖紫外线 (UV) - 可见光 - 近红外 (NIR) 区域的宽吸收光谱。因此,利用所提出的纳米复合材料,制造出了一种宽带光电探测器,其结构包括 Al/SnS2:ZnO/PEDOT:PSS/氧化铟锡(ITO)。在 1 V 的偏置电压下,拟议器件在 350 nm(紫外线)、750 nm(可见光)和 900 nm(近红外)波长下的测量响应度值(A/W)分别为 140.41、848.63 和 1094.48。
{"title":"SnS₂ and ZnO Nanocomposite Prepared by Dispersion Method for Photodetector Application","authors":"Ajay Kumar Dwivedi;Satyabrata Jit;Shweta Tripathi","doi":"10.1109/TSM.2023.3347606","DOIUrl":"https://doi.org/10.1109/TSM.2023.3347606","url":null,"abstract":"This letter reports a SnS2 and ZnO nanocomposite (NC) prepared by dispersion method. The nanocomposite shows promising characteristics for optoelectronic application. SnS2:ZnO NC shows a wide absorption spectrum covering ultraviolet (UV)-visible-near infrared (NIR) regions. Hence, using the proposed nanocomposite a broadband photodetector with a structure comprising Al/ SnS2:ZnO/PEDOT:PSS/ Indium Tin Oxide (ITO) is fabricated. At a bias voltage of 1 V, the measured responsivity values (A/W) of the proposed device are 140.41, 848.63, and 1094.48 at 350 nm (UV), 750 nm (visible) and 900 nm (NIR), respectively.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 1","pages":"129-136"},"PeriodicalIF":2.7,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Semiconductor Manufacturing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1