Pub Date : 2024-02-05DOI: 10.1109/TSM.2024.3359520
{"title":"Call for Papers for IEEE Transactions on Materials for Electron Devices","authors":"","doi":"10.1109/TSM.2024.3359520","DOIUrl":"https://doi.org/10.1109/TSM.2024.3359520","url":null,"abstract":"","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 1","pages":"138-138"},"PeriodicalIF":2.7,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419869","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.1109/TSM.2024.3356972
{"title":"Joint Call for Papers for IEEE Transactions on Semiconductor Manufacturing and IEEE Transactions on Electron Devices: Special Issue on Semiconductor Design for Manufacturing (DFM)","authors":"","doi":"10.1109/TSM.2024.3356972","DOIUrl":"https://doi.org/10.1109/TSM.2024.3356972","url":null,"abstract":"","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 1","pages":"137-137"},"PeriodicalIF":2.7,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419386","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-27DOI: 10.1109/TSM.2023.3347606
Ajay Kumar Dwivedi;Satyabrata Jit;Shweta Tripathi
This letter reports a SnS2 and ZnO nanocomposite (NC) prepared by dispersion method. The nanocomposite shows promising characteristics for optoelectronic application. SnS2:ZnO NC shows a wide absorption spectrum covering ultraviolet (UV)-visible-near infrared (NIR) regions. Hence, using the proposed nanocomposite a broadband photodetector with a structure comprising Al/ SnS2:ZnO/PEDOT:PSS/ Indium Tin Oxide (ITO) is fabricated. At a bias voltage of 1 V, the measured responsivity values (A/W) of the proposed device are 140.41, 848.63, and 1094.48 at 350 nm (UV), 750 nm (visible) and 900 nm (NIR), respectively.
{"title":"SnS₂ and ZnO Nanocomposite Prepared by Dispersion Method for Photodetector Application","authors":"Ajay Kumar Dwivedi;Satyabrata Jit;Shweta Tripathi","doi":"10.1109/TSM.2023.3347606","DOIUrl":"https://doi.org/10.1109/TSM.2023.3347606","url":null,"abstract":"This letter reports a SnS2 and ZnO nanocomposite (NC) prepared by dispersion method. The nanocomposite shows promising characteristics for optoelectronic application. SnS2:ZnO NC shows a wide absorption spectrum covering ultraviolet (UV)-visible-near infrared (NIR) regions. Hence, using the proposed nanocomposite a broadband photodetector with a structure comprising Al/ SnS2:ZnO/PEDOT:PSS/ Indium Tin Oxide (ITO) is fabricated. At a bias voltage of 1 V, the measured responsivity values (A/W) of the proposed device are 140.41, 848.63, and 1094.48 at 350 nm (UV), 750 nm (visible) and 900 nm (NIR), respectively.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 1","pages":"129-136"},"PeriodicalIF":2.7,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-15DOI: 10.1109/TSM.2023.3343633
Andy Ham;Myoung-Ju Park;John Fowler
This paper studies simultaneous scheduling of production and material transfer that arises in the semiconductor photolithography area. In particular, the right reticle and right job both need to be present to process the job. Jobs are transferred by a material handling system that employees a fleet of vehicles. Reticles serving as an auxiliary resource are also transferred from one place to another by a different set of vehicles. This intricate scheduling challenge, encompassing jobs, reticles, machines, and two distinct sets of vehicles, is explored here for the first time. The paper introduces a multi-stage methodology that involves relaxation, a constructive heuristic, constraint programming, and a warm-start approach to address this complex problem.
{"title":"Integrated Scheduling of Jobs, Tools, Machines, and Two Different Set of Transbots","authors":"Andy Ham;Myoung-Ju Park;John Fowler","doi":"10.1109/TSM.2023.3343633","DOIUrl":"https://doi.org/10.1109/TSM.2023.3343633","url":null,"abstract":"This paper studies simultaneous scheduling of production and material transfer that arises in the semiconductor photolithography area. In particular, the right reticle and right job both need to be present to process the job. Jobs are transferred by a material handling system that employees a fleet of vehicles. Reticles serving as an auxiliary resource are also transferred from one place to another by a different set of vehicles. This intricate scheduling challenge, encompassing jobs, reticles, machines, and two distinct sets of vehicles, is explored here for the first time. The paper introduces a multi-stage methodology that involves relaxation, a constructive heuristic, constraint programming, and a warm-start approach to address this complex problem.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 1","pages":"27-37"},"PeriodicalIF":2.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139694969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper proposes a linear regression model for scalar-valued responses and two-way functional (bivariate) predictors. Our motivation stems from the quality evaluation of products based on optical emission spectroscopy data from virtual metrology of semiconductor manufacturing. We focus on multivariate cases where the smoothness and shapes of the data vary significantly across variables. We propose a two-step solution to this problem, consisting of decomposition and prediction. First, we decompose the two-way functional data into pairs of component functions using functional singular value decomposition. Next, we build functional linear models for the decomposed functional variables and obtain the final predictor by averaging the models. Results from numerical studies, including simulation studies and real data analysis, demonstrate the promising empirical properties of the proposed approach, especially when the number of predictors is large.
{"title":"A Model Averaging Prediction of Two-Way Functional Data in Semiconductor Manufacturing","authors":"Soobin Kim;Youngwook Kwon;Joonpyo Kim;Kiwook Bae;Hee-Seok Oh","doi":"10.1109/TSM.2023.3339731","DOIUrl":"https://doi.org/10.1109/TSM.2023.3339731","url":null,"abstract":"This paper proposes a linear regression model for scalar-valued responses and two-way functional (bivariate) predictors. Our motivation stems from the quality evaluation of products based on optical emission spectroscopy data from virtual metrology of semiconductor manufacturing. We focus on multivariate cases where the smoothness and shapes of the data vary significantly across variables. We propose a two-step solution to this problem, consisting of decomposition and prediction. First, we decompose the two-way functional data into pairs of component functions using functional singular value decomposition. Next, we build functional linear models for the decomposed functional variables and obtain the final predictor by averaging the models. Results from numerical studies, including simulation studies and real data analysis, demonstrate the promising empirical properties of the proposed approach, especially when the number of predictors is large.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 1","pages":"76-86"},"PeriodicalIF":2.7,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139694892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-06DOI: 10.1109/TSM.2023.3340110
Mingyang Xia;Yan Yan;Chen Li;Xuelong Shi
To ensure post OPC data quality, examination based on estimated resist contours at resist bottom alone is insufficient, reliable prediction of lithography performance within process window must rely on complete information of on-wafer resist 3D structures. In this regard, resist 3D structure model, in particular, the through focus resist 3D structure model, with full chip capability will be the ultimate model in demand. To develop machine learning resist 3D structure models,we have proposed the physics-based information encoding scheme, together with carefully chosen deep convolution neural network and model training strategies. Our proposed through focus resist 3D structure model is based on conditional U-net structure with first five eigen images as model’s main inputs and the focus setting as the conditional input. The average normalized cross correlation (NCC) or mean structure similarity index between ground truth and model predicted resist 3D structures can reach 0.92. With single GPU (Tesla M60), it takes 6.1ms for the model to produce resist 3D structure covering area of 1.8umx1.8 $mu {mathrm{ m}}$