Pub Date : 2024-01-04DOI: 10.1109/TRPMS.2024.3349563
A. Sarno;R. M. Tucciariello;M. E. Fantacci;A. C. Traino;C. Valero;M. Stasi
In-silico clinical trials with digital patient models and simulated devices are an alternative to expensive and long clinical trials on patient population for testing X-ray breast imaging apparatuses. In this work, we simulated a linear-response a-Se detector as an X-ray absorber, neglecting some physical processes, such as electro-hole tracking and thermal noise. In order to tune characteristics of the simulated images toward those of the clinical scanners, the detector response curve, modulation transfer function (MTF), and normalized noise power spectrum (NNPS) were measured on a clinical mammographic unit. The same tests were replicated in-silico via a custom-made Monte Carlo code in order to define a suitable model to modify simulated images and to have realistic pixel values, noise, and spatial resolution. The proposed approach resulted to restore the slope and the magnitude of the NNPS in simulated images toward curves evaluated on a clinical scanner. Similarly, the proposed strategy for tuning noise and spatial resolution in simulated images led to a contrast-to-noise ratio (CNR) evaluated on a custom-made phantom which differed from those in measured images less than 16% in absolute value.
在测试 X 射线乳腺成像设备时,利用患者数字模型和模拟设备进行的模拟临床试验是一种替代昂贵而漫长的患者群体临床试验的方法。在这项工作中,我们模拟了作为 X 射线吸收器的线性响应 a-Se 探测器,忽略了一些物理过程,如电孔跟踪和热噪声。为了将模拟图像的特性调整为临床扫描仪的特性,我们在临床乳腺 X 射线照相设备上测量了探测器响应曲线、调制传递函数(MTF)和归一化噪声功率谱(NNPS)。为了定义一个合适的模型来修改模拟图像,并获得真实的像素值、噪声和空间分辨率,我们通过定制的蒙特卡洛代码在实验室中复制了相同的测试。所提出的方法使模拟图像中 NNPS 的斜率和幅度恢复到临床扫描仪上评估的曲线。同样,所提出的在模拟图像中调整噪声和空间分辨率的策略使在定制模型上评估的对比度-噪声比(CNR)与测量图像中的对比度-噪声比绝对值相差不到 16%。
{"title":"A Model for a Linear a-Se Detector in Simulated X-Ray Breast Imaging With Monte Carlo Software","authors":"A. Sarno;R. M. Tucciariello;M. E. Fantacci;A. C. Traino;C. Valero;M. Stasi","doi":"10.1109/TRPMS.2024.3349563","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3349563","url":null,"abstract":"In-silico clinical trials with digital patient models and simulated devices are an alternative to expensive and long clinical trials on patient population for testing X-ray breast imaging apparatuses. In this work, we simulated a linear-response a-Se detector as an X-ray absorber, neglecting some physical processes, such as electro-hole tracking and thermal noise. In order to tune characteristics of the simulated images toward those of the clinical scanners, the detector response curve, modulation transfer function (MTF), and normalized noise power spectrum (NNPS) were measured on a clinical mammographic unit. The same tests were replicated in-silico via a custom-made Monte Carlo code in order to define a suitable model to modify simulated images and to have realistic pixel values, noise, and spatial resolution. The proposed approach resulted to restore the slope and the magnitude of the NNPS in simulated images toward curves evaluated on a clinical scanner. Similarly, the proposed strategy for tuning noise and spatial resolution in simulated images led to a contrast-to-noise ratio (CNR) evaluated on a custom-made phantom which differed from those in measured images less than 16% in absolute value.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 3","pages":"263-268"},"PeriodicalIF":4.4,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10380795","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-02DOI: 10.1109/TRPMS.2023.3342597
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors","authors":"","doi":"10.1109/TRPMS.2023.3342597","DOIUrl":"https://doi.org/10.1109/TRPMS.2023.3342597","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 1","pages":"C3-C3"},"PeriodicalIF":4.4,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10379498","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139081258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-02DOI: 10.1109/TRPMS.2023.3342599
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information","authors":"","doi":"10.1109/TRPMS.2023.3342599","DOIUrl":"https://doi.org/10.1109/TRPMS.2023.3342599","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 1","pages":"C2-C2"},"PeriodicalIF":4.4,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10379474","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139081285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Low-dose emission tomography (ET) plays a crucial role in medical imaging, enabling the acquisition of functional information for various biological processes while minimizing the patient dose. However, the inherent randomness in the photon counting process is a source of noise which is amplified in low-dose ET. This review article provides an overview of existing post-processing techniques, with an emphasis on deep neural network (NN) approaches. Furthermore, we explore future directions in the field of NN-based low-dose ET. This comprehensive examination sheds light on the potential of deep learning in enhancing the quality and resolution of low-dose ET images, ultimately advancing the field of medical imaging.
低剂量发射断层扫描(ET)在医学成像中起着至关重要的作用,它能获取各种生物过程的功能信息,同时最大限度地减少病人的剂量。然而,光子计数过程中固有的随机性是噪声的来源之一,而低剂量 ET 会放大这种噪声。这篇综述文章概述了现有的后处理技术,重点介绍了深度神经网络 (NN) 方法。此外,我们还探讨了基于 NN 的低剂量 ET 领域的未来发展方向。这一全面研究揭示了深度学习在提高低剂量 ET 图像质量和分辨率方面的潜力,最终推动医学成像领域的发展。
{"title":"A Review on Low-Dose Emission Tomography Post-Reconstruction Denoising With Neural Network Approaches","authors":"Alexandre Bousse;Venkata Sai Sundar Kandarpa;Kuangyu Shi;Kuang Gong;Jae Sung Lee;Chi Liu;Dimitris Visvikis","doi":"10.1109/TRPMS.2023.3349194","DOIUrl":"10.1109/TRPMS.2023.3349194","url":null,"abstract":"Low-dose emission tomography (ET) plays a crucial role in medical imaging, enabling the acquisition of functional information for various biological processes while minimizing the patient dose. However, the inherent randomness in the photon counting process is a source of noise which is amplified in low-dose ET. This review article provides an overview of existing post-processing techniques, with an emphasis on deep neural network (NN) approaches. Furthermore, we explore future directions in the field of NN-based low-dose ET. This comprehensive examination sheds light on the potential of deep learning in enhancing the quality and resolution of low-dose ET images, ultimately advancing the field of medical imaging.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 4","pages":"333-347"},"PeriodicalIF":4.4,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10379513","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139138824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-27DOI: 10.1109/TRPMS.2023.3347602
Jiale Wang;Rui Guo;Ying Miao;Song Xue;Yu Zhang;Kuangyu Shi;Guoyan Zheng;Biao Li
Deep learning models have shown great potential in reducing low-dose (LD) positron emission tomography (PET) image noise by estimating full-dose (FD) images from the corresponding LD images. Those models, however, when trained on paired LD-FD PET images from a source scanner, fail to generalize well when applied to LD PET images from a target scanner, due to a phenomenon called “domain drift.” In this study, we present a method for cross-scanner LD PET image noise reduction. This is done via a self-ensembling framework using a limited number of paired LD-FD PET images and a large number of LD PET images from the target scanner. The self-ensembling framework leverages the paired 2-D slices from both scanners to learn a regression model. It additionally incorporates a consistency loss on the LD PET images from the target scanner to enhance the model’s generalization capability. We conduct experiments on three datasets, respectively, acquired from three different scanners, including a GE Discovery MI (DMI) scanner, a Siemens Biograph Vision 450 (Vision) scanner, and a UI uMI 780 (uMI) scanner. Results from our comprehensive experiments demonstrate the generalization capability of our method.
深度学习模型通过从相应的低剂量(LD)图像中估计全剂量(FD)图像,在减少低剂量(LD)正电子发射断层扫描(PET)图像噪声方面显示出巨大的潜力。然而,当这些模型在来自源扫描仪的成对 LD-FD PET 图像上进行训练时,由于一种称为 "域漂移 "的现象,当应用到来自目标扫描仪的 LD PET 图像时,这些模型不能很好地泛化。在这项研究中,我们提出了一种跨扫描仪 LD PET 图像降噪方法。该方法通过一个自组装框架来实现,该框架使用数量有限的配对 LD-FD PET 图像和大量来自目标扫描仪的 LD PET 图像。自组装框架利用两台扫描仪的配对二维切片来学习回归模型。此外,它还在目标扫描仪的 LD PET 图像上加入了一致性损失,以增强模型的泛化能力。我们在三个数据集上进行了实验,这三个数据集分别来自三个不同的扫描仪,包括 GE Discovery MI(DMI)扫描仪、Siemens Biograph Vision 450(Vision)扫描仪和 UI uMI 780(uMI)扫描仪。综合实验结果证明了我们方法的通用能力。
{"title":"Cross-Scanner Low-Dose Brain-PET Image Noise Reduction With Self-Ensembling","authors":"Jiale Wang;Rui Guo;Ying Miao;Song Xue;Yu Zhang;Kuangyu Shi;Guoyan Zheng;Biao Li","doi":"10.1109/TRPMS.2023.3347602","DOIUrl":"https://doi.org/10.1109/TRPMS.2023.3347602","url":null,"abstract":"Deep learning models have shown great potential in reducing low-dose (LD) positron emission tomography (PET) image noise by estimating full-dose (FD) images from the corresponding LD images. Those models, however, when trained on paired LD-FD PET images from a source scanner, fail to generalize well when applied to LD PET images from a target scanner, due to a phenomenon called “domain drift.” In this study, we present a method for cross-scanner LD PET image noise reduction. This is done via a self-ensembling framework using a limited number of paired LD-FD PET images and a large number of LD PET images from the target scanner. The self-ensembling framework leverages the paired 2-D slices from both scanners to learn a regression model. It additionally incorporates a consistency loss on the LD PET images from the target scanner to enhance the model’s generalization capability. We conduct experiments on three datasets, respectively, acquired from three different scanners, including a GE Discovery MI (DMI) scanner, a Siemens Biograph Vision 450 (Vision) scanner, and a UI uMI 780 (uMI) scanner. Results from our comprehensive experiments demonstrate the generalization capability of our method.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 4","pages":"391-401"},"PeriodicalIF":4.4,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140342654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-19DOI: 10.1109/TRPMS.2023.3344399
Shirin Pourashraf;Joshua W. Cates;Craig S. Levin
This article focuses on adapting linearization strategies for annihilation photon energy measurement for a time-of-flight (TOF) positron emission tomography (PET) system that achieves $sim 100$