首页 > 最新文献

IEEE Transactions on Radiation and Plasma Medical Sciences最新文献

英文 中文
IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors IEEE辐射与等离子体医学科学汇刊作者信息
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-03-04 DOI: 10.1109/TRPMS.2025.3542198
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors","authors":"","doi":"10.1109/TRPMS.2025.3542198","DOIUrl":"https://doi.org/10.1109/TRPMS.2025.3542198","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 3","pages":"C2-C2"},"PeriodicalIF":4.6,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10910004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information IEEE辐射与等离子体医学科学汇刊信息
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-03-04 DOI: 10.1109/TRPMS.2025.3542196
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information","authors":"","doi":"10.1109/TRPMS.2025.3542196","DOIUrl":"https://doi.org/10.1109/TRPMS.2025.3542196","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 3","pages":"C3-C3"},"PeriodicalIF":4.6,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10910005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Ended Readout PET Detector Based on Pixelated Crystals With TOF and DOI Capabilities 基于具有TOF和DOI能力的像素化晶体的单端读出PET检测器
IF 3.5 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-03-03 DOI: 10.1109/TRPMS.2025.3546998
Neus Cucarella;John Barrio;David Sanchez;Jose M. Benlloch;Antonio J. Gonzalez
Traditional PET detectors based on pixelated scintillation crystals with single-ended readout do not provide depth of interaction (DOI) information in an easy and cost-effective way. In this work, we propose a PET detector with single-ended readout and 1:1 coupling, based on arrays of naked pixelated crystals that are glued in one direction, and optically separated in the other one. We have named this approach as pseudo-slab. In this configuration, some of the optical photons will propagate in the glued direction, generating a light distribution from which DOI information can be retrieved. We have characterized four different detector configurations, all of them consisting of a linear array of $1times 8$ LYSO crystals of $3times 3times 20~{mathrm { mm}}^{3}$ each, with an optical glue of approximately $70~mu $ m in between them. The top and bottom faces are polished, and with a different number of unpolished lateral surfaces (2 versus 4) and different wrappings (Enhanced Specular Reflector versus BaSO4). The results obtained for the four detector configurations show energy resolutions ranging from 8.5% to 9.8% and coincidence time resolutions (with a reference pixel) below 290 ps for all cases using only the fastest timestamp and close to 230 ps when energy-weighted averaging of multiple timestamps is applied (corresponding to 182 ps detector time resolution). Regarding DOI performance, all configurations provide DOI information, showing a better performance with more number of unpolished faces and also when using ${mathrm { BaSO}}_{4}$ as a reflector.
传统的基于像素化闪烁晶体单端读出的PET探测器不能以一种简单而经济的方式提供相互作用深度(DOI)信息。在这项工作中,我们提出了一种具有单端读出和1:1耦合的PET探测器,该探测器基于裸像素化晶体阵列,这些晶体在一个方向上粘接,在另一个方向上光学分离。我们将这种方法命名为伪平板。在这种配置中,一些光子将在粘接方向上传播,产生可以从中检索DOI信息的光分布。我们描述了四种不同的探测器配置,它们都由$1 × 8$ LYSO晶体组成的线性阵列组成,每个$3 × 3 × 20~{ mathm {mm}}^{3}$,它们之间有大约$70~mu $ m的光学胶。顶部和底部表面经过抛光,并且具有不同数量的未抛光侧面(2对4)和不同的包裹(Enhanced Specular Reflector vs BaSO4)。四种探测器配置的结果显示,仅使用最快时间戳的所有情况下,能量分辨率从8.5%到9.8%不等,符合时间分辨率(带参考像素)低于290 ps,当应用多个时间戳的能量加权平均时接近230 ps(对应于182 ps探测器时间分辨率)。关于DOI性能,所有配置都提供DOI信息,当未抛光面数量更多时,以及使用${ mathm {BaSO}}_{4}$作为反射器时,显示出更好的性能。
{"title":"Single-Ended Readout PET Detector Based on Pixelated Crystals With TOF and DOI Capabilities","authors":"Neus Cucarella;John Barrio;David Sanchez;Jose M. Benlloch;Antonio J. Gonzalez","doi":"10.1109/TRPMS.2025.3546998","DOIUrl":"https://doi.org/10.1109/TRPMS.2025.3546998","url":null,"abstract":"Traditional PET detectors based on pixelated scintillation crystals with single-ended readout do not provide depth of interaction (DOI) information in an easy and cost-effective way. In this work, we propose a PET detector with single-ended readout and 1:1 coupling, based on arrays of naked pixelated crystals that are glued in one direction, and optically separated in the other one. We have named this approach as pseudo-slab. In this configuration, some of the optical photons will propagate in the glued direction, generating a light distribution from which DOI information can be retrieved. We have characterized four different detector configurations, all of them consisting of a linear array of <inline-formula> <tex-math>$1times 8$ </tex-math></inline-formula> LYSO crystals of <inline-formula> <tex-math>$3times 3times 20~{mathrm { mm}}^{3}$ </tex-math></inline-formula> each, with an optical glue of approximately <inline-formula> <tex-math>$70~mu $ </tex-math></inline-formula>m in between them. The top and bottom faces are polished, and with a different number of unpolished lateral surfaces (2 versus 4) and different wrappings (Enhanced Specular Reflector versus BaSO4). The results obtained for the four detector configurations show energy resolutions ranging from 8.5% to 9.8% and coincidence time resolutions (with a reference pixel) below 290 ps for all cases using only the fastest timestamp and close to 230 ps when energy-weighted averaging of multiple timestamps is applied (corresponding to 182 ps detector time resolution). Regarding DOI performance, all configurations provide DOI information, showing a better performance with more number of unpolished faces and also when using <inline-formula> <tex-math>${mathrm { BaSO}}_{4}$ </tex-math></inline-formula> as a reflector.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 7","pages":"866-871"},"PeriodicalIF":3.5,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908693","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144998165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion-Based Model for Parametric Ki Generation From Total-Body Dynamic PET of Short-Duration Scan 基于扩散的短时间扫描全身动态PET参数Ki生成模型
IF 3.5 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-03-02 DOI: 10.1109/TRPMS.2025.3566556
Meiyuan Wen;Yaping Wu;Zhenxing Huang;Xiangjian He;Fiseha B. Tesema;Zixiang Chen;Yunlong Gao;Wenbo Li;Xinlan Yang;Yongfeng Yang;Hairong Zheng;Dong Liang;Meiyun Wang;Zhanli Hu
Dynamic positron emission tomography (PET) parametric imaging typically requires a 60-min acquisition period, causing patient discomfort and reducing clinical efficiency. This study explores the feasibility of generating parametric $K_{i}$ images from 10-min dynamic PET images acquired in the early or late scanning phases employing a multichannel feature fusion cold sampling (MCFFCoS) framework. PET data from 103 patients are acquired using the uEXPLORER total-body PET/CT scanner during 60-min scans. This study conducts deep learning experiments, taking early-phase or late-phase PET images as input, respectively. The generated $K_{i}$ images are evaluated by visual quality and quantitative metrics, including root-mean-squared error (RMSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Volumes of interest (VOIs) analysis is performed using linear regression and Bland-Altman plots. In the quantitative evaluation of total-body data, the parametric $K_{i}$ images generated from late-phase PET data generally outperform those derived from early-phase data. The analysis of VOIs indicates that the appropriate scanning protocol for PET parametric imaging may vary for different body regions. The deep learning approach is able to generate high-quality parametric $K_{i}$ images from 10-min dynamic PET scans, bypassing the requirements of long acquisition time for the estimation of blood input function in kinetic modeling.
动态正电子发射断层扫描(PET)参数化成像通常需要60分钟的采集周期,导致患者不适并降低临床效率。本研究探讨了采用多通道特征融合冷采样(MCFFCoS)框架,从扫描前期或后期获得的10分钟动态PET图像中生成参数$K_{i}$图像的可行性。使用uEXPLORER全身PET/CT扫描仪在60分钟扫描期间获得103例患者的PET数据。本研究进行深度学习实验,分别以早期和晚期PET图像作为输入。生成的$K_{i}$图像通过视觉质量和定量指标进行评估,包括均方根误差(RMSE)、结构相似性指数(SSIM)和峰值信噪比(PSNR)。兴趣体积(VOIs)分析使用线性回归和Bland-Altman图进行。在对全身数据的定量评价中,后期PET数据生成的参数化$K_{i}$图像通常优于早期PET数据。voi的分析表明,不同的身体区域,PET参数成像的合适扫描方案可能不同。深度学习方法能够从10分钟的动态PET扫描中生成高质量的参数$K_{i}$图像,绕过了动力学建模中估计血液输入函数所需的长采集时间的要求。
{"title":"Diffusion-Based Model for Parametric Ki Generation From Total-Body Dynamic PET of Short-Duration Scan","authors":"Meiyuan Wen;Yaping Wu;Zhenxing Huang;Xiangjian He;Fiseha B. Tesema;Zixiang Chen;Yunlong Gao;Wenbo Li;Xinlan Yang;Yongfeng Yang;Hairong Zheng;Dong Liang;Meiyun Wang;Zhanli Hu","doi":"10.1109/TRPMS.2025.3566556","DOIUrl":"https://doi.org/10.1109/TRPMS.2025.3566556","url":null,"abstract":"Dynamic positron emission tomography (PET) parametric imaging typically requires a 60-min acquisition period, causing patient discomfort and reducing clinical efficiency. This study explores the feasibility of generating parametric <inline-formula> <tex-math>$K_{i}$ </tex-math></inline-formula> images from 10-min dynamic PET images acquired in the early or late scanning phases employing a multichannel feature fusion cold sampling (MCFFCoS) framework. PET data from 103 patients are acquired using the uEXPLORER total-body PET/CT scanner during 60-min scans. This study conducts deep learning experiments, taking early-phase or late-phase PET images as input, respectively. The generated <inline-formula> <tex-math>$K_{i}$ </tex-math></inline-formula> images are evaluated by visual quality and quantitative metrics, including root-mean-squared error (RMSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Volumes of interest (VOIs) analysis is performed using linear regression and Bland-Altman plots. In the quantitative evaluation of total-body data, the parametric <inline-formula> <tex-math>$K_{i}$ </tex-math></inline-formula> images generated from late-phase PET data generally outperform those derived from early-phase data. The analysis of VOIs indicates that the appropriate scanning protocol for PET parametric imaging may vary for different body regions. The deep learning approach is able to generate high-quality parametric <inline-formula> <tex-math>$K_{i}$ </tex-math></inline-formula> images from 10-min dynamic PET scans, bypassing the requirements of long acquisition time for the estimation of blood input function in kinetic modeling.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"10 1","pages":"16-25"},"PeriodicalIF":3.5,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145861197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information IEEE辐射与等离子体医学科学汇刊信息
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-03-02 DOI: 10.1109/TRPMS.2025.3561408
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information","authors":"","doi":"10.1109/TRPMS.2025.3561408","DOIUrl":"https://doi.org/10.1109/TRPMS.2025.3561408","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 5","pages":"C2-C2"},"PeriodicalIF":4.6,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10982363","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143900607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
>Member Get-a-Member (MGM) Program >米高梅会员入会计划
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-03-02 DOI: 10.1109/TRPMS.2025.3561414
{"title":">Member Get-a-Member (MGM) Program","authors":"","doi":"10.1109/TRPMS.2025.3561414","DOIUrl":"https://doi.org/10.1109/TRPMS.2025.3561414","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 5","pages":"690-690"},"PeriodicalIF":4.6,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10982359","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143900609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors IEEE辐射与等离子体医学科学汇刊作者信息
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-03-02 DOI: 10.1109/TRPMS.2025.3561406
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors","authors":"","doi":"10.1109/TRPMS.2025.3561406","DOIUrl":"https://doi.org/10.1109/TRPMS.2025.3561406","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 5","pages":"C3-C3"},"PeriodicalIF":4.6,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10982370","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143900520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Investigation on Cross-Tracer Generalizability of Deep Learning-Based PET Attenuation Correction 基于深度学习的PET衰减校正交叉示踪泛化研究
IF 3.5 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-03-02 DOI: 10.1109/TRPMS.2025.3566630
Jun Hou;Tianqi Chen;Yinchi Zhou;Xiongchao Chen;Huidong Xie;Qiong Liu;Menghua Xia;Vladimir Y. Panin;Takuya Toyonaga;Chi Liu;Bo Zhou
Attenuation correction (AC) is a critical step to ensure accurate quantitative Positron Emission Tomography (PET) imaging. To eliminate the radiation dose from CT, deep learning (DL)-based methods have been extensively investigated to generate the CT-equivalent attenuation map (<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>-CT) directly from the PET signal. However, almost all previous studies only focus on <inline-formula> <tex-math>${}^{18}text {F-FDG}$ </tex-math></inline-formula> due to its extensive data availability which is suitable for DL model training. For other less common tracer types, it is generally believed that new models must be trained separately on these tracer-specific data to ensure reasonable performance. In this work, we explored the cross-tracer generalizability of <inline-formula> <tex-math>$mu $ </tex-math></inline-formula>-DL generation DL models - primarily focusing on whether a model trained on a commonly used tracer like <inline-formula> <tex-math>${}^{18}text {F-FDG}$ </tex-math></inline-formula> can be effectively applied to less common tracers, such as <inline-formula> <tex-math>${}^{68}text {Ga-DOTATE}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${}^{18}text {F-Fluciclovine}$ </tex-math></inline-formula>, and vice versa. Unlike methods that directly generate attenuation-corrected (AC) PET images from nonattenuation corrected (NAC) PET images or maximum likelihood reconstruction of activity and attenuation (MLAA) reconstructions, we generate the CT-based DL attenuation maps (<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>-DL) using MLAA reconstruction with the combined input of attenuation maps (<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>-MLAA) and tracer activity (<inline-formula> <tex-math>$lambda $ </tex-math></inline-formula>-MLAA). This <inline-formula> <tex-math>$mu $ </tex-math></inline-formula>-DL is then used for AC to obtain the final AC PET image. Our comprehensive evaluations on both <inline-formula> <tex-math>$mu $ </tex-math></inline-formula>-CT generation and the PET reconstruction found that the DL model trained on one specific tracer can be adapted to other tracers with competitive performance when compared to the tracer-specific trained DL model. The <inline-formula> <tex-math>${}^{18}text {F-FDG}$ </tex-math></inline-formula>-trained model demonstrated the best generalizability when applied to less common tracer types which often have relatively fewer available data for training. Additionally, we investigated the role of the <inline-formula> <tex-math>$mu $ </tex-math></inline-formula>-MLAA and <inline-formula> <tex-math>$lambda $ </tex-math></inline-formula>-MLAA as inputs for the network performance. We found that combining both inputs resulted in the best performance, but the <inline-formula> <tex-math>$mu $ </tex-math></inline-formula>-MLAA contributed more significantly compared to the <inline-formula> <tex-math>$lambda $ </tex
衰减校正(AC)是确保正电子发射断层扫描(PET)成像准确定量的关键步骤。为了消除CT的辐射剂量,人们广泛研究了基于深度学习(DL)的方法,直接从PET信号生成CT等效衰减图($mu $ -CT)。然而,以往的研究几乎都只关注${}^{18}text {F-FDG}$,因为它具有广泛的数据可用性,适合DL模型的训练。对于其他不太常见的示踪剂类型,一般认为必须在这些示踪剂特定的数据上单独训练新模型,以确保合理的性能。在这项工作中,我们探索了$mu $ -DL生成DL模型的跨示踪剂通用性,主要关注在常用示踪剂(如${}^{18}text {F-FDG}$)上训练的模型是否可以有效地应用于不太常见的示踪剂(如${}^{68}text {Ga-DOTATE}$和${}^{18}text {F-Fluciclovine}$),反之亦然。与直接从非衰减校正(NAC) PET图像生成衰减校正(AC) PET图像或活性和衰减的最大似然重建(MLAA)重建的方法不同,我们使用MLAA重建与衰减图($mu $ -MLAA)和示踪剂活性($lambda $ -MLAA)的组合输入生成基于ct的DL衰减图($mu $ -DL)。然后将此$mu $ -DL用于AC以获得最终的AC PET图像。我们对$mu $ -CT生成和PET重建的综合评估发现,与特定示踪剂训练的DL模型相比,在一种特定示踪剂上训练的DL模型可以适应其他具有竞争性能的示踪剂。当应用于不太常见的示踪剂类型时,${}^{18}text {F-FDG}$训练的模型显示出最好的泛化性,这些示踪剂类型通常具有相对较少的可用于训练的数据。此外,我们还研究了$mu $ -MLAA和$lambda $ -MLAA作为网络性能输入的作用。我们发现,结合这两种输入产生了最佳性能,但$mu $ -MLAA比$lambda $ -MLAA贡献更显著。
{"title":"An Investigation on Cross-Tracer Generalizability of Deep Learning-Based PET Attenuation Correction","authors":"Jun Hou;Tianqi Chen;Yinchi Zhou;Xiongchao Chen;Huidong Xie;Qiong Liu;Menghua Xia;Vladimir Y. Panin;Takuya Toyonaga;Chi Liu;Bo Zhou","doi":"10.1109/TRPMS.2025.3566630","DOIUrl":"https://doi.org/10.1109/TRPMS.2025.3566630","url":null,"abstract":"Attenuation correction (AC) is a critical step to ensure accurate quantitative Positron Emission Tomography (PET) imaging. To eliminate the radiation dose from CT, deep learning (DL)-based methods have been extensively investigated to generate the CT-equivalent attenuation map (&lt;inline-formula&gt; &lt;tex-math&gt;$mu $ &lt;/tex-math&gt;&lt;/inline-formula&gt;-CT) directly from the PET signal. However, almost all previous studies only focus on &lt;inline-formula&gt; &lt;tex-math&gt;${}^{18}text {F-FDG}$ &lt;/tex-math&gt;&lt;/inline-formula&gt; due to its extensive data availability which is suitable for DL model training. For other less common tracer types, it is generally believed that new models must be trained separately on these tracer-specific data to ensure reasonable performance. In this work, we explored the cross-tracer generalizability of &lt;inline-formula&gt; &lt;tex-math&gt;$mu $ &lt;/tex-math&gt;&lt;/inline-formula&gt;-DL generation DL models - primarily focusing on whether a model trained on a commonly used tracer like &lt;inline-formula&gt; &lt;tex-math&gt;${}^{18}text {F-FDG}$ &lt;/tex-math&gt;&lt;/inline-formula&gt; can be effectively applied to less common tracers, such as &lt;inline-formula&gt; &lt;tex-math&gt;${}^{68}text {Ga-DOTATE}$ &lt;/tex-math&gt;&lt;/inline-formula&gt; and &lt;inline-formula&gt; &lt;tex-math&gt;${}^{18}text {F-Fluciclovine}$ &lt;/tex-math&gt;&lt;/inline-formula&gt;, and vice versa. Unlike methods that directly generate attenuation-corrected (AC) PET images from nonattenuation corrected (NAC) PET images or maximum likelihood reconstruction of activity and attenuation (MLAA) reconstructions, we generate the CT-based DL attenuation maps (&lt;inline-formula&gt; &lt;tex-math&gt;$mu $ &lt;/tex-math&gt;&lt;/inline-formula&gt;-DL) using MLAA reconstruction with the combined input of attenuation maps (&lt;inline-formula&gt; &lt;tex-math&gt;$mu $ &lt;/tex-math&gt;&lt;/inline-formula&gt;-MLAA) and tracer activity (&lt;inline-formula&gt; &lt;tex-math&gt;$lambda $ &lt;/tex-math&gt;&lt;/inline-formula&gt;-MLAA). This &lt;inline-formula&gt; &lt;tex-math&gt;$mu $ &lt;/tex-math&gt;&lt;/inline-formula&gt;-DL is then used for AC to obtain the final AC PET image. Our comprehensive evaluations on both &lt;inline-formula&gt; &lt;tex-math&gt;$mu $ &lt;/tex-math&gt;&lt;/inline-formula&gt;-CT generation and the PET reconstruction found that the DL model trained on one specific tracer can be adapted to other tracers with competitive performance when compared to the tracer-specific trained DL model. The &lt;inline-formula&gt; &lt;tex-math&gt;${}^{18}text {F-FDG}$ &lt;/tex-math&gt;&lt;/inline-formula&gt;-trained model demonstrated the best generalizability when applied to less common tracer types which often have relatively fewer available data for training. Additionally, we investigated the role of the &lt;inline-formula&gt; &lt;tex-math&gt;$mu $ &lt;/tex-math&gt;&lt;/inline-formula&gt;-MLAA and &lt;inline-formula&gt; &lt;tex-math&gt;$lambda $ &lt;/tex-math&gt;&lt;/inline-formula&gt;-MLAA as inputs for the network performance. We found that combining both inputs resulted in the best performance, but the &lt;inline-formula&gt; &lt;tex-math&gt;$mu $ &lt;/tex-math&gt;&lt;/inline-formula&gt;-MLAA contributed more significantly compared to the &lt;inline-formula&gt; &lt;tex-math&gt;$lambda $ &lt;/tex","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 8","pages":"1025-1035"},"PeriodicalIF":3.5,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145435701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SAFIR-II: Performance Evaluation of a High-Rate Preclinical PET-MR System SAFIR-II:高速率临床前PET-MR系统的性能评估
IF 3.5 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-02-21 DOI: 10.1109/TRPMS.2025.3542994
Jan Debus;Werner Lustermann;Afroditi Eleftheriou;Matthias Wyss;Bruno Weber;Günther Dissertori
SAFIR-II is a preclinical PET insert compatible with a Bruker BioSpec 70/30 magnetic resonance imaging (MRI) scanner. It was designed to acquire data at activities of up to 500 MBq, enabling truly simultaneous preclinical positron emission tomography magnetic resonance imaging for mice and rats using image acquisition times of as little as 5 s. We present a brief overview of the system’s design as well as the results of several performance evaluations. SAFIR-II features an axial field-of-view (FOV) of 145 mm, covered by lutetium-yttrium oxyorthosilicate crystals coupled to Hamamatsu silicon photomultiplier (SiPM) arrays. PETA8 application-specific integrated circuits are used to digitize the SiPM’s analog signals, and custom MR-compatible dc-dc converters condition the system’s internal voltages. The insert exhibits a coincidence timing resolution of 221-ps full width at half maximum (FWHM), a coincidence energy resolution of 12.1%, and a peak sensitivity of 3.89% observed following the NEMA-NU4 standard. It is capable of resolving 1.7-mm hot rods within a Derenzo phantom filled with $^{18}{mathrm { F}}$ and features a peak noise-equivalent count rate of 1.12 Mcps observed at an activity of 451 MBq using the NEMA rat-like phantom. We furthermore present an evaluation of the system’s image quality determined using a NEMA image quality phantom, an evaluation of its MRI-compatibility, as well as images from an initial in vivo measurement using a Sprague-Dawley rat injected with 283-MBq fluordesoxyglucose.
SAFIR-II是一种临床前PET插入物,与Bruker BioSpec 70/30磁共振成像(MRI)扫描仪兼容。它被设计为以高达500 MBq的活动获取数据,使小鼠和大鼠的临床前正电子发射断层扫描磁共振成像能够真正同时进行,图像采集时间仅为5秒。我们简要介绍了该系统的设计以及几个性能评估的结果。SAFIR-II具有145毫米的轴向视场(FOV),由与Hamamatsu硅光电倍增管(SiPM)阵列耦合的镥钇氧硅酸盐晶体覆盖。PETA8专用集成电路用于数字化SiPM的模拟信号,定制的mr兼容dc-dc转换器调节系统的内部电压。根据NEMA-NU4标准,该插入具有221-ps全宽半最大(FWHM)的重合时序分辨率,12.1%的重合能量分辨率和3.89%的峰值灵敏度。它能够在充满$^{18}{ mathm {F}}$的Derenzo模体中分辨1.7 mm热棒,并且在使用NEMA大鼠样模体的451 MBq活动下观察到的峰值噪声等效计数率为1.12 Mcps。此外,我们还使用NEMA图像质量模型对系统的图像质量进行了评估,对其mri兼容性进行了评估,并使用注射了283-MBq氟脱氧葡萄糖的Sprague-Dawley大鼠进行了初步体内测量。
{"title":"SAFIR-II: Performance Evaluation of a High-Rate Preclinical PET-MR System","authors":"Jan Debus;Werner Lustermann;Afroditi Eleftheriou;Matthias Wyss;Bruno Weber;Günther Dissertori","doi":"10.1109/TRPMS.2025.3542994","DOIUrl":"https://doi.org/10.1109/TRPMS.2025.3542994","url":null,"abstract":"SAFIR-II is a preclinical PET insert compatible with a Bruker BioSpec 70/30 magnetic resonance imaging (MRI) scanner. It was designed to acquire data at activities of up to 500 MBq, enabling truly simultaneous preclinical positron emission tomography magnetic resonance imaging for mice and rats using image acquisition times of as little as 5 s. We present a brief overview of the system’s design as well as the results of several performance evaluations. SAFIR-II features an axial field-of-view (FOV) of 145 mm, covered by lutetium-yttrium oxyorthosilicate crystals coupled to Hamamatsu silicon photomultiplier (SiPM) arrays. PETA8 application-specific integrated circuits are used to digitize the SiPM’s analog signals, and custom MR-compatible dc-dc converters condition the system’s internal voltages. The insert exhibits a coincidence timing resolution of 221-ps full width at half maximum (FWHM), a coincidence energy resolution of 12.1%, and a peak sensitivity of 3.89% observed following the NEMA-NU4 standard. It is capable of resolving 1.7-mm hot rods within a Derenzo phantom filled with <inline-formula> <tex-math>$^{18}{mathrm { F}}$ </tex-math></inline-formula> and features a peak noise-equivalent count rate of 1.12 Mcps observed at an activity of 451 MBq using the NEMA rat-like phantom. We furthermore present an evaluation of the system’s image quality determined using a NEMA image quality phantom, an evaluation of its MRI-compatibility, as well as images from an initial in vivo measurement using a Sprague-Dawley rat injected with 283-MBq fluordesoxyglucose.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 7","pages":"951-958"},"PeriodicalIF":3.5,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144996102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving CTR With the FastIC ASIC for TOF-PET by Overcoming SiPM Noise With Baseline Correction 通过基线校正克服SiPM噪声,提高TOF-PET快速集成电路的CTR
IF 3.5 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-02-19 DOI: 10.1109/TRPMS.2025.3532794
Afonso Silvério Xavier De Matos Pinto;Nicolaus Kratochwil;Sergio Gómez;David Gascón;Pedro Correia;João Veloso;Emilie Roncali;Ana Luísa Silva;Gerard Ariño-Estrada
Time resolution in time-of-flight positron emission tomography (TOF-PET) has improved significantly over the last decade due to advancements in scintillation materials, photodetectors, and readout electronics, which has increased the signal-to-noise ratio (SNR) compared to conventional positron emission tomography. Silicon photomultipliers (SiPMs) in TOF-PET detectors are often operated at high bias voltage to improve the time performance at the expense of increasing signal noise. SiPM noise, both correlated and uncorrelated, can cause baseline fluctuations, leading to time-walk effects when a leading edge trigger strategy is used, and thus limiting timing performance. We examined the effect of SiPM baseline fluctuations using the FastIC ASIC, a scalable multichannel readout for fast timing applications. We flagged noisy events by using a comparator signal triggered by dark counts before the actual scintillation event. We tested different classification and correction methods with scintillating crystals and Cherenkov radiators, coupled to analog SiPMs from Broadcom (NUV-MT) and Hamamatsu Photonics. We reduced the coincidence time resolution (CTR) in bismuth germanate $2times 2times $ 3 mm3 (BGO) crystals from $410~pm ~10$ to $388~pm ~10$ ps FWHM (5%) by correcting the time-walk on the noisy events. We measured an improvement from $107~pm 2$ to $93.5~pm ~0.6$ ps (11%) for LYSO $2times 2times $ 3 mm3 crystals by filtering the noisy events. An improvement of 9% on the CTR of the EJ232 plastic scintillator was also achieved by filtering noisy events, reducing it from $82.2~pm ~0.5$ to $75~pm ~1$ ps. This study presents a scalable method for flagging undesired events in a full TOF-PET system and discusses the impact of SiPM noise on the FastIC readout.
由于闪烁材料、光电探测器和读出电子技术的进步,飞行时间正电子发射断层扫描(TOF-PET)的时间分辨率在过去十年中有了显著提高,与传统的正电子发射断层扫描相比,这增加了信噪比(SNR)。TOF-PET探测器中的硅光电倍增管通常工作在高偏置电压下,以增加信号噪声为代价来提高时间性能。SiPM噪声,无论是相关的还是不相关的,都可能导致基线波动,在使用前沿触发策略时导致时间行走效应,从而限制定时性能。我们使用FastIC ASIC检查了SiPM基线波动的影响,FastIC ASIC是一种可扩展的多通道读出器,用于快速定时应用。我们通过在实际闪烁事件之前使用由暗计数触发的比较器信号来标记噪声事件。我们用闪烁晶体和切伦科夫辐射体测试了不同的分类和校正方法,并耦合了来自Broadcom (NUV-MT)和Hamamatsu Photonics的模拟sipm。我们通过修正噪声事件的时间漫步,将锗酸铋2 × 2 × 3 mm3 (BGO)晶体的符合时间分辨率(CTR)从$410~pm ~10$降低到$388~pm ~10$ ps FWHM(5%)。通过过滤噪声事件,我们测量到LYSO晶体从$107~pm 2$到$93.5~pm ~0.6$ ps(11%)。通过滤波噪声事件,EJ232塑料闪烁体的CTR也提高了9%,从82.2~ 0.5美元降低到75~ 1美元。本研究提出了一种可扩展的方法,用于在全TOF-PET系统中标记不希望发生的事件,并讨论了SiPM噪声对fasttic读出的影响。
{"title":"Improving CTR With the FastIC ASIC for TOF-PET by Overcoming SiPM Noise With Baseline Correction","authors":"Afonso Silvério Xavier De Matos Pinto;Nicolaus Kratochwil;Sergio Gómez;David Gascón;Pedro Correia;João Veloso;Emilie Roncali;Ana Luísa Silva;Gerard Ariño-Estrada","doi":"10.1109/TRPMS.2025.3532794","DOIUrl":"https://doi.org/10.1109/TRPMS.2025.3532794","url":null,"abstract":"Time resolution in time-of-flight positron emission tomography (TOF-PET) has improved significantly over the last decade due to advancements in scintillation materials, photodetectors, and readout electronics, which has increased the signal-to-noise ratio (SNR) compared to conventional positron emission tomography. Silicon photomultipliers (SiPMs) in TOF-PET detectors are often operated at high bias voltage to improve the time performance at the expense of increasing signal noise. SiPM noise, both correlated and uncorrelated, can cause baseline fluctuations, leading to time-walk effects when a leading edge trigger strategy is used, and thus limiting timing performance. We examined the effect of SiPM baseline fluctuations using the FastIC ASIC, a scalable multichannel readout for fast timing applications. We flagged noisy events by using a comparator signal triggered by dark counts before the actual scintillation event. We tested different classification and correction methods with scintillating crystals and Cherenkov radiators, coupled to analog SiPMs from Broadcom (NUV-MT) and Hamamatsu Photonics. We reduced the coincidence time resolution (CTR) in bismuth germanate <inline-formula> <tex-math>$2times 2times $ </tex-math></inline-formula>3 mm3 (BGO) crystals from <inline-formula> <tex-math>$410~pm ~10$ </tex-math></inline-formula> to <inline-formula> <tex-math>$388~pm ~10$ </tex-math></inline-formula> ps FWHM (5%) by correcting the time-walk on the noisy events. We measured an improvement from <inline-formula> <tex-math>$107~pm 2$ </tex-math></inline-formula> to <inline-formula> <tex-math>$93.5~pm ~0.6$ </tex-math></inline-formula> ps (11%) for LYSO <inline-formula> <tex-math>$2times 2times $ </tex-math></inline-formula>3 mm3 crystals by filtering the noisy events. An improvement of 9% on the CTR of the EJ232 plastic scintillator was also achieved by filtering noisy events, reducing it from <inline-formula> <tex-math>$82.2~pm ~0.5$ </tex-math></inline-formula> to <inline-formula> <tex-math>$75~pm ~1$ </tex-math></inline-formula> ps. This study presents a scalable method for flagging undesired events in a full TOF-PET system and discusses the impact of SiPM noise on the FastIC readout.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 7","pages":"857-865"},"PeriodicalIF":3.5,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10893703","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144998050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1