Pub Date : 2024-02-06DOI: 10.1038/s41528-024-00293-4
Yunxia Jin, Mengxia Yu, Dat T. Nguyen, Xin Yang, Zhipeng Li, Ze Xiong, Chenhui Li, Yuxin Liu, Yong Lin Kong, John S. Ho
Wireless and battery-free radio-frequency (RF) sensors can be used to create physical spaces that ambiently sense and respond to human activities. Making such sensors ultra-flexible and transparent is important to preserve the aesthetics of living environments, accommodate daily activities, and functionally integrate with objects. However, existing RF sensors are unable to simultaneously achieve high transparency, flexibility, and the electrical conductivity required for remote room-scale operation. Here, we report 4.5 µm RF tag sensors achieving transparency exceeding 90% that provide capabilities in room-scale ambient wireless sensing. We develop a laser-assisted water-based adhesion-reversion process to digitally realize computer-aided RF design at scale. By individually tagging multiple objects and regions of the human body, we demonstrate multiplexed wireless tracking of human-environment interactions and physiological signals at a range of up to 8 m. These radio-frequency identification sensors open opportunities for non-intrusive wireless sensing of daily living spaces for applications in health monitoring and elderly care.
{"title":"Digitally-defined ultrathin transparent wireless sensor network for room-scale imperceptible ambient intelligence","authors":"Yunxia Jin, Mengxia Yu, Dat T. Nguyen, Xin Yang, Zhipeng Li, Ze Xiong, Chenhui Li, Yuxin Liu, Yong Lin Kong, John S. Ho","doi":"10.1038/s41528-024-00293-4","DOIUrl":"10.1038/s41528-024-00293-4","url":null,"abstract":"Wireless and battery-free radio-frequency (RF) sensors can be used to create physical spaces that ambiently sense and respond to human activities. Making such sensors ultra-flexible and transparent is important to preserve the aesthetics of living environments, accommodate daily activities, and functionally integrate with objects. However, existing RF sensors are unable to simultaneously achieve high transparency, flexibility, and the electrical conductivity required for remote room-scale operation. Here, we report 4.5 µm RF tag sensors achieving transparency exceeding 90% that provide capabilities in room-scale ambient wireless sensing. We develop a laser-assisted water-based adhesion-reversion process to digitally realize computer-aided RF design at scale. By individually tagging multiple objects and regions of the human body, we demonstrate multiplexed wireless tracking of human-environment interactions and physiological signals at a range of up to 8 m. These radio-frequency identification sensors open opportunities for non-intrusive wireless sensing of daily living spaces for applications in health monitoring and elderly care.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-10"},"PeriodicalIF":14.6,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00293-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139700695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-03DOI: 10.1038/s41528-024-00295-2
Zhibin Li, Jing Yang, Yuxuan Zhang, Peiyan Geng, Jiansong Feng, Bin Chen, Xu Zhang, Guojiang Yuan, Xiaolong Chen, Taihong Wang
The development of iontronic skin (I-skin) capable of ultrafast sensing in a wide pressure range, comparable to human skin, is of paramount importance for intelligent robotics. However, this remains a major challenge due to the lack of iontronic array architectures that can achieve ultrafast readout and crosstalk-free under large capacitance response generated within a wide pressure range. Here, we report a frequency-coding architecture of artificial ion mechanoreceptor skin (AIM-skin) that can provide a universal mode of iontronic array sensing and bypass the dependence of complex integrated back-end interface electronics. Notably, the successful implementation of orthogonal frequency coding in the AIM-skin with high sensitivity and ultrawide pressure range achieve ultrafast parallel readout for the spatiotemporal mechanical stimuli. Furthermore, the parallel zero-potential mechanism (PZPM) of the architecture effectively mitigates electrical crosstalk between sensing units. We have demonstrated that combhination of proposed device and deep learning has a broad application prospect in intelligent human-machine interaction and real-time dynamic robotic manipulation.
{"title":"Ultrafast readout, crosstalk suppression iontronic array enabled by frequency-coding architecture","authors":"Zhibin Li, Jing Yang, Yuxuan Zhang, Peiyan Geng, Jiansong Feng, Bin Chen, Xu Zhang, Guojiang Yuan, Xiaolong Chen, Taihong Wang","doi":"10.1038/s41528-024-00295-2","DOIUrl":"10.1038/s41528-024-00295-2","url":null,"abstract":"The development of iontronic skin (I-skin) capable of ultrafast sensing in a wide pressure range, comparable to human skin, is of paramount importance for intelligent robotics. However, this remains a major challenge due to the lack of iontronic array architectures that can achieve ultrafast readout and crosstalk-free under large capacitance response generated within a wide pressure range. Here, we report a frequency-coding architecture of artificial ion mechanoreceptor skin (AIM-skin) that can provide a universal mode of iontronic array sensing and bypass the dependence of complex integrated back-end interface electronics. Notably, the successful implementation of orthogonal frequency coding in the AIM-skin with high sensitivity and ultrawide pressure range achieve ultrafast parallel readout for the spatiotemporal mechanical stimuli. Furthermore, the parallel zero-potential mechanism (PZPM) of the architecture effectively mitigates electrical crosstalk between sensing units. We have demonstrated that combhination of proposed device and deep learning has a broad application prospect in intelligent human-machine interaction and real-time dynamic robotic manipulation.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-12"},"PeriodicalIF":14.6,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00295-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139661020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.1038/s41528-024-00296-1
Cheng Wang, Yifeng Hu, Li Li
Flexible information memory is the key component of flexible electronic devices and the core of intelligent wearable devices. In this paper, Ge/Sb multilayer phase change films of various thickness ratios were prepared using polyether ether ketone as substrate, and their flexible phase change properties and device conversion characteristics were studied. After bending for 100000 times and bending experiments with different bending radius, the film can still realize the transition from amorphous to crystalline states, and the resistance fluctuation was small. Bending, stretching and pressing of the film resulted in grain refinement and increasing of crystalline resistance. The flexible electronic devices using Ge/Sb multilayer films were prepared. The phase change memory device can realize reversible conversion between SET and RESET states with different pulse widths in flat, bent states and after bending many times. All findings show that Ge/Sb multilayer films on PEEK substrate have broad application prospects in high-performance flexible memory in the future.
{"title":"Phase transition and electrical conversion properties of Ge/Sb nano-multilayer films on flexible substrates","authors":"Cheng Wang, Yifeng Hu, Li Li","doi":"10.1038/s41528-024-00296-1","DOIUrl":"10.1038/s41528-024-00296-1","url":null,"abstract":"Flexible information memory is the key component of flexible electronic devices and the core of intelligent wearable devices. In this paper, Ge/Sb multilayer phase change films of various thickness ratios were prepared using polyether ether ketone as substrate, and their flexible phase change properties and device conversion characteristics were studied. After bending for 100000 times and bending experiments with different bending radius, the film can still realize the transition from amorphous to crystalline states, and the resistance fluctuation was small. Bending, stretching and pressing of the film resulted in grain refinement and increasing of crystalline resistance. The flexible electronic devices using Ge/Sb multilayer films were prepared. The phase change memory device can realize reversible conversion between SET and RESET states with different pulse widths in flat, bent states and after bending many times. All findings show that Ge/Sb multilayer films on PEEK substrate have broad application prospects in high-performance flexible memory in the future.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-9"},"PeriodicalIF":14.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00296-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139655706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-29DOI: 10.1038/s41528-024-00294-3
Yoonseok Park, Haiwen Luan, Kyeongha Kwon, Ted S. Chung, Seyong Oh, Jae-Young Yoo, Gooyoon Chung, Junha Kim, Suhyeon Kim, Sung Soo Kwak, Junhwan Choi, Hoang-Phuong Phan, Seonggwang Yoo, Hyoyoung Jeong, Jaeho Shin, Sang Min Won, Hong-Joon Yoon, Yei Hwan Jung, John A. Rogers
Variations in parameters associated with the ambient environment can introduce noise in soft, body-worn sensors. For example, many piezoresistive pressure sensors exhibit a high degree of sensitivity to fluctuations in temperature, thereby requiring active compensation strategies. The research presented here addresses this challenge with a multilayered 3D microsystem design that integrates four piezoresistive sensors in a full-Wheatstone bridge configuration. An optimized layout of the sensors relative to the neutral mechanical plane leads to both an insensitivity to temperature and an increased sensitivity to pressure, relative to previously reported devices that rely on similar operating principles. Integrating this 3D pressure sensor into a soft, flexible electronics platform yields a system capable of real-time, wireless measurements from the surface of the skin. Placement above the radial and carotid arteries yields high-quality waveforms associated with pulsatile blood flow, with quantitative correlations to blood pressure. The results establish the materials and engineering aspects of a technology with broad potential in remote health monitoring.
{"title":"Soft, full Wheatstone bridge 3D pressure sensors for cardiovascular monitoring","authors":"Yoonseok Park, Haiwen Luan, Kyeongha Kwon, Ted S. Chung, Seyong Oh, Jae-Young Yoo, Gooyoon Chung, Junha Kim, Suhyeon Kim, Sung Soo Kwak, Junhwan Choi, Hoang-Phuong Phan, Seonggwang Yoo, Hyoyoung Jeong, Jaeho Shin, Sang Min Won, Hong-Joon Yoon, Yei Hwan Jung, John A. Rogers","doi":"10.1038/s41528-024-00294-3","DOIUrl":"10.1038/s41528-024-00294-3","url":null,"abstract":"Variations in parameters associated with the ambient environment can introduce noise in soft, body-worn sensors. For example, many piezoresistive pressure sensors exhibit a high degree of sensitivity to fluctuations in temperature, thereby requiring active compensation strategies. The research presented here addresses this challenge with a multilayered 3D microsystem design that integrates four piezoresistive sensors in a full-Wheatstone bridge configuration. An optimized layout of the sensors relative to the neutral mechanical plane leads to both an insensitivity to temperature and an increased sensitivity to pressure, relative to previously reported devices that rely on similar operating principles. Integrating this 3D pressure sensor into a soft, flexible electronics platform yields a system capable of real-time, wireless measurements from the surface of the skin. Placement above the radial and carotid arteries yields high-quality waveforms associated with pulsatile blood flow, with quantitative correlations to blood pressure. The results establish the materials and engineering aspects of a technology with broad potential in remote health monitoring.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-8"},"PeriodicalIF":14.6,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00294-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139577499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-08DOI: 10.1038/s41528-023-00288-7
Paul Čvančara, Giacomo Valle, Matthias Müller, Inga Bartels, Thomas Guiho, Arthur Hiairrassary, Francesco Petrini, Stanisa Raspopovic, Ivo Strauss, Giuseppe Granata, Eduardo Fernandez, Paolo M. Rossini, Massimo Barbaro, Ken Yoshida, Winnie Jensen, Jean-Louis Divoux, David Guiraud, Silvestro Micera, Thomas Stieglitz
{"title":"Author Correction: Bringing sensation to prosthetic hands—chronic assessment of implanted thin-film electrodes in humans","authors":"Paul Čvančara, Giacomo Valle, Matthias Müller, Inga Bartels, Thomas Guiho, Arthur Hiairrassary, Francesco Petrini, Stanisa Raspopovic, Ivo Strauss, Giuseppe Granata, Eduardo Fernandez, Paolo M. Rossini, Massimo Barbaro, Ken Yoshida, Winnie Jensen, Jean-Louis Divoux, David Guiraud, Silvestro Micera, Thomas Stieglitz","doi":"10.1038/s41528-023-00288-7","DOIUrl":"10.1038/s41528-023-00288-7","url":null,"abstract":"","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-1"},"PeriodicalIF":14.6,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00288-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139379332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Curved displays can adjust their shape to accommodate different objects and are used in electronics and decorative lighting. Due to the immutable pixel spacing, existing commercial curved displays are flexible but not compatible with undevelopable surfaces. Inspired by kirigami and auxetic structures, we propose an approach that combines luminescent elements and rotating square tessellations to create a stretchable, arbitrary curve adaptive display. We connect square islands by vertical interconnects to relieve the stress concentration and provide extra deformation patterns. The vertical interconnects are patterned on a flexible printed circuit board (FPCB) using laser cutting and folded up via specially designed molds. Further, the freed-up space by folded interconnects allows the structure to be compressed. A prototype stretchable display is demonstrated that it can maintain electrical performance under biaxial strain and adapt to different Gaussian curvature surfaces, including cylindrical, spherical, saddle and arbitrary surfaces. Theoretical models and finite element calculations are established to describe the tensile behavior of the structures under different boundary conditions and agree with the experimental results. This proposed technology paves a feasible solution of mass production of adaptive curved displays and sets the trend for the next-generation display.
{"title":"Rotating square tessellations enabled stretchable and adaptive curved display","authors":"Yang Deng, Kuaile Xu, Rui Jiao, Weixuan Liu, Yik Kin Cheung, Yongkai Li, Xiaoyi Wang, Yue Hou, Wei Hong, Hongyu Yu","doi":"10.1038/s41528-023-00291-y","DOIUrl":"10.1038/s41528-023-00291-y","url":null,"abstract":"Curved displays can adjust their shape to accommodate different objects and are used in electronics and decorative lighting. Due to the immutable pixel spacing, existing commercial curved displays are flexible but not compatible with undevelopable surfaces. Inspired by kirigami and auxetic structures, we propose an approach that combines luminescent elements and rotating square tessellations to create a stretchable, arbitrary curve adaptive display. We connect square islands by vertical interconnects to relieve the stress concentration and provide extra deformation patterns. The vertical interconnects are patterned on a flexible printed circuit board (FPCB) using laser cutting and folded up via specially designed molds. Further, the freed-up space by folded interconnects allows the structure to be compressed. A prototype stretchable display is demonstrated that it can maintain electrical performance under biaxial strain and adapt to different Gaussian curvature surfaces, including cylindrical, spherical, saddle and arbitrary surfaces. Theoretical models and finite element calculations are established to describe the tensile behavior of the structures under different boundary conditions and agree with the experimental results. This proposed technology paves a feasible solution of mass production of adaptive curved displays and sets the trend for the next-generation display.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-10"},"PeriodicalIF":14.6,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00291-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139110173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noncontact humidity sensor overcomes the limitations of its contact sensing counterparts, including mechanical wear and cross infection, which becomes a promising candidate in healthcare and human-machine interface application. However, current humidity sensors still suffer the ubiquitous issue of uncomfortable wear and skin irritation hindering the long-term use. In this study, we report a skin-conformal and breathable humidity sensor assembled by anchoring MXenes-based composite into electrospun elastomer nanofibers coated with a patterned electrode. This composite is highly sensitive to the water molecules due to its large specific surface area and abundant water-absorbing hydroxyl groups, while the elastomeric nanofibers provide an ultrathin, highly flexible, and permeable substrate to support the functional materials and electrodes. This sensor presents not only excellent air permeability (0.078 g cm−2 d−1), high sensitivity (S = 704), and fast response/recovery (0.9 s/0.9 s), but also high skin conformability and biocompatibility. Furthermore, this humidity sensor is confirmed to realize the recognition of motional states and emotional modes, which provides a way for the advanced noncontact human-machine interface.
非接触式湿度传感器克服了接触式传感器的机械磨损和交叉感染等局限性,在医疗保健和人机界面应用中大有可为。然而,目前的湿度传感器仍然普遍存在佩戴不舒适和刺激皮肤的问题,妨碍了长期使用。在这项研究中,我们报告了一种皮肤适形透气湿度传感器,它是通过将基于 MXenes 的复合材料锚定到涂有图案电极的电纺弹性体纳米纤维中组装而成的。这种复合材料因其较大的比表面积和丰富的吸水羟基而对水分子高度敏感,而弹性纳米纤维则为支撑功能材料和电极提供了超薄、高柔性和高渗透性的基底。这种传感器不仅具有出色的透气性(0.078 g cm-2 d-1)、高灵敏度(S = 704)和快速响应/恢复(0.9 秒/0.9 秒),还具有很高的皮肤适配性和生物相容性。此外,这种湿度传感器还能实现运动状态和情绪模式的识别,为先进的非接触式人机界面提供了一条途径。
{"title":"A skin-conformal and breathable humidity sensor for emotional mode recognition and non-contact human-machine interface","authors":"Tongkuai Li, Tingting Zhao, Hao Zhang, Li Yuan, Congcong Cheng, Junshuai Dai, Longwei Xue, Jixing Zhou, Hai Liu, Luqiao Yin, Jianhua Zhang","doi":"10.1038/s41528-023-00290-z","DOIUrl":"10.1038/s41528-023-00290-z","url":null,"abstract":"Noncontact humidity sensor overcomes the limitations of its contact sensing counterparts, including mechanical wear and cross infection, which becomes a promising candidate in healthcare and human-machine interface application. However, current humidity sensors still suffer the ubiquitous issue of uncomfortable wear and skin irritation hindering the long-term use. In this study, we report a skin-conformal and breathable humidity sensor assembled by anchoring MXenes-based composite into electrospun elastomer nanofibers coated with a patterned electrode. This composite is highly sensitive to the water molecules due to its large specific surface area and abundant water-absorbing hydroxyl groups, while the elastomeric nanofibers provide an ultrathin, highly flexible, and permeable substrate to support the functional materials and electrodes. This sensor presents not only excellent air permeability (0.078 g cm−2 d−1), high sensitivity (S = 704), and fast response/recovery (0.9 s/0.9 s), but also high skin conformability and biocompatibility. Furthermore, this humidity sensor is confirmed to realize the recognition of motional states and emotional modes, which provides a way for the advanced noncontact human-machine interface.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-9"},"PeriodicalIF":14.6,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00290-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139110204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-04DOI: 10.1038/s41528-023-00289-6
Yizhuo Xu, Shanfei Zhang, Shuya Li, Zhenhua Wu, Yike Li, Zhuofan Li, Xiaojun Chen, Congcan Shi, Peng Chen, Pengyu Zhang, Michael D. Dickey, Bin Su
Robotic fingers with multidirectional tactile perception are of great importance for the robotic exploration of complex unknown space, especially in environments in which visualization is not possible. Unfortunately, most existing tactile sensors for robotic fingers cannot detect multidirectional forces, which greatly limits their potential for further development in navigating complex environments. Here, we demonstrate a soft magnetoelectric finger (SMF) that can achieve self-generated-signal and multidirectional tactile sensing. The SMF is composed of two parts: a ‘finger’ covered with a skin-like flexible sheath containing five liquid metal (LM) coils and a ‘phalangeal bone’ containing a magnet. Due to the changes in magnetic flux through the LM coils caused by external forces, diverse induced voltages are generated and collected in real-time, which can be explained by Maxwell’s numerical simulation. By the analysis of the signals generated by the five LM coils, the SMF can detect forces in varied directions and distinguish 6 different common objects with varied Young’s moduli with an accuracy of 97.46%. These capabilities make the SMF suitable for complex unknown space exploration tasks, as proved by the black box exploration. The SMF can enable the development of self-generated-signal and multidirectional tactile perception for future robots.
{"title":"A soft magnetoelectric finger for robots’ multidirectional tactile perception in non-visual recognition environments","authors":"Yizhuo Xu, Shanfei Zhang, Shuya Li, Zhenhua Wu, Yike Li, Zhuofan Li, Xiaojun Chen, Congcan Shi, Peng Chen, Pengyu Zhang, Michael D. Dickey, Bin Su","doi":"10.1038/s41528-023-00289-6","DOIUrl":"10.1038/s41528-023-00289-6","url":null,"abstract":"Robotic fingers with multidirectional tactile perception are of great importance for the robotic exploration of complex unknown space, especially in environments in which visualization is not possible. Unfortunately, most existing tactile sensors for robotic fingers cannot detect multidirectional forces, which greatly limits their potential for further development in navigating complex environments. Here, we demonstrate a soft magnetoelectric finger (SMF) that can achieve self-generated-signal and multidirectional tactile sensing. The SMF is composed of two parts: a ‘finger’ covered with a skin-like flexible sheath containing five liquid metal (LM) coils and a ‘phalangeal bone’ containing a magnet. Due to the changes in magnetic flux through the LM coils caused by external forces, diverse induced voltages are generated and collected in real-time, which can be explained by Maxwell’s numerical simulation. By the analysis of the signals generated by the five LM coils, the SMF can detect forces in varied directions and distinguish 6 different common objects with varied Young’s moduli with an accuracy of 97.46%. These capabilities make the SMF suitable for complex unknown space exploration tasks, as proved by the black box exploration. The SMF can enable the development of self-generated-signal and multidirectional tactile perception for future robots.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-11"},"PeriodicalIF":14.6,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00289-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139101251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-02DOI: 10.1038/s41528-023-00287-8
Jiaxue Zhang, Qianying Lu, Ming Wu, Yuping Sun, Shaolei Wang, Xiaoliang Wang, Ming-Hui Lu, Desheng Kong
Stretchable displays that combine light-emitting capabilities with mechanical compliance are essential building blocks of next-generation wearable electronics. However, their widespread applications are currently limited by complex device architecture, limited pixel density, and immature fabrication processes. In this study, we present the device design and material developments of intrinsically stretchable light-emitting drawing displays that can show arbitrary hand-drawing features. The alternating-current electroluminescent display uses a simplified architecture comprising coplanar interdigitated liquid metal electrodes, an electroluminescent layer, and a dielectric encapsulation layer. Ink patterns on the device are coupled with the interdigitated electrodes under alternating voltage stimulations, generating localized electric fields for bright emissions. Various inks are prepared for painting, stamping, and stencil printing. Arbitrary luminous features on the devices can be either long-lasting or transient in characteristics. These skin-like devices are made entirely of compliant materials that can withstand bending, twisting, and stretching manipulations. Due to the excellent mechanical deformability, the drawing displays can be conformally laminated on the skin as body-integrated optoelectronic communication devices for graphic information.
{"title":"Intrinsically stretchable light-emitting drawing displays","authors":"Jiaxue Zhang, Qianying Lu, Ming Wu, Yuping Sun, Shaolei Wang, Xiaoliang Wang, Ming-Hui Lu, Desheng Kong","doi":"10.1038/s41528-023-00287-8","DOIUrl":"10.1038/s41528-023-00287-8","url":null,"abstract":"Stretchable displays that combine light-emitting capabilities with mechanical compliance are essential building blocks of next-generation wearable electronics. However, their widespread applications are currently limited by complex device architecture, limited pixel density, and immature fabrication processes. In this study, we present the device design and material developments of intrinsically stretchable light-emitting drawing displays that can show arbitrary hand-drawing features. The alternating-current electroluminescent display uses a simplified architecture comprising coplanar interdigitated liquid metal electrodes, an electroluminescent layer, and a dielectric encapsulation layer. Ink patterns on the device are coupled with the interdigitated electrodes under alternating voltage stimulations, generating localized electric fields for bright emissions. Various inks are prepared for painting, stamping, and stencil printing. Arbitrary luminous features on the devices can be either long-lasting or transient in characteristics. These skin-like devices are made entirely of compliant materials that can withstand bending, twisting, and stretching manipulations. Due to the excellent mechanical deformability, the drawing displays can be conformally laminated on the skin as body-integrated optoelectronic communication devices for graphic information.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-8"},"PeriodicalIF":14.6,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00287-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139081503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.1038/s41528-023-00285-w
Wenhui Ji, Huanzhuan Liu, Yadong Liu, Wei Zhang, Tong Zhou, Xinxin Liu, Chao Tao, Jiangxuan Dai, Baoli Zha, Ruijie Xie, Jiansheng Wu, Qiong Wu, Weina Zhang, Lin Li, Fengwei Huo
Wearable sweat sensors are becoming increasingly popular for their robust capabilities in non-invasive, dynamic, and continuous real-time monitoring of biological information. Real-time monitoring of large-scale samples is crucial for realizing intelligent health. A major bottleneck for enabling large-scale sweat elucidation is the fabrication of wearable sensors equipped with microfluidic devices and flexible electrodes in a cost-effective, homogeneous performance and rapid large-scale way. Herein, a “Screen+Wax”-printing technique was introduced to prepare these components and construct “Lego Bricks” type wearable sweat sensor sensor to monitor sweat Na+ and K+. Flexible electrode arrays and paper-based microfluidic layers (they act as building blocks) were fabricated on polyethylene terephthalate and paper surfaces, respectively, using screen printing and wax printing. Gold nanoparticles and Na+/K+ ion-selective membranes were modified on the electrode surfaces by electrodeposition and drop coating, respectively. In this work, we highlight the excellent performance of the “Lego Bricks” type wearable sweat sensor in testing the Na+ and K+ imbalance of sweat from different body regions during exercise and, more significantly, to track the physical activity during prolonged exercise under different interventions. Furthermore, the prepared “Lego Bricks” wearable sweat ion electrochemical sensor is demonstrated to be capable of large-scale samples elucidation with outstanding performance and cost-effectiveness, which is expected to deeply integrate sweat monitoring into physical activity, providing an important tool for intelligent health.
{"title":"Large-scale fully printed “Lego Bricks” type wearable sweat sensor for physical activity monitoring","authors":"Wenhui Ji, Huanzhuan Liu, Yadong Liu, Wei Zhang, Tong Zhou, Xinxin Liu, Chao Tao, Jiangxuan Dai, Baoli Zha, Ruijie Xie, Jiansheng Wu, Qiong Wu, Weina Zhang, Lin Li, Fengwei Huo","doi":"10.1038/s41528-023-00285-w","DOIUrl":"10.1038/s41528-023-00285-w","url":null,"abstract":"Wearable sweat sensors are becoming increasingly popular for their robust capabilities in non-invasive, dynamic, and continuous real-time monitoring of biological information. Real-time monitoring of large-scale samples is crucial for realizing intelligent health. A major bottleneck for enabling large-scale sweat elucidation is the fabrication of wearable sensors equipped with microfluidic devices and flexible electrodes in a cost-effective, homogeneous performance and rapid large-scale way. Herein, a “Screen+Wax”-printing technique was introduced to prepare these components and construct “Lego Bricks” type wearable sweat sensor sensor to monitor sweat Na+ and K+. Flexible electrode arrays and paper-based microfluidic layers (they act as building blocks) were fabricated on polyethylene terephthalate and paper surfaces, respectively, using screen printing and wax printing. Gold nanoparticles and Na+/K+ ion-selective membranes were modified on the electrode surfaces by electrodeposition and drop coating, respectively. In this work, we highlight the excellent performance of the “Lego Bricks” type wearable sweat sensor in testing the Na+ and K+ imbalance of sweat from different body regions during exercise and, more significantly, to track the physical activity during prolonged exercise under different interventions. Furthermore, the prepared “Lego Bricks” wearable sweat ion electrochemical sensor is demonstrated to be capable of large-scale samples elucidation with outstanding performance and cost-effectiveness, which is expected to deeply integrate sweat monitoring into physical activity, providing an important tool for intelligent health.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-12"},"PeriodicalIF":14.6,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00285-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138840576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}