Pub Date : 2022-12-01DOI: 10.1109/JXCDC.2023.3263712
{"title":"INFORMATION FOR AUTHORS","authors":"","doi":"10.1109/JXCDC.2023.3263712","DOIUrl":"https://doi.org/10.1109/JXCDC.2023.3263712","url":null,"abstract":"","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"8 2","pages":"C3-C3"},"PeriodicalIF":2.4,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9998452/10102689.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49978849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-30DOI: 10.1109/JXCDC.2022.3225744
Yusaku Shiotsu;Satoshi Sugahara
A binarized neural network (BNN) accelerator based on a processing-in-memory (PIM)/ computing-in-memory (CIM) architecture using ultralow-voltage retention static random access memory (ULVR-SRAM) is proposed for the energy minimum-point (EMP) operation. The BNN accelerator (BNA) macro is designed to perform stable inference operations at EMP and substantive power-gating (PG) using ULVR at an ultralow voltage (< EMP), which can be applied to fully connected layers (FCLs) with arbitrary shapes and sizes. The EMP operation of the BNA macro, which is enabled by applying the ULVR-SRAM to the macro, can dramatically improve the energy efficiency (TOPS/W) and significantly enlarge the number of parallelized multiply–accumulate (MAC) operations. In addition, the ULVR mode of the BNA macro, which also benefits from the usage of ULVR-SRAM, is effective at reducing the standby power. The proposed BNA macro can show a high energy efficiency of 65 TOPS/W for FCLs. This BNA macro concept using the ULVR-SRAM can be expanded to convolution layers, where the EMP operation is also expected to enhance the energy efficiency of convolution layers.
{"title":"Binarized Neural Network Accelerator Macro Using Ultralow-Voltage Retention SRAM for Energy Minimum-Point Operation","authors":"Yusaku Shiotsu;Satoshi Sugahara","doi":"10.1109/JXCDC.2022.3225744","DOIUrl":"10.1109/JXCDC.2022.3225744","url":null,"abstract":"A binarized neural network (BNN) accelerator based on a processing-in-memory (PIM)/ computing-in-memory (CIM) architecture using ultralow-voltage retention static random access memory (ULVR-SRAM) is proposed for the energy minimum-point (EMP) operation. The BNN accelerator (BNA) macro is designed to perform stable inference operations at EMP and substantive power-gating (PG) using ULVR at an ultralow voltage (< EMP), which can be applied to fully connected layers (FCLs) with arbitrary shapes and sizes. The EMP operation of the BNA macro, which is enabled by applying the ULVR-SRAM to the macro, can dramatically improve the energy efficiency (TOPS/W) and significantly enlarge the number of parallelized multiply–accumulate (MAC) operations. In addition, the ULVR mode of the BNA macro, which also benefits from the usage of ULVR-SRAM, is effective at reducing the standby power. The proposed BNA macro can show a high energy efficiency of 65 TOPS/W for FCLs. This BNA macro concept using the ULVR-SRAM can be expanded to convolution layers, where the EMP operation is also expected to enhance the energy efficiency of convolution layers.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"8 2","pages":"134-144"},"PeriodicalIF":2.4,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9969523/09966581.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44044898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-29DOI: 10.1109/JXCDC.2022.3224832
Karam Cho;Sumeet Kumar Gupta
Valley-spin hall (VSH) effect in monolayer WSe2 has been shown to exhibit highly beneficial features for nonvolatile memory (NVM) design. Key advantages of VSH-based magnetic random access memory (VSH-MRAM) over spin orbit torque (SOT)-MRAM include access transistor-less compact bit-cell and low-power switching of perpendicular magnetic anisotropy (PMA) magnets. Nevertheless, large device resistance in the read path ( $R_{S}$