首页 > 最新文献

Iranian Polymer Journal最新文献

英文 中文
Short carbon fiber-reinforced PLA composites: influence of 3D-printing parameters on the mechanical and structural properties 短碳纤维增强聚乳酸复合材料:3D 打印参数对机械和结构特性的影响
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-04-15 DOI: 10.1007/s13726-024-01315-8
Rasha Alkabbanie, Bulent Aktas, Gokhan Demircan, Serife Yalcin

3D printing, particularly “fused filament fabrication” (FFF), plays a crucial role in Industry 4. FFF is widely used for creating complex structures and multi-material parts across various industries such as food industry, fashion industry, and manufacturing sectors. The properties of FFF-produced objects are remarkably affected by printing parameters. This study explores the impact of printing parameters and the addition of short carbon fibers on the strength of polylactic acid (PLA) printed samples. The lowering layer height, increasing feed rate and extrusion temperature boost impact strength, while a smaller raster angle enhances it. Meanwhile, an improved flexural strength is achieved by adjusting layer height, extrusion temperature, and raster angle. Higher extrusion temperatures enhance tensile strength, microstructure, and reduce porosity. Lower layer height improves flexural and impact strength (28.05% increase in 0.1 mm layer height), higher feed rate boosts strengths (12.56% improvement in 7 mm3/s feed rate), and elevated extrusion temperatures enhance impact strength (14.49% increase in 230 °C extrusion temperature) but reduce flexural strength (14.44% decrease). Incorporating carbon fibers in PLA negatively affects the microstructure but increases crystallinity, raising the melting temperature and lowering cold-crystallization temperature. The introduction of carbon fibers into PLA results in a complex interplay of mechanical and thermal properties.

Graphical abstract

三维打印,尤其是 "熔融长丝制造"(FFF),在工业 4 中发挥着至关重要的作用。FFF 广泛用于制造复杂结构和多材料部件,涉及食品工业、时尚产业和制造业等多个行业。印刷参数对 FFF 所生产物体的性能有显著影响。本研究探讨了印刷参数和添加短碳纤维对聚乳酸(PLA)印刷样品强度的影响。降低层高、增加进料速度和挤出温度可提高冲击强度,而较小的光栅角可增强冲击强度。同时,通过调整层高、挤出温度和光栅角度,可以提高抗弯强度。较高的挤压温度可提高拉伸强度、改善微观结构并减少孔隙率。较低的层高可提高抗弯强度和冲击强度(0.1 毫米层高可提高 28.05%),较高的喂料速率可提高强度(7 立方毫米/秒喂料速率可提高 12.56%),较高的挤出温度可提高冲击强度(230 °C 挤出温度可提高 14.49%),但抗弯强度会降低(14.44%)。在聚乳酸中加入碳纤维会对微观结构产生负面影响,但会增加结晶度,提高熔化温度,降低冷结晶温度。在聚乳酸中引入碳纤维会导致复杂的机械和热性能相互作用。
{"title":"Short carbon fiber-reinforced PLA composites: influence of 3D-printing parameters on the mechanical and structural properties","authors":"Rasha Alkabbanie,&nbsp;Bulent Aktas,&nbsp;Gokhan Demircan,&nbsp;Serife Yalcin","doi":"10.1007/s13726-024-01315-8","DOIUrl":"10.1007/s13726-024-01315-8","url":null,"abstract":"<div><p>3D printing, particularly “fused filament fabrication” (FFF), plays a crucial role in Industry 4. FFF is widely used for creating complex structures and multi-material parts across various industries such as food industry, fashion industry, and manufacturing sectors. The properties of FFF-produced objects are remarkably affected by printing parameters. This study explores the impact of printing parameters and the addition of short carbon fibers on the strength of polylactic acid (PLA) printed samples. The lowering layer height, increasing feed rate and extrusion temperature boost impact strength, while a smaller raster angle enhances it. Meanwhile, an improved flexural strength is achieved by adjusting layer height, extrusion temperature, and raster angle. Higher extrusion temperatures enhance tensile strength, microstructure, and reduce porosity. Lower layer height improves flexural and impact strength (28.05% increase in 0.1 mm layer height), higher feed rate boosts strengths (12.56% improvement in 7 mm<sup>3</sup>/s feed rate), and elevated extrusion temperatures enhance impact strength (14.49% increase in 230 °C extrusion temperature) but reduce flexural strength (14.44% decrease). Incorporating carbon fibers in PLA negatively affects the microstructure but increases crystallinity, raising the melting temperature and lowering cold-crystallization temperature. The introduction of carbon fibers into PLA results in a complex interplay of mechanical and thermal properties.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 8","pages":"1065 - 1074"},"PeriodicalIF":2.4,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13726-024-01315-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper-based metal organic framework/polymer foams with long-lasting antibacterial effect 具有持久抗菌效果的铜基金属有机框架/聚合物泡沫
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-04-12 DOI: 10.1007/s13726-024-01314-9
Xiaoyu Mao, Zi Ye, Jiaming Liang, Jiawen Lin, Xinyu Mei, Danfeng Deng, Renjie Shi, Zefeng Wang

The development of durable and effective antibacterial materials has been a research hotspot. Here, we reported a new kind of long-lasting stable antibacterial material [Cu-metal–organic framework (MOF)-embedded polyethylene (PE)/ethylene vinyl acetate copolymer (EVA), namely Cu-MOF-embedded PE/EVA] through extrusion foaming, and its structure was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and energy dispersive spectroscopy (EDS). The degree of agglomeration or cluster formation, thermal stability, and melting point temperature of different contents of Cu-MOF/PE/EVA foams were evaluated by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC), respectively. The results indicated that with the increase of Cu-MOF content, the average size and swelling ratio for foams increased, instead, the density decreased. Besides, the surface gradually showed good hydrophobicity. Remarkably, the water absorption rate was nearly 8 times that of pure PE/EVA when the Cu-MOF content reached 3%. Since Cu-MOF is stably embedded in the foaming structure and well dispersed, it can release Cu2+ at a rate of about 37 ppb/day in foams containing 3% Cu-MOF, which not only maintains the antimicrobial capacity up to 99.2%, but also have no cytotoxicity. Finally, a promising new candidate for medical material with excellent, durable antibacterial ability was proposed.

Graphical Abstract

开发持久有效的抗菌材料一直是研究热点。本文报道了一种新型长效稳定抗菌材料[Cu-金属有机框架(MOF)包覆聚乙烯(PE)/醋酸乙烯共聚物(EVA),即 Cu-MOF 包覆 PE/EVA]的挤出发泡工艺,并通过傅立叶变换红外光谱(FTIR)、X 射线衍射仪(XRD)和能量色散光谱(EDS)对其结构进行了表征。扫描电子显微镜(SEM)、热重分析(TGA)和差示扫描量热法(DSC)分别评价了不同含量的 Cu-MOF/PE/EVA 泡沫的团聚程度、热稳定性和熔点温度。结果表明,随着 Cu-MOF 含量的增加,泡沫的平均尺寸和膨胀率增大,密度反而减小。此外,表面逐渐显示出良好的疏水性。值得注意的是,当 Cu-MOF 含量达到 3% 时,吸水率几乎是纯 PE/EVA 的 8 倍。由于 Cu-MOF 稳定地嵌入发泡结构中并得到很好的分散,因此在含 3% Cu-MOF 的泡沫中,Cu2+的释放速度约为 37 ppb/天,不仅抗菌能力高达 99.2%,而且没有细胞毒性。最后,我们提出了一种具有卓越、持久抗菌能力的新型医用材料。
{"title":"Copper-based metal organic framework/polymer foams with long-lasting antibacterial effect","authors":"Xiaoyu Mao,&nbsp;Zi Ye,&nbsp;Jiaming Liang,&nbsp;Jiawen Lin,&nbsp;Xinyu Mei,&nbsp;Danfeng Deng,&nbsp;Renjie Shi,&nbsp;Zefeng Wang","doi":"10.1007/s13726-024-01314-9","DOIUrl":"10.1007/s13726-024-01314-9","url":null,"abstract":"<div><p>The development of durable and effective antibacterial materials has been a research hotspot. Here, we reported a new kind of long-lasting stable antibacterial material [Cu-metal–organic framework (MOF)-embedded polyethylene (PE)/ethylene vinyl acetate copolymer (EVA), namely Cu-MOF-embedded PE/EVA] through extrusion foaming, and its structure was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and energy dispersive spectroscopy (EDS). The degree of agglomeration or cluster formation, thermal stability, and melting point temperature of different contents of Cu-MOF/PE/EVA foams were evaluated by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC), respectively. The results indicated that with the increase of Cu-MOF content, the average size and swelling ratio for foams increased, instead, the density decreased. Besides, the surface gradually showed good hydrophobicity. Remarkably, the water absorption rate was nearly 8 times that of pure PE/EVA when the Cu-MOF content reached 3%. Since Cu-MOF is stably embedded in the foaming structure and well dispersed, it can release Cu<sup>2+</sup> at a rate of about 37 ppb/day in foams containing 3% Cu-MOF, which not only maintains the antimicrobial capacity up to 99.2%, but also have no cytotoxicity. Finally, a promising new candidate for medical material with excellent, durable antibacterial ability was proposed.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 10","pages":"1423 - 1434"},"PeriodicalIF":2.4,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural, thermal and life span estimation of long-term ultraviolet aged PVC/ZnO nanocomposite 长期紫外线老化聚氯乙烯/氧化锌纳米复合材料的结构、热性能和寿命评估
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-04-10 DOI: 10.1007/s13726-024-01286-w
Faiza Faiza, Abraiz Khattak

PVC-based nanocomposites with varying concentrations of zinc oxide (ZnO) nanoparticles are fabricated using the melt mixing technique and then subjected to compression molding to acquire desired shapes (circular) and thickness (1.5 mm). Conformational analysis is performed using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometry, and optical microscopy. The prepared samples are then exposed under UV light having an intensity of 5.11 mW/cm2 for 5000 lab hours of aging. The effect of UV aging on the structural and thermal behavior of the nanocomposites is analyzed at every 1000 h. Structural degradation of more than 50% in the case of neat PVC has been observed to be reduced with the increase in filler concentration. The contact angle values for 2, 4 and 6 phr of PVC nanocomposites after 5000 h of aging are 69°, 93°, and 104° having hydrophobicity classes of HC3, HC2, and HC2, respectively. The detailed analysis to study the effect of UV aging on the thermal behavior of the nanocomposites is evaluated using differential scanning calorimetry in the temperature range of 60–220 °C. Finally, the life span of all the samples was calculated using statistical calculations and it was observed that PVC with 2 phr of ZnO showed a maximum lifetime of 17,750 lab hours whereas for PVC with 0 phr of ZnO 8693 lab hours were calculated.

摘要 采用熔融混合技术制备了含有不同浓度氧化锌(ZnO)纳米颗粒的聚氯乙烯基纳米复合材料,然后对其进行压缩成型,以获得所需的形状(圆形)和厚度(1.5 毫米)。使用扫描电子显微镜、傅立叶变换红外光谱、X 射线衍射仪和光学显微镜进行构型分析。然后将制备好的样品暴露在强度为 5.11 mW/cm2 的紫外线下进行 5000 实验小时的老化。每 1000 小时分析一次紫外线老化对纳米复合材料结构和热行为的影响。随着填料浓度的增加,观察到纯 PVC 的结构降解超过 50%。经过 5000 小时老化后,2、4 和 6 phr 聚氯乙烯纳米复合材料的接触角值分别为 69°、93° 和 104°,疏水性等级分别为 HC3、HC2 和 HC2。在 60-220 °C 的温度范围内,使用差示扫描量热仪详细分析了紫外线老化对纳米复合材料热行为的影响。最后,使用统计计算法计算了所有样品的使用寿命,结果表明,含有 2 phrs 氧化锌的 PVC 的最大使用寿命为 17,750 实验小时,而含有 0 phrs 氧化锌的 PVC 的最大使用寿命为 8693 实验小时。
{"title":"Structural, thermal and life span estimation of long-term ultraviolet aged PVC/ZnO nanocomposite","authors":"Faiza Faiza,&nbsp;Abraiz Khattak","doi":"10.1007/s13726-024-01286-w","DOIUrl":"10.1007/s13726-024-01286-w","url":null,"abstract":"<p>PVC-based nanocomposites with varying concentrations of zinc oxide (ZnO) nanoparticles are fabricated using the melt mixing technique and then subjected to compression molding to acquire desired shapes (circular) and thickness (1.5 mm). Conformational analysis is performed using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometry, and optical microscopy. The prepared samples are then exposed under UV light having an intensity of 5.11 mW/cm<sup>2</sup> for 5000 lab hours of aging. The effect of UV aging on the structural and thermal behavior of the nanocomposites is analyzed at every 1000 h. Structural degradation of more than 50% in the case of neat PVC has been observed to be reduced with the increase in filler concentration. The contact angle values for 2, 4 and 6 phr of PVC nanocomposites after 5000 h of aging are 69°, 93°, and 104° having hydrophobicity classes of HC3, HC2, and HC2, respectively. The detailed analysis to study the effect of UV aging on the thermal behavior of the nanocomposites is evaluated using differential scanning calorimetry in the temperature range of 60–220 °C. Finally, the life span of all the samples was calculated using statistical calculations and it was observed that PVC with 2 phr of ZnO showed a maximum lifetime of 17,750 lab hours whereas for PVC with 0 phr of ZnO 8693 lab hours were calculated.</p>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 6","pages":"711 - 725"},"PeriodicalIF":2.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct measurement of microfibril structures in polyacrylonitrile fibers during carbon fiber manufacturing process 在碳纤维制造过程中直接测量聚丙烯腈纤维的微纤维结构
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-04-10 DOI: 10.1007/s13726-024-01317-6
Quan Gao, Zhihan Wang, Yongfa Zhou, Jiang Ren

The exceptional tensile strength and modulus of high-performance carbon fibers are determined by the microstructure evolution during the manufacturing process. The comprehension of the internal morphology of polyacrylonitrile (PAN) fibers is crucial for establishing the robust structure–property relationship and achieving superior mechanical properties in the fibers. In this work, a combination method of the ultrathin sectioning and electron microscopy technique was developed and employed for the analysis of internal structure features of the nascent fibers, precursor fibers, pre-oxidized fibers and carbon fibers. The microfibril elements were already formed during the coagulation stage and further developed within the carbon fibers through spinning, thermal stabilization and carbonization processes. Subsequently, the unoriented microfibrillar network underwent a transformation into dense fibrils, and the crystal layers within these microfibrils experienced a conversion into the turbostratic graphite structures. Based on the Nano-IR2-FS results, the morphological changes of the microfibrils were found to be intricately associated with the evolution of chemical structure, implying a strong correction between them. Through analysis of the modulus differences, it became possible to distinguish between the crystalline domains and amorphous regions, facilitating the establishment of a relationship between the mechanical strength and the microfibril structures. This work presented a direct measurement method for unraveling the complex hierarchical structures of polymer fibers, which held great potential for developing high-performance polymer fibers.

Graphical abstract

高性能碳纤维优异的拉伸强度和模量取决于制造过程中的微观结构演变。了解聚丙烯腈(PAN)纤维的内部形态对于建立健全的结构-性能关系和实现纤维的优异机械性能至关重要。在这项工作中,开发并采用了超薄切片和电子显微镜技术相结合的方法来分析新生纤维、原纤维、预氧化纤维和碳纤维的内部结构特征。微纤维元素在凝结阶段已经形成,并通过纺丝、热稳定和碳化过程在碳纤维内部进一步发展。随后,无取向的微纤维网络转变为致密的纤维,而这些微纤维中的晶体层则转变为涡流石墨结构。根据 Nano-IR2-FS 的结果,发现微纤维的形态变化与化学结构的演变密切相关,这意味着它们之间存在很强的校正关系。通过分析模量差异,可以区分结晶域和无定形区域,从而有助于建立机械强度与微纤维结构之间的关系。这项研究提出了一种直接测量聚合物纤维复杂层次结构的方法,为开发高性能聚合物纤维提供了巨大潜力。
{"title":"Direct measurement of microfibril structures in polyacrylonitrile fibers during carbon fiber manufacturing process","authors":"Quan Gao,&nbsp;Zhihan Wang,&nbsp;Yongfa Zhou,&nbsp;Jiang Ren","doi":"10.1007/s13726-024-01317-6","DOIUrl":"10.1007/s13726-024-01317-6","url":null,"abstract":"<div><p>The exceptional tensile strength and modulus of high-performance carbon fibers are determined by the microstructure evolution during the manufacturing process. The comprehension of the internal morphology of polyacrylonitrile (PAN) fibers is crucial for establishing the robust structure–property relationship and achieving superior mechanical properties in the fibers. In this work, a combination method of the ultrathin sectioning and electron microscopy technique was developed and employed for the analysis of internal structure features of the nascent fibers, precursor fibers, pre-oxidized fibers and carbon fibers. The microfibril elements were already formed during the coagulation stage and further developed within the carbon fibers through spinning, thermal stabilization and carbonization processes. Subsequently, the unoriented microfibrillar network underwent a transformation into dense fibrils, and the crystal layers within these microfibrils experienced a conversion into the turbostratic graphite structures. Based on the Nano-IR2-FS results, the morphological changes of the microfibrils were found to be intricately associated with the evolution of chemical structure, implying a strong correction between them. Through analysis of the modulus differences, it became possible to distinguish between the crystalline domains and amorphous regions, facilitating the establishment of a relationship between the mechanical strength and the microfibril structures. This work presented a direct measurement method for unraveling the complex hierarchical structures of polymer fibers, which held great potential for developing high-performance polymer fibers.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 9","pages":"1245 - 1255"},"PeriodicalIF":2.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating a hybrid approach for harvesting nanofibrillated cellulose from agricultural byproducts: sugarcane bagasse and pineapple crown leaves 研究从农副产品(甘蔗渣和菠萝冠叶)中提取纳米纤维素的混合方法
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-04-09 DOI: 10.1007/s13726-024-01316-7
Anusiya Ganesan, Jaiganesh Rengarajan

Sugarcane bagasse (SCB) and pineapple crown leaves (PCL) as low-cost waste biomass generated from the industries were subjected to chemo-mechanical modification to compare the morphology, charge, and thermal stability of native and modified biomass, accompanied by their cellulose-rich fractions. A novel aspect of this research lies in the versatility of the hybrid approach for sustainable production of cellulose polymers from an array of biomass sources. Using scanning electron microscopy (SEM), the surface morphology and structure of the samples were examined. To give thorough insights into the material characteristics, other techniques such as Fourier transform infrared spectroscopy (FTIR), zeta potential, X-ray diffraction (XRD), and thermogravimetric/differential thermal analysis (TG/DTA) were used. According to the findings, after being exposed to the hybrid treatment, the modified sample had a more ordered crystalline structure than the raw biomass (supported by the FTIR spectra), the XRD results indicated that the crystallinity index (CrI) raised with crystallite size. Although the cellulose-rich fraction extracted by the hybrid method showed better thermal stability, the overall thermal analysis revealed that biomass produced by the hybrid method had lower thermal stability than the raw biomass. The current work showed that combining ultrasonication with sulfuric acid hydrolysis is a successful hybrid method for separating cellulose nanofibers from  the cellulosic plant fiber sources for reinforced composite products.

Graphical Abstract

甘蔗渣(SCB)和菠萝冠叶(PCL)是工业中产生的低成本废弃生物质,我们对它们进行了化学机械改性,以比较原生生物质和改性生物质及其富含纤维素的部分的形态、电荷和热稳定性。这项研究的新颖之处在于混合方法的多功能性,可从一系列生物质来源中持续生产纤维素聚合物。研究人员使用扫描电子显微镜(SEM)检查了样品的表面形态和结构。为深入了解材料特性,还使用了其他技术,如傅立叶变换红外光谱(FTIR)、ZETA电位、X射线衍射(XRD)和热重/差热分析(TG/DTA)。研究结果表明,经过混合处理后,改性样品比原始生物质具有更有序的结晶结构(傅立叶变换红外光谱证实了这一点),X 射线衍射结果表明,结晶度指数(CrI)随结晶尺寸的增加而增加。虽然混合法提取的富含纤维素的部分显示出更好的热稳定性,但总体热分析表明,混合法生产的生物质的热稳定性低于原料生物质。目前的工作表明,将超声波处理与硫酸水解相结合是一种成功的混合方法,可从纤维素植物纤维源中分离出纤维素纳米纤维,用于增强复合材料产品。 图文摘要
{"title":"Investigating a hybrid approach for harvesting nanofibrillated cellulose from agricultural byproducts: sugarcane bagasse and pineapple crown leaves","authors":"Anusiya Ganesan,&nbsp;Jaiganesh Rengarajan","doi":"10.1007/s13726-024-01316-7","DOIUrl":"10.1007/s13726-024-01316-7","url":null,"abstract":"<div><p>Sugarcane bagasse (SCB) and pineapple crown leaves (PCL) as low-cost waste biomass generated from the industries were subjected to chemo-mechanical modification to compare the morphology, charge, and thermal stability of native and modified biomass, accompanied by their cellulose-rich fractions. A novel aspect of this research lies in the versatility of the hybrid approach for sustainable production of cellulose polymers from an array of biomass sources. Using scanning electron microscopy (SEM), the surface morphology and structure of the samples were examined. To give thorough insights into the material characteristics, other techniques such as Fourier transform infrared spectroscopy (FTIR), zeta potential, X-ray diffraction (XRD), and thermogravimetric/differential thermal analysis (TG/DTA) were used. According to the findings, after being exposed to the hybrid treatment, the modified sample had a more ordered crystalline structure than the raw biomass (supported by the FTIR spectra), the XRD results indicated that the crystallinity index (CrI) raised with crystallite size. Although the cellulose-rich fraction extracted by the hybrid method showed better thermal stability, the overall thermal analysis revealed that biomass produced by the hybrid method had lower thermal stability than the raw biomass. The current work showed that combining ultrasonication with sulfuric acid hydrolysis is a successful hybrid method for separating cellulose nanofibers from  the cellulosic plant fiber sources for reinforced composite products.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 8","pages":"1157 - 1170"},"PeriodicalIF":2.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luffa and Kevlar fiber/nanoclay sustainable thermoset biocomposites: acoustic and tribo-mechanical study 丝瓜和凯夫拉纤维/纳米粘土可持续热固性生物复合材料:声学和三力学研究
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-04-09 DOI: 10.1007/s13726-024-01306-9
Kumaresan Gladys Ashok, Alagesan Praveen Kumar, Munisamy Raju, Gurusamy Kasirajan

Natural fiber composites often exhibit significant acoustic behavior in low-frequency range. The focus of this study is to create soundproof panels using luffa and Kevlar fiber composites reinforced using nanoclay (MMT) filler. Mechanical testing was performed on the prepared samples. The addition of 4% MMT improved the mechanical characteristics. Mechanical parameters such as interlaminar shear, tensile, flexural, and impact strength were enhanced by 9.13%, 16.89%, 9.71% and 51.64%, respectively, as compared to the control sample. Tribological experiments were performed on the manufactured composite samples in dry sliding conditions as a function of control factors such as sliding speed, sliding distance, and effective load. The results reveal that using 6% MMT to Kevlar/LCF epoxy composites greatly increases the COF and specific wear rate. The sound absorption test results indicated that the incorporation of nano MMT with Kevlar/LCF composites increased the sound transmission loss. The reduced hydrophilicity effect has been reported with the addition of 4% (by weight) MMT in contact angle measurement studies. Moreover, the created biocomposites are low-cost and long-lasting materials suitable for use as soundproofing panels in automobiles and railway cabins.

Graphical Abstract

天然纤维复合材料通常在低频范围内表现出明显的声学特性。本研究的重点是利用纳米粘土(MMT)填料增强的丝瓜纤维和凯夫拉纤维复合材料制作隔音板。对制备的样品进行了机械测试。添加 4% 的 MMT 改善了力学特性。与对照样品相比,层间剪切、拉伸、弯曲和冲击强度等力学参数分别提高了 9.13%、16.89%、9.71% 和 51.64%。在干滑动条件下,对制造的复合材料样品进行了摩擦学实验,实验结果与滑动速度、滑动距离和有效载荷等控制因素有关。结果表明,在 Kevlar/LCF 环氧树脂复合材料中添加 6% 的 MMT 可大大提高 COF 和比磨损率。吸音测试结果表明,在 Kevlar/LCF 复合材料中加入纳米 MMT 增加了声音传输损失。据报道,在接触角测量研究中,添加 4%(按重量计)的 MMT 可降低亲水性效应。此外,这种生物复合材料成本低、使用寿命长,适合用作汽车和铁路车厢的隔音板。
{"title":"Luffa and Kevlar fiber/nanoclay sustainable thermoset biocomposites: acoustic and tribo-mechanical study","authors":"Kumaresan Gladys Ashok,&nbsp;Alagesan Praveen Kumar,&nbsp;Munisamy Raju,&nbsp;Gurusamy Kasirajan","doi":"10.1007/s13726-024-01306-9","DOIUrl":"10.1007/s13726-024-01306-9","url":null,"abstract":"<div><p>Natural fiber composites often exhibit significant acoustic behavior in low-frequency range. The focus of this study is to create soundproof panels using luffa and Kevlar fiber composites reinforced using nanoclay (MMT) filler. Mechanical testing was performed on the prepared samples. The addition of 4% MMT improved the mechanical characteristics. Mechanical parameters such as interlaminar shear, tensile, flexural, and impact strength were enhanced by 9.13%, 16.89%, 9.71% and 51.64%, respectively, as compared to the control sample. Tribological experiments were performed on the manufactured composite samples in dry sliding conditions as a function of control factors such as sliding speed, sliding distance, and effective load. The results reveal that using 6% MMT to Kevlar/LCF epoxy composites greatly increases the COF and specific wear rate. The sound absorption test results indicated that the incorporation of nano MMT with Kevlar/LCF composites increased the sound transmission loss. The reduced hydrophilicity effect has been reported with the addition of 4% (by weight) MMT in contact angle measurement studies. Moreover, the created biocomposites are low-cost and long-lasting materials suitable for use as soundproofing panels in automobiles and railway cabins.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 8","pages":"1091 - 1109"},"PeriodicalIF":2.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Hydroxyl Terminated Fatty Ester Amide (DFEAm) from Dehydrated Castor Oil (DCO) and its Utilization in Various Polyurethane Coating Applications 从脱水蓖麻油 (DCO) 中合成羟基端基脂肪酸酯酰胺 (DFEAm) 及其在各种聚氨酯涂料中的应用
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-04-09 DOI: 10.1007/s13726-024-01310-z
Debarati Maity, Akash B. Borkar, Aarti P. More, Anagha S. Sabnis

Vegetable oils have gained popularity now-a-days as renewable resources due to their accessibility, affordability, non-toxicity and biodegradability. Globally, scientists have been making efforts to lessen dependency on feed stocks derived from petroleum-based resources. Dehydrated castor oil (DCO) being bio-based, non-edible, quick-drying compared to castor oil, imparting flexibility and excellent color retention was used as the main source of raw material in this work. Present study aims at single-step synthesis of dehydrated castor oil fatty amide (DFAm) by reacting dehydrated castor oil (DCO) with diethanolamine (DEA) avoiding the methyl ester synthesis step. The product obtained was then purified and characterized chemically and analytically. Further, DFAm was modified successfully to its hydroxyl-terminated fatty ester amide (DFEAm) derivative using sebacic acid (SA) and tris-2-hydroxyethyl isocyanurate (THEIC). THEIC, being heterocyclic in nature and imparting excellent thermal and chemical resistance, makes it suitable and novel to be used in coating applications. DFEAm was then successfully cured with various isocyanate adducts on mild steel substrates. Commercially available hydroxyl-terminated short oil alkyd was selected for comparative study under simultaneous conditions. These polyurethane coatings were evaluated as per ASTM standards for their optical, mechanical, chemical, thermal and anti-corrosive properties. DFEAm PU coatings exhibited comparable mechanical and inferior chemical properties but superior thermal and anti-corrosion properties than that of the commercial PU coatings.

Graphical Abstract

植物油作为可再生资源,因其容易获得、价格低廉、无毒性和可生物降解性,如今越来越受到人们的青睐。在全球范围内,科学家们一直在努力减少对石油原料的依赖。脱水蓖麻油(DCO)以生物为基础,不可食用,与蓖麻油相比干燥速度快,具有柔韧性和出色的保色性,因此被用作本研究的主要原料来源。本研究旨在通过脱水蓖麻油(DCO)与二乙醇胺(DEA)的反应,避免甲酯合成步骤,一步合成脱水蓖麻油脂肪酰胺(DFAm)。获得的产品随后被纯化,并进行了化学和分析表征。此外,还使用癸二酸(SA)和异氰尿酸三-2-羟乙基酯(THEIC)成功地将 DFAm 改性为羟基封端脂肪酯酰胺(DFEAm)衍生物。THEIC 是杂环化合物,具有出色的耐热性和耐化学性,因此适合用于涂料应用,而且具有新颖性。随后,DFEAm 成功地与各种异氰酸酯加合物一起固化在低碳钢基材上。在同时进行的条件下,还选择了市售的羟基封端短油醇酸树脂进行对比研究。根据 ASTM 标准,对这些聚氨酯涂料的光学、机械、化学、热和防腐性能进行了评估。与商用聚氨酯涂料相比,DFEAm 聚氨酯涂料的机械性能相当,化学性能较差,但热性能和防腐性能优越。
{"title":"Synthesis of Hydroxyl Terminated Fatty Ester Amide (DFEAm) from Dehydrated Castor Oil (DCO) and its Utilization in Various Polyurethane Coating Applications","authors":"Debarati Maity,&nbsp;Akash B. Borkar,&nbsp;Aarti P. More,&nbsp;Anagha S. Sabnis","doi":"10.1007/s13726-024-01310-z","DOIUrl":"10.1007/s13726-024-01310-z","url":null,"abstract":"<div><p>Vegetable oils have gained popularity now-a-days as renewable resources due to their accessibility, affordability, non-toxicity and biodegradability. Globally, scientists have been making efforts to lessen dependency on feed stocks derived from petroleum-based resources. Dehydrated castor oil (DCO) being bio-based, non-edible, quick-drying compared to castor oil, imparting flexibility and excellent color retention was used as the main source of raw material in this work. Present study aims at single-step synthesis of dehydrated castor oil fatty amide (DFAm) by reacting dehydrated castor oil (DCO) with diethanolamine (DEA) avoiding the methyl ester synthesis step. The product obtained was then purified and characterized chemically and analytically. Further, DFAm was modified successfully to its hydroxyl-terminated fatty ester amide (DFEAm) derivative using sebacic acid (SA) and tris-2-hydroxyethyl isocyanurate (THEIC). THEIC, being heterocyclic in nature and imparting excellent thermal and chemical resistance, makes it suitable and novel to be used in coating applications. DFEAm was then successfully cured with various isocyanate adducts on mild steel substrates. Commercially available hydroxyl-terminated short oil alkyd was selected for comparative study under simultaneous conditions. These polyurethane coatings were evaluated as per ASTM standards for their optical, mechanical, chemical, thermal and anti-corrosive properties. DFEAm PU coatings exhibited comparable mechanical and inferior chemical properties but superior thermal and anti-corrosion properties than that of the commercial PU coatings.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 9","pages":"1203 - 1214"},"PeriodicalIF":2.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of non-woven antistatic substrate materials on polyvinylidene fluoride electrospun nanofibers: fabrication, characterization, and performance evaluation 无纺抗静电基底材料对聚偏氟乙烯电纺纳米纤维的影响:制造、表征和性能评估
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-04-09 DOI: 10.1007/s13726-024-01312-x
Venkata Dinesh Avvari, D. Kimmer, Santosh Kumar Sahu, Vasavi Boggarapu, Petr Slobodian, T. Pavan Rahul, Mahesh Gotte, P. S. Rama Sreekanth

The production of nanofibers holds significant importance in both laboratory-based research and industrial applications. This study employed multiple spinnerets in the process of electrospinning to produce polyvinylidene fluoride (PVDF) nanofibers, which exhibited a desirable characteristic of being both thin and uniform. The spinning performance of multiple jet electrospinning was done. In addition, an examination was conducted to assess the impact of antistatic non-woven support materials on the fiber morphology of PVDF electrospun nanofibers. The morphology and β-phase (beta phase) of the electrospun nanofibers were analyzed using characterization techniques, such as scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The findings of the study indicate that the selection of antistatic non-woven support material had a notable impact on fiber morphology. Upon the utilization of various suitable substrate materials, polyethylene terephthalate (PET) contributed to the successful formation of well-structured and consistent nanofibers with a lesser diameter of 173 ± 38 nm, 92.8% β-fraction and a surface area of 12.99 m2/g. The laminating temperature and density of the fiber decreased the porosity and air permeability by 50%. The excellent flux recovery of 400 L/(m2 h) on the nanofibers laminated at 130 °C of pore size of 0.54 µm even after dried and stored for 48 h at room temperature. A finite-element analysis (FEA) was conducted on computer-aided design (CAD) fiber structure, and results showed that at low pressure of 0.01 N, a max of 130.29 MPa stress was generated on fibers.

Graphical abstract

纳米纤维的生产在实验室研究和工业应用中都具有重要意义。本研究在电纺丝过程中采用多喷丝板生产聚偏二氟乙烯(PVDF)纳米纤维,这种纤维具有既细又均匀的理想特性。对多喷嘴电纺丝的纺丝性能进行了研究。此外,还研究了抗静电无纺支撑材料对 PVDF 电纺纳米纤维形态的影响。利用扫描电子显微镜(SEM)和傅立叶变换红外光谱(FTIR)等表征技术分析了电纺纳米纤维的形态和β相(β相)。研究结果表明,抗静电无纺支撑材料的选择对纤维形态有显著影响。在使用各种合适的基底材料后,聚对苯二甲酸乙二醇酯(PET)成功地形成了结构良好且一致的纳米纤维,其直径较小,为 173 ± 38 nm,β-分率为 92.8%,表面积为 12.99 m2/g。纤维的层压温度和密度使孔隙率和透气性降低了 50%。在 130 °C 下层压的孔径为 0.54 µm 的纳米纤维,即使在室温下干燥并存放 48 小时后,其通量回收率仍高达 400 L/(m2 h)。对计算机辅助设计(CAD)纤维结构进行了有限元分析,结果表明,在 0.01 N 的低压下,纤维上产生的最大应力为 130.29 MPa。
{"title":"Influence of non-woven antistatic substrate materials on polyvinylidene fluoride electrospun nanofibers: fabrication, characterization, and performance evaluation","authors":"Venkata Dinesh Avvari,&nbsp;D. Kimmer,&nbsp;Santosh Kumar Sahu,&nbsp;Vasavi Boggarapu,&nbsp;Petr Slobodian,&nbsp;T. Pavan Rahul,&nbsp;Mahesh Gotte,&nbsp;P. S. Rama Sreekanth","doi":"10.1007/s13726-024-01312-x","DOIUrl":"10.1007/s13726-024-01312-x","url":null,"abstract":"<div><p>The production of nanofibers holds significant importance in both laboratory-based research and industrial applications. This study employed multiple spinnerets in the process of electrospinning to produce polyvinylidene fluoride (PVDF) nanofibers, which exhibited a desirable characteristic of being both thin and uniform. The spinning performance of multiple jet electrospinning was done. In addition, an examination was conducted to assess the impact of antistatic non-woven support materials on the fiber morphology of PVDF electrospun nanofibers. The morphology and β-phase (beta phase) of the electrospun nanofibers were analyzed using characterization techniques, such as scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The findings of the study indicate that the selection of antistatic non-woven support material had a notable impact on fiber morphology. Upon the utilization of various suitable substrate materials, polyethylene terephthalate (PET) contributed to the successful formation of well-structured and consistent nanofibers with a lesser diameter of 173 ± 38 nm, 92.8% β-fraction and a surface area of 12.99 m<sup>2</sup>/g. The laminating temperature and density of the fiber decreased the porosity and air permeability by 50%. The excellent flux recovery of 400 L/(m<sup>2</sup> h) on the nanofibers laminated at 130 °C of pore size of 0.54 µm even after dried and stored for 48 h at room temperature. A finite-element analysis (FEA) was conducted on computer-aided design (CAD) fiber structure, and results showed that at low pressure of 0.01 N, a max of 130.29 MPa stress was generated on fibers.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 8","pages":"1111 - 1127"},"PeriodicalIF":2.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced electromechanical actuation in acrylic elastomer foam using barium titanate and Ketjenblack dispersed interpenetrated polymer network 利用钛酸钡和 Ketjenblack 分散互穿聚合物网络增强丙烯酸弹性体泡沫中的机电致动功能
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-04-05 DOI: 10.1007/s13726-024-01308-7
Dhananjay Sahu, Raj Kumar Sahu

VHB 4910/05 polymeric foam tape manufactured by 3M conglomerate is widely acknowledged as a dielectric elastomer with exceptional electromechanical actuation performance than its counterparts. However, actuation in VHB elastomers is well-known to be enhanced by cross-linkers and plasticizers, the impacts of particulate fillers on their structure, properties, and performance are yet to be recognized. This work addresses the influences of barium titanate (BT) and Ketjenblack (KB) dispersed trimethylolpropane trimethacrylate (TMPTMA) as fillers on the behavior of VHB 4910 elastomer for the planar actuators. The elastomer composites are prepared by swelling and then thermochemical curing of the samples in BT and KB dispersed TMPTMA. The incorporation of fillers in the elastomer matrix is confirmed by comparing optical micrographs, swelling degree, cross-link density, molecular bonds, optical bandgap, and opto-dielectric characteristics. Thus, the dielectric and mechanical behavior and electromechanical actuation performance of the filler-reinforced elastomer are discussed. Improved dielectric constant and specifically reduced elastic modulus are witnessed due to the gelation of TMPTMA leading to a new range of actuation in VHB 4910 elastomer. The areal actuation in elastomer comprising BT, KB and BT-KB particle dispersed TMPTMA is estimated at about 180%, 150% and 165%, respectively. The low electric field requirement is noticed for BT-containing elastomer composite. This work scopes the use of swelling techniques to modify microporous elastomers with particulate fillers towards soft actuators, sensors, and energy generators.

Graphical abstract

摘要 3M 集团生产的 VHB 4910/05 聚合泡沫胶带被公认为是一种介电弹性体,与同类产品相比具有优异的机电驱动性能。然而,众所周知,交联剂和增塑剂可增强 VHB 弹性体的致动性能,但颗粒填料对其结构、性能和表现的影响仍有待认识。本研究探讨了钛酸钡(BT)和 Ketjenblack(KB)分散填料三羟甲基丙烷三甲基丙烯酸酯(TMPTMA)对平面致动器用 VHB 4910 弹性体行为的影响。弹性体复合材料是通过在 BT 和 KB 分散的 TMPTMA 中对样品进行溶胀和热化学固化制备而成的。通过比较光学显微照片、溶胀度、交联密度、分子键、光带隙和光电特性,证实了填料在弹性体基体中的加入。因此,本文讨论了填料增强弹性体的介电和机械行为以及机电致动性能。TMPTMA 的凝胶化改善了介电常数,特别是降低了弹性模量,从而为 VHB 4910 弹性体带来了新的致动范围。据估计,由 BT、KB 和 BT-KB 粒子分散的 TMPTMA 所组成的弹性体的面积致动率分别约为 180%、150% 和 165%。含有 BT 的弹性体复合材料对电场的要求较低。这项工作旨在利用膨胀技术改造含有微粒填料的微孔弹性体,使其成为软致动器、传感器和能量发生器。 图表摘要
{"title":"Enhanced electromechanical actuation in acrylic elastomer foam using barium titanate and Ketjenblack dispersed interpenetrated polymer network","authors":"Dhananjay Sahu,&nbsp;Raj Kumar Sahu","doi":"10.1007/s13726-024-01308-7","DOIUrl":"10.1007/s13726-024-01308-7","url":null,"abstract":"<div><p>VHB 4910/05 polymeric foam tape manufactured by 3M conglomerate is widely acknowledged as a dielectric elastomer with exceptional electromechanical actuation performance than its counterparts. However, actuation in VHB elastomers is well-known to be enhanced by cross-linkers and plasticizers, the impacts of particulate fillers on their structure, properties, and performance are yet to be recognized. This work addresses the influences of barium titanate (BT) and Ketjenblack (KB) dispersed trimethylolpropane trimethacrylate (TMPTMA) as fillers on the behavior of VHB 4910 elastomer for the planar actuators. The elastomer composites are prepared by swelling and then thermochemical curing of the samples in BT and KB dispersed TMPTMA. The incorporation of fillers in the elastomer matrix is confirmed by comparing optical micrographs, swelling degree, cross-link density, molecular bonds, optical bandgap, and opto-dielectric characteristics. Thus, the dielectric and mechanical behavior and electromechanical actuation performance of the filler-reinforced elastomer are discussed. Improved dielectric constant and specifically reduced elastic modulus are witnessed due to the gelation of TMPTMA leading to a new range of actuation in VHB 4910 elastomer. The areal actuation in elastomer comprising BT, KB and BT-KB particle dispersed TMPTMA is estimated at about 180%, 150% and 165%, respectively. The low electric field requirement is noticed for BT-containing elastomer composite. This work scopes the use of swelling techniques to modify microporous elastomers with particulate fillers towards soft actuators, sensors, and energy generators.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 8","pages":"1047 - 1064"},"PeriodicalIF":2.4,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactive extrusion foaming of poly(lactic acid): tailoring foam properties through controlling in-process chemical reactions 聚乳酸的反应性挤压发泡:通过控制加工过程中的化学反应定制泡沫特性
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-04-01 DOI: 10.1007/s13726-024-01304-x
Maryam Valipour, Mahdi Rahmanifard, Navid Jaberi, Alireza Shadman, Mehdi Hatami, Hossein Ali Khonakdar, Farkhondeh Hemmati

A continuous extrusion foaming process was performed on poly(lactic acid) (PLA) in the presence of different chemical foaming agents (CFAs) and a chain extender additive using different extruder barrel and die temperature profiles. Chemical reactions, which are involved in the extrusion foaming process of PLA, are intensely investigated to control the reactive extrusion process and tailor the foam final properties. A set of experiments was designed using the response surface methodology to evaluate the effects of material and processing parameters and optimize the PLA foam property. The results showed that the maximum void fraction, i.e. 0.55, was obtained by exothermic CFA at higher extruder temperatures. In contrast to the exothermic CFA, the addition of endothermic CFAs did not result in lightweight biodegradable foams. The void fractions of these extruded foams were less than 0.05. The presence of water molecules as a by-product of the decomposition reaction and also relatively lower decomposition temperatures of the endothermic CFAs have been considered as the main reasons. Among the variables studied, the CFA type had the strongest impact on the foam properties. In the second step, the barrel and die temperatures were adjusted accordingly.

Graphical abstract

摘要 采用不同的挤压机机筒和模头温度曲线,在不同化学发泡剂(CFA)和扩链添加剂的存在下,对聚(乳酸)(PLA)进行了连续挤压发泡工艺。对聚乳酸挤压发泡过程中涉及的化学反应进行了深入研究,以控制反应性挤压过程并调整泡沫的最终特性。采用响应面方法设计了一组实验,以评估材料和加工参数的影响,优化聚乳酸泡沫的性能。结果表明,在较高的挤出机温度下,放热 CFA 可获得最大空隙率,即 0.55。与放热型 CFA 相反,添加内热型 CFA 不会产生轻质可生物降解泡沫。这些挤出泡沫的空隙率小于 0.05。主要原因是分解反应的副产品水分子的存在,以及内热型 CFA 的分解温度相对较低。在所研究的变量中,CFA 类型对泡沫特性的影响最大。在第二步中,对料筒和模具温度进行了相应调整。 图表摘要
{"title":"Reactive extrusion foaming of poly(lactic acid): tailoring foam properties through controlling in-process chemical reactions","authors":"Maryam Valipour,&nbsp;Mahdi Rahmanifard,&nbsp;Navid Jaberi,&nbsp;Alireza Shadman,&nbsp;Mehdi Hatami,&nbsp;Hossein Ali Khonakdar,&nbsp;Farkhondeh Hemmati","doi":"10.1007/s13726-024-01304-x","DOIUrl":"10.1007/s13726-024-01304-x","url":null,"abstract":"<div><p>A continuous extrusion foaming process was performed on poly(lactic acid) (PLA) in the presence of different chemical foaming agents (CFAs) and a chain extender additive using different extruder barrel and die temperature profiles. Chemical reactions, which are involved in the extrusion foaming process of PLA, are intensely investigated to control the reactive extrusion process and tailor the foam final properties. A set of experiments was designed using the response surface methodology to evaluate the effects of material and processing parameters and optimize the PLA foam property. The results showed that the maximum void fraction, i.e. 0.55, was obtained by exothermic CFA at higher extruder temperatures. In contrast to the exothermic CFA, the addition of endothermic CFAs did not result in lightweight biodegradable foams. The void fractions of these extruded foams were less than 0.05. The presence of water molecules as a by-product of the decomposition reaction and also relatively lower decomposition temperatures of the endothermic CFAs have been considered as the main reasons. Among the variables studied, the CFA type had the strongest impact on the foam properties. In the second step, the barrel and die temperatures were adjusted accordingly.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 8","pages":"1031 - 1046"},"PeriodicalIF":2.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Iranian Polymer Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1