首页 > 最新文献

2012 IEEE 62nd Electronic Components and Technology Conference最新文献

英文 中文
Low cost 3D multilevel interconnect integration for RF and microwave applications 用于射频和微波应用的低成本3D多层互连集成
Pub Date : 2012-07-30 DOI: 10.1109/ECTC.2012.6249010
A. Ghannam, D. Bourrier, L. Ourak, C. Viallon, T. Parra
This work presents a new and low cost multi-level 3D copper interconnect process for RF and microwave applications. This process extends 3D interconnect integration technologies from silicon to above-IC polymer. Therefore, 3D passive devices and multi-level interconnects can be integrated using a single electroplating step making the process suitable for 3D-MMIC integration. 3D interconnects are realized by patterning the SU-8 to specific locations to create the desired 3D shape. A 3D seed layer is deposited above the SU-8 and the substrate to insure 3D electroplating current flow. The BPN is used as a thick mold for copper electroplating with an aspect ratio as high as 16:1. An optimized electroplating process is later used to grow copper in a 3D technique, insuring transition between all metallic layers. Finally, high-Q (60 @ 6 GHz) power inductors have been designed and integrated above a 50 W RF power LDMOS device, using this process.
本文提出了一种新的、低成本的、用于射频和微波应用的多层三维铜互连工艺。该工艺将3D互连集成技术从硅扩展到ic以上聚合物。因此,3D无源器件和多层次互连可以使用单个电镀步骤集成,使该工艺适合3D- mmic集成。3D互连是通过将SU-8图案化到特定位置以创建所需的3D形状来实现的。3D种子层沉积在SU-8和基板之上,以确保3D电镀电流的流动。BPN是电镀铜用的厚模,宽高比高达16:1。优化的电镀工艺随后用于在3D技术中生长铜,确保所有金属层之间的过渡。最后,采用该工艺设计了高q (60 @ 6 GHz)功率电感器,并将其集成在50 W RF功率LDMOS器件上。
{"title":"Low cost 3D multilevel interconnect integration for RF and microwave applications","authors":"A. Ghannam, D. Bourrier, L. Ourak, C. Viallon, T. Parra","doi":"10.1109/ECTC.2012.6249010","DOIUrl":"https://doi.org/10.1109/ECTC.2012.6249010","url":null,"abstract":"This work presents a new and low cost multi-level 3D copper interconnect process for RF and microwave applications. This process extends 3D interconnect integration technologies from silicon to above-IC polymer. Therefore, 3D passive devices and multi-level interconnects can be integrated using a single electroplating step making the process suitable for 3D-MMIC integration. 3D interconnects are realized by patterning the SU-8 to specific locations to create the desired 3D shape. A 3D seed layer is deposited above the SU-8 and the substrate to insure 3D electroplating current flow. The BPN is used as a thick mold for copper electroplating with an aspect ratio as high as 16:1. An optimized electroplating process is later used to grow copper in a 3D technique, insuring transition between all metallic layers. Finally, high-Q (60 @ 6 GHz) power inductors have been designed and integrated above a 50 W RF power LDMOS device, using this process.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87484836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
2.5D and 3D technology challenges and test vehicle demonstrations 2.5D和3D技术挑战和测试车辆演示
Pub Date : 2012-07-30 DOI: 10.1109/ECTC.2012.6248968
J. Knickerbocker, P. Andry, E. Colgan, B. Dang, T. Dickson, X. Gu, C. Haymes, C. Jahnes, Y. Liu, J. Maria, R. Polastre, C. Tsang, L. Turlapati, B. Webb, L. Wiggins, S. Wright
Three-dimensional (3D) chip integration with through-silicon-vias (TSV's) can enable system benefits of enhanced performance, power efficiency, and cost reduction leveraging micro-architecture designs such as 2.5D silicon packages and 3D die stacks. 2.5D silicon packages and 3D die stacks structures integrated in modules each have unique technical challenges but each can provide system benefits including lower latency and higher bandwidth compared to traditional packaging solutions. Additional system benefits using 2.5D or 3D integration can include product miniaturization or increased function in the same size product. Leveraging proper design and micro-architecture for a system application, 3D technology can aide chip manufacturability for lower costs, sub-component heterogeneous integration, modular design and sub-component design reuse, which can reduce development expense and decrease time to market. 2.5D and 3D technology can reduce interconnection length between circuits leading to lower power consumption and lower latency as well as increase the number of interconnections which supports increased bandwidth to traditional 2D off chip interconnection. Appropriate design ground rules, clocking, and electrical models should match well defined technology attributes such as TSV's and silicon to silicon interconnection electrical parametrics. In addition a wafer test methodology for known good die (KGD) and high yield assembly integration approach are important to obtain integrated 2.5D and 3D modules. For complex 3D integration, proper consideration for module or integrated die stacked with TSV's and Si to Si interconnection may require redundancy and an integral repair methodology. 2.5D and 3D technology challenges may include an increase in the power delivery and cooling requirements to meet the increased circuit density and power density of these structures. For small, low power applications such as mobile devices, 2.5D and 3D technology can provide substantial benefit through both performance benefit and power savings and lead to longer battery life for the same function. For some high performance and high power applications, the 2.5D approach simplifies heterogeneous die integration without requiring leading to increases power density and heat removal cooling density. Whereas some high performance and high power applications using 3D technology may require extensive planning for power delivery with localized power regulation and specialized cooling approaches to avoid excessive in die stack temperatures while taking advantage of performance gains that these short links between heterogeneous die can provide. 3D die stacks using multi-core processors and wide I/O DRAM, eDRAM, SRAM or cache stacks can provide high bandwidth, performance improvements with lower latency. In addition to the power delivery and thermal challenges of 2.5D and 3D described above, there are 3D fabrication and industry compatibility challenges. Technology challenges i
三维(3D)芯片集成与硅通孔(TSV)可以实现系统的优势,增强性能,功率效率,并利用微架构设计,如2.5D硅封装和3D芯片堆栈降低成本。集成在模块中的2.5D硅封装和3D芯片堆栈结构各自具有独特的技术挑战,但与传统封装解决方案相比,它们都可以提供系统优势,包括更低的延迟和更高的带宽。使用2.5D或3D集成的其他系统好处包括产品小型化或在相同尺寸的产品中增加功能。利用适当的设计和系统应用的微架构,3D技术可以帮助芯片制造降低成本,子组件异构集成,模块化设计和子组件设计重用,这可以减少开发费用和缩短上市时间。2.5D和3D技术可以减少电路之间的互连长度,从而降低功耗和延迟,并增加互连数量,从而支持比传统2D片外互连增加的带宽。适当的设计基本规则、时钟和电气模型应该匹配定义良好的技术属性,如TSV和硅对硅互连电气参数。此外,已知优良模具(KGD)的晶圆测试方法和高良率组装集成方法对于获得集成的2.5D和3D模块非常重要。对于复杂的3D集成,适当考虑与TSV和Si到Si互连堆叠的模块或集成模具可能需要冗余和整体修复方法。2.5D和3D技术的挑战可能包括功率传输和冷却要求的增加,以满足这些结构的电路密度和功率密度的增加。对于小型、低功耗应用,如移动设备,2.5D和3D技术可以提供实质性的好处,通过性能优势和节能,并导致相同功能的电池寿命更长。对于一些高性能和高功率应用,2.5D方法简化了异构模具集成,而不需要导致增加功率密度和散热冷却密度。然而,一些使用3D技术的高性能和高功率应用可能需要广泛的电力输送规划,包括局部功率调节和专门的冷却方法,以避免模具堆温度过高,同时利用这些异构模具之间的短链接可以提供的性能提升。使用多核处理器和宽I/O DRAM、eDRAM、SRAM或缓存堆栈的3D芯片堆栈可以提供高带宽、性能改进和更低的延迟。除了上述2.5D和3D的功率传输和热挑战外,还有3D制造和行业兼容性挑战。技术挑战包括晶圆集成和与TSV的精加工,已知好的模具(KGD)测试,组装和模块集成。基础设施兼容性和新发展的行业标准的使用,如晶圆处理的Semi-3D标准和宽I/O存储器的JEDEC标准,仅举两个例子。晶圆运输标准正在制定中,其他3D兼容性标准也正在制定中。本研究报告描述了使用2.5D和3D技术实现系统的关键挑战。本文还重点介绍了2.5D和3D硬件演示的进展和结果,并对未来的演示进行了展望。
{"title":"2.5D and 3D technology challenges and test vehicle demonstrations","authors":"J. Knickerbocker, P. Andry, E. Colgan, B. Dang, T. Dickson, X. Gu, C. Haymes, C. Jahnes, Y. Liu, J. Maria, R. Polastre, C. Tsang, L. Turlapati, B. Webb, L. Wiggins, S. Wright","doi":"10.1109/ECTC.2012.6248968","DOIUrl":"https://doi.org/10.1109/ECTC.2012.6248968","url":null,"abstract":"Three-dimensional (3D) chip integration with through-silicon-vias (TSV's) can enable system benefits of enhanced performance, power efficiency, and cost reduction leveraging micro-architecture designs such as 2.5D silicon packages and 3D die stacks. 2.5D silicon packages and 3D die stacks structures integrated in modules each have unique technical challenges but each can provide system benefits including lower latency and higher bandwidth compared to traditional packaging solutions. Additional system benefits using 2.5D or 3D integration can include product miniaturization or increased function in the same size product. Leveraging proper design and micro-architecture for a system application, 3D technology can aide chip manufacturability for lower costs, sub-component heterogeneous integration, modular design and sub-component design reuse, which can reduce development expense and decrease time to market. 2.5D and 3D technology can reduce interconnection length between circuits leading to lower power consumption and lower latency as well as increase the number of interconnections which supports increased bandwidth to traditional 2D off chip interconnection. Appropriate design ground rules, clocking, and electrical models should match well defined technology attributes such as TSV's and silicon to silicon interconnection electrical parametrics. In addition a wafer test methodology for known good die (KGD) and high yield assembly integration approach are important to obtain integrated 2.5D and 3D modules. For complex 3D integration, proper consideration for module or integrated die stacked with TSV's and Si to Si interconnection may require redundancy and an integral repair methodology. 2.5D and 3D technology challenges may include an increase in the power delivery and cooling requirements to meet the increased circuit density and power density of these structures. For small, low power applications such as mobile devices, 2.5D and 3D technology can provide substantial benefit through both performance benefit and power savings and lead to longer battery life for the same function. For some high performance and high power applications, the 2.5D approach simplifies heterogeneous die integration without requiring leading to increases power density and heat removal cooling density. Whereas some high performance and high power applications using 3D technology may require extensive planning for power delivery with localized power regulation and specialized cooling approaches to avoid excessive in die stack temperatures while taking advantage of performance gains that these short links between heterogeneous die can provide. 3D die stacks using multi-core processors and wide I/O DRAM, eDRAM, SRAM or cache stacks can provide high bandwidth, performance improvements with lower latency. In addition to the power delivery and thermal challenges of 2.5D and 3D described above, there are 3D fabrication and industry compatibility challenges. Technology challenges i","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87513698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 92
Highly conductive, flexible, bio-compatible poly-urethane based isotropic conductive adhesives for flexible electronics 柔性电子用高导电性、柔性、生物相容性聚氨酯基各向同性导电胶粘剂
Pub Date : 2012-07-30 DOI: 10.1109/ECTC.2012.6248862
Zhuo Li, Rongwei Zhang, Yan Liu, T. Le, C. Wong
We demonstrated a novel approach to synthesize flexible isotropic conductive adhesives (ICAs) that can not only withstand a high deformation rate but also exhibit superior electrical conductivity and adhesion strength. The ICA is made of polyurethane (PU) filled with silver flakes. It can achieve resistivity as low as 1.1×10-5 Ω.cm at 80 wt.% loadings, which is even better than most solders. The high electrical conductivity results from 1) large shrinkage of the PU matrix during cuing; 2) the in-situ reduction of the silver carboxylate layer present on the surface of silver flakes by the selected curing agent so that direct metallic contact can be formed between silver flakes; 3) the microphase separation that is unique to PU matrix providing more conduction paths. The combination of the three above effects leads to the superior electrical conductivity that can be rarely seen in other ICA materials at equivalent loading level. In terms of adhesion, lap shear test measurements show that the adhesion strength to Cu surfaces at room temperature can reach 0.12 kg/mm2 at 80 wt% loading, equivalent to some epoxy based ICAs reported before. In addition, the developed ICAs have also demonstrated other advantages such as a low curing temperature, which enable them to be printed on low cost and flexible substrates such as paper and fabrics; simple and cost-effective processing, eliminating the usage of Ag nanoparticles to achieve high electrical conductivity; and good bio-compatibility. These superior material properties combined with low cost and simple processing make it very promising for emerging flexible electronics. A wearable antenna fabricated by printing the PU based ICAs on flexible fabrics was also presented as a demonstration of such devices.
我们展示了一种合成柔性各向同性导电胶粘剂(ICAs)的新方法,该胶粘剂不仅可以承受高变形率,而且具有优异的导电性和粘附强度。ICA由聚氨酯(PU)制成,填充银片。电阻率可低至1.1×10-5 Ω。Cm在80 wt.%负载,这甚至比大多数焊料更好。高导电性的原因是:1)聚氨酯基体在诱导过程中收缩大;2)所选固化剂原位还原存在于银片表面的羧酸银层,使银片之间形成直接的金属接触;3) PU基体特有的微相分离,提供更多的传导路径。上述三种效应的结合导致了在同等负载水平下其他ICA材料中很少看到的优越的导电性。粘接方面,接剪测试结果表明,室温下,在80 wt%载荷下,与Cu表面的粘接强度可达0.12 kg/mm2,与之前报道的一些环氧基ICAs相当。此外,开发的ica还显示出其他优点,例如低固化温度,这使它们能够在低成本和柔性基材(如纸张和织物)上印刷;加工简单,成本效益高,无需使用银纳米颗粒实现高导电性;并具有良好的生物相容性。这些优越的材料性能加上低成本和简单的加工,使其在新兴的柔性电子产品中非常有前途。通过在柔性织物上打印基于PU的ica制成的可穿戴天线也作为该装置的演示。
{"title":"Highly conductive, flexible, bio-compatible poly-urethane based isotropic conductive adhesives for flexible electronics","authors":"Zhuo Li, Rongwei Zhang, Yan Liu, T. Le, C. Wong","doi":"10.1109/ECTC.2012.6248862","DOIUrl":"https://doi.org/10.1109/ECTC.2012.6248862","url":null,"abstract":"We demonstrated a novel approach to synthesize flexible isotropic conductive adhesives (ICAs) that can not only withstand a high deformation rate but also exhibit superior electrical conductivity and adhesion strength. The ICA is made of polyurethane (PU) filled with silver flakes. It can achieve resistivity as low as 1.1×10-5 Ω.cm at 80 wt.% loadings, which is even better than most solders. The high electrical conductivity results from 1) large shrinkage of the PU matrix during cuing; 2) the in-situ reduction of the silver carboxylate layer present on the surface of silver flakes by the selected curing agent so that direct metallic contact can be formed between silver flakes; 3) the microphase separation that is unique to PU matrix providing more conduction paths. The combination of the three above effects leads to the superior electrical conductivity that can be rarely seen in other ICA materials at equivalent loading level. In terms of adhesion, lap shear test measurements show that the adhesion strength to Cu surfaces at room temperature can reach 0.12 kg/mm2 at 80 wt% loading, equivalent to some epoxy based ICAs reported before. In addition, the developed ICAs have also demonstrated other advantages such as a low curing temperature, which enable them to be printed on low cost and flexible substrates such as paper and fabrics; simple and cost-effective processing, eliminating the usage of Ag nanoparticles to achieve high electrical conductivity; and good bio-compatibility. These superior material properties combined with low cost and simple processing make it very promising for emerging flexible electronics. A wearable antenna fabricated by printing the PU based ICAs on flexible fabrics was also presented as a demonstration of such devices.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87884672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Characterization of the annealing behavior for copper-filled TSVs 铜填充tsv的退火行为表征
Pub Date : 2012-07-30 DOI: 10.1109/ECTC.2012.6248895
P. Saettler, M. Boettcher, K. Wolter
Herein we describe the annealing behavior of copper Through Silicon Vias (TSVs) in a series of experiments. Temperatures ranged from 150°C to 450°C and the dwell of the temperature varied between 30 min and 4 h. Copper protrusion, test samples warpage and the copper microstructure were examined in a subsequent characterization. Combining the results of these measurements enables the determination of an optimized temperature and dwell set, which avoids further protrusion and minimizes stress after annealing. Additionally, the data analysis shows a temperature- and dwell-dependency of copper protrusion and die warpage. Electron backscatter diffraction (EBSD) measurements on TSV cross sections show changes of the micro structure. Hence it could be verified that copper underwent grain growth during annealing. The described investigations represent a new systematic approach for the characterization of the copper annealing behavior in TSVs. The evaluation of the specific experiments and the comparison between different annealing conditions enable insights into the structural changes of the material during the annealing process. With help of the implemented characterization this approach succeeds in giving optimized settings for the TSV annealing process. Based on the measurement data it is possible to choose a suitable temperature and dwell process set depending on subsequent redirection layer (RDL) processing steps. Furthermore a model for the annealing procedure in TSVs is derived from the measurement results.
本文通过一系列实验描述了铜通过硅孔(tsv)的退火行为。温度范围从150°C到450°C,温度停留时间在30分钟到4小时之间。在随后的表征中检查了铜的突出,测试样品的翘曲和铜的微观结构。结合这些测量结果,可以确定优化的温度和驻留设置,从而避免进一步的突出并最小化退火后的应力。此外,数据分析表明,铜突出和模具翘曲的温度和驻留的依赖关系。电子背散射衍射(EBSD)在TSV截面上的测量显示了微观结构的变化。由此可以验证铜在退火过程中晶粒长大。所描述的研究为表征铜在tsv中的退火行为提供了一种新的系统方法。通过对具体实验的评价和不同退火条件之间的比较,可以深入了解材料在退火过程中的结构变化。在实现表征的帮助下,该方法成功地为TSV退火过程提供了优化设置。根据测量数据,可以根据后续重定向层(RDL)处理步骤选择合适的温度和驻留工艺设置。此外,根据测量结果推导出了tsv中退火过程的模型。
{"title":"Characterization of the annealing behavior for copper-filled TSVs","authors":"P. Saettler, M. Boettcher, K. Wolter","doi":"10.1109/ECTC.2012.6248895","DOIUrl":"https://doi.org/10.1109/ECTC.2012.6248895","url":null,"abstract":"Herein we describe the annealing behavior of copper Through Silicon Vias (TSVs) in a series of experiments. Temperatures ranged from 150°C to 450°C and the dwell of the temperature varied between 30 min and 4 h. Copper protrusion, test samples warpage and the copper microstructure were examined in a subsequent characterization. Combining the results of these measurements enables the determination of an optimized temperature and dwell set, which avoids further protrusion and minimizes stress after annealing. Additionally, the data analysis shows a temperature- and dwell-dependency of copper protrusion and die warpage. Electron backscatter diffraction (EBSD) measurements on TSV cross sections show changes of the micro structure. Hence it could be verified that copper underwent grain growth during annealing. The described investigations represent a new systematic approach for the characterization of the copper annealing behavior in TSVs. The evaluation of the specific experiments and the comparison between different annealing conditions enable insights into the structural changes of the material during the annealing process. With help of the implemented characterization this approach succeeds in giving optimized settings for the TSV annealing process. Based on the measurement data it is possible to choose a suitable temperature and dwell process set depending on subsequent redirection layer (RDL) processing steps. Furthermore a model for the annealing procedure in TSVs is derived from the measurement results.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88504710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Modeling for critical design and performance of wafer level chip scale package 晶圆级晶片级封装的关键设计与性能建模
Pub Date : 2012-07-30 DOI: 10.1109/ECTC.2012.6248985
Y. Liu, Qiuxiao Qian, M. Ring, Jihwan Kim, D. Kinzer
Comprehensive finite element analysis (FEA) modeling is carried out to improve the performance of critical designs of wafer level chip scale package (WLCSP). First, a design with one layer redistribution layout (RDL) copper with etched pocket in the non-covered UBM area and one layer polyimide structure (1Cu1Pi design) is investigated. Different polyimide layouts, copper thicknesses, pocket parameters and non-covered UBM diameters are studied through finite element modeling. Then, a stacked metal design with the sputtered copper UBM stacked on the RDL copper layer, with one polyimide layer between them (2Cu1Pi) for the WLCSP is examined. Parameter study of different UBM diameters with the same solder volume and different UBM diameters with the same solder joint height is conducted by the simulation. Finally the correlation and comparison of the failure mechanism between the modeling and the test are presented and discussed.
为了提高晶圆级芯片规模封装(WLCSP)关键设计的性能,进行了全面的有限元分析(FEA)建模。首先,研究了一种非覆盖UBM区域的一层再分布布局(RDL)带蚀刻口袋的铜和一层聚酰亚胺结构(1Cu1Pi设计)的设计。通过有限元建模研究了不同的聚酰亚胺布局、铜厚度、口袋参数和未覆盖的UBM直径。然后,研究了一种叠层金属设计,将溅射铜UBM堆叠在RDL铜层上,并在它们之间放置一层聚酰亚胺(2Cu1Pi)用于WLCSP。通过仿真研究了相同焊料体积下不同焊管直径和相同焊点高度下不同焊管直径的参数。最后对模型与试验的破坏机理进行了相关性和对比分析。
{"title":"Modeling for critical design and performance of wafer level chip scale package","authors":"Y. Liu, Qiuxiao Qian, M. Ring, Jihwan Kim, D. Kinzer","doi":"10.1109/ECTC.2012.6248985","DOIUrl":"https://doi.org/10.1109/ECTC.2012.6248985","url":null,"abstract":"Comprehensive finite element analysis (FEA) modeling is carried out to improve the performance of critical designs of wafer level chip scale package (WLCSP). First, a design with one layer redistribution layout (RDL) copper with etched pocket in the non-covered UBM area and one layer polyimide structure (1Cu1Pi design) is investigated. Different polyimide layouts, copper thicknesses, pocket parameters and non-covered UBM diameters are studied through finite element modeling. Then, a stacked metal design with the sputtered copper UBM stacked on the RDL copper layer, with one polyimide layer between them (2Cu1Pi) for the WLCSP is examined. Parameter study of different UBM diameters with the same solder volume and different UBM diameters with the same solder joint height is conducted by the simulation. Finally the correlation and comparison of the failure mechanism between the modeling and the test are presented and discussed.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88210269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Process modeling of dry etching for the 3D-integration with tapered TSVs 锥形tsv三维集成干刻蚀工艺建模
Pub Date : 2012-07-30 DOI: 10.1109/ECTC.2012.6248925
M. Wilke, M. Topper, Hue Quoc Huynh, K. Lang
One of the key technologies for 3D packaging is forming the Through Silicon Vias (TSV) using plasma etching. For the 3D packaging of active devices such as CMOS sensors, which exhibit low to moderate I/O counts, it was shown in recent years, that costs for TSV interconnects can be reduced by producing tapered via features, which ease subsequent process steps such as deposition of dielectrics, metal layers and photo resists. For different applications the adjustment of dedicated via profiles is desirable. For the practical use the process engineer is confronted with a variety of different process parameters, which exhibit strong interactions between each other and therefore make an extensive testing necessary when a new process needs to be developed. The knowledge of these interactions is therefore needed. The etching of tapered TSVs using fluorine based chemistry is discussed in this paper. The influence of the governing process parameters such as pressure, gas flow ratio and power is discussed in order to produce profiles with continuous tangent and minimal surface roughness of the structures. Emerging structures with etching effects such as micro masking or the appearance of profiles with gradient taper are shown in order to reveal guidelines in which direction the process needs to be adjusted to stay in the process window. A model is presented and discussed which is able to predict the profile angle as a function of the process parameters. This gives the ability to produce tapered profiles from 65° to 85° without the burden of an enormous experimental effort. Interrelated etching performance such as photoresist selectivity, etching rate and the occurrence of lateral under etching is presented as well so that design rules can be derived for the specific process.
3D封装的关键技术之一是通过等离子蚀刻形成硅通孔(TSV)。对于有源器件(如CMOS传感器)的3D封装,其表现出低至中等的I/O计数,近年来表明,TSV互连的成本可以通过生产锥形通孔特征来降低,这可以简化后续的工艺步骤,如电介质、金属层和光阻剂的沉积。对于不同的应用,需要调整专用的通孔轮廓。在实际应用中,工艺工程师面临着各种不同的工艺参数,这些参数之间表现出很强的相互作用,因此当需要开发新工艺时,需要进行广泛的测试。因此,需要了解这些相互作用。本文讨论了氟基化学刻蚀锥形tsv的方法。讨论了控制工艺参数(如压力、气体流量比和功率)的影响,以获得切线连续且表面粗糙度最小的结构轮廓。显示了具有蚀刻效果的新兴结构,例如微掩模或具有渐变锥度的轮廓的外观,以便揭示需要调整工艺方向以保持在工艺窗口中的指导方针。提出并讨论了一个能够预测轮廓角随工艺参数变化的模型。这使得能够产生从65°到85°的锥形轮廓,而无需承担巨大的实验工作。同时给出了光刻胶的选择性、刻蚀速率和蚀刻下横向的发生等相关的蚀刻性能,从而推导出具体工艺的设计规则。
{"title":"Process modeling of dry etching for the 3D-integration with tapered TSVs","authors":"M. Wilke, M. Topper, Hue Quoc Huynh, K. Lang","doi":"10.1109/ECTC.2012.6248925","DOIUrl":"https://doi.org/10.1109/ECTC.2012.6248925","url":null,"abstract":"One of the key technologies for 3D packaging is forming the Through Silicon Vias (TSV) using plasma etching. For the 3D packaging of active devices such as CMOS sensors, which exhibit low to moderate I/O counts, it was shown in recent years, that costs for TSV interconnects can be reduced by producing tapered via features, which ease subsequent process steps such as deposition of dielectrics, metal layers and photo resists. For different applications the adjustment of dedicated via profiles is desirable. For the practical use the process engineer is confronted with a variety of different process parameters, which exhibit strong interactions between each other and therefore make an extensive testing necessary when a new process needs to be developed. The knowledge of these interactions is therefore needed. The etching of tapered TSVs using fluorine based chemistry is discussed in this paper. The influence of the governing process parameters such as pressure, gas flow ratio and power is discussed in order to produce profiles with continuous tangent and minimal surface roughness of the structures. Emerging structures with etching effects such as micro masking or the appearance of profiles with gradient taper are shown in order to reveal guidelines in which direction the process needs to be adjusted to stay in the process window. A model is presented and discussed which is able to predict the profile angle as a function of the process parameters. This gives the ability to produce tapered profiles from 65° to 85° without the burden of an enormous experimental effort. Interrelated etching performance such as photoresist selectivity, etching rate and the occurrence of lateral under etching is presented as well so that design rules can be derived for the specific process.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86723996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Failsafe wafer-level packaging of a piezoelectric MEMS actuator 压电MEMS致动器的故障安全晶圆级封装
Pub Date : 2012-07-30 DOI: 10.1109/ECTC.2012.6248855
M. Matin, K. Ozaki, D. Akai, K. Sawada, M. Ishida
Micro-electro-mechanical systems (MEMS) technology can offer a viable alternative to realize miniaturized and less expensive actuators for deformable mirror in adaptive optics for high resolution retinal imaging. However, during fabrication of such devices, functional multilayered thin films are generally deposited at elevated temperatures. These films are therefore subjected to residual stresses which may result in bending of the structure. The bending thus occurred may lead to failure at interfaces between films. A successful fabrication of device therefore relies on the engineering justification of multi-structured device design and growth parameters used in fabrication. In this paper, we present the design of a piezoelectric (ceramic) thin film based MEMS actuator for deformable mirror used in retinal imaging. A proto-type piezoelectric thin film actuator has been fabricated epitaxially using Pt/PZT/SRO/Pt/γ-Al2O3/Si structure. Advanced 3D finite element simulations were conducted to correlate the bending of fabricated structure with residual stresses. A smart alternative design was also proposed employing an extra layer of aluminium in the diaphragm region. Simulation results predict a failsafe structure when the thickness of extra Al-layer is tailored to an optimal thickness. The outcome of this research can be used to overcome the challenge encountered (bending due to residual stresses) to obtain a failsafe wafer-level packaged MEMS actuator for deformable mirror.
微机电系统(MEMS)技术为实现高分辨率视网膜成像的自适应光学中可变形镜的小型化和低成本执行器提供了可行的替代方案。然而,在这种器件的制造过程中,功能多层薄膜通常是在高温下沉积的。因此,这些薄膜受到可能导致结构弯曲的残余应力的影响。这样发生的弯曲可能导致膜间界面的破坏。因此,器件的成功制造依赖于多结构器件设计和制造中使用的生长参数的工程论证。在本文中,我们提出了一种基于压电(陶瓷)薄膜的MEMS致动器的设计,用于视网膜成像的可变形镜。采用Pt/PZT/SRO/Pt/γ-Al2O3/Si外延结构制备了压电薄膜致动器原型。采用先进的三维有限元模拟方法,将预制结构的弯曲与残余应力联系起来。一个聪明的替代设计也提出了在隔膜区域采用额外的一层铝。仿真结果表明,当额外铝层厚度达到最佳厚度时,可以获得故障安全结构。本研究结果可用于克服所遇到的挑战(由于残余应力而弯曲),以获得用于变形镜的故障安全晶圆级封装MEMS驱动器。
{"title":"Failsafe wafer-level packaging of a piezoelectric MEMS actuator","authors":"M. Matin, K. Ozaki, D. Akai, K. Sawada, M. Ishida","doi":"10.1109/ECTC.2012.6248855","DOIUrl":"https://doi.org/10.1109/ECTC.2012.6248855","url":null,"abstract":"Micro-electro-mechanical systems (MEMS) technology can offer a viable alternative to realize miniaturized and less expensive actuators for deformable mirror in adaptive optics for high resolution retinal imaging. However, during fabrication of such devices, functional multilayered thin films are generally deposited at elevated temperatures. These films are therefore subjected to residual stresses which may result in bending of the structure. The bending thus occurred may lead to failure at interfaces between films. A successful fabrication of device therefore relies on the engineering justification of multi-structured device design and growth parameters used in fabrication. In this paper, we present the design of a piezoelectric (ceramic) thin film based MEMS actuator for deformable mirror used in retinal imaging. A proto-type piezoelectric thin film actuator has been fabricated epitaxially using Pt/PZT/SRO/Pt/γ-Al2O3/Si structure. Advanced 3D finite element simulations were conducted to correlate the bending of fabricated structure with residual stresses. A smart alternative design was also proposed employing an extra layer of aluminium in the diaphragm region. Simulation results predict a failsafe structure when the thickness of extra Al-layer is tailored to an optimal thickness. The outcome of this research can be used to overcome the challenge encountered (bending due to residual stresses) to obtain a failsafe wafer-level packaged MEMS actuator for deformable mirror.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87069456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study on the intermetallic growth of fine-pitch Cu pillar/SnAg solder bump for 3D-TSV interconnection 3D-TSV互连用细间距Cu柱/SnAg凸点金属间生长研究
Pub Date : 2012-07-30 DOI: 10.1109/ECTC.2012.6249123
Y. Park, Jiwon Shin, Yong-Won Choi, K. Paik
The IMC growth of fine pitch Cu pillar/SnAg solder bumps used for the chip to chip eutectic bonding of 3D-TSV interconnection was investigated. Most of SnAg solder was rapidly consumed by Cu-Sn intermetallic compound (IMC) growth during the eutectic bonding process. The composition of the IMC phase were identified as Cu-Au-Sn ternary phase and the main TEM diffraction patterns were well matched with the Cu6Sn5 crystal structure and the two week diffraction spots between every two strong spots matched with the superlattice of Au atoms. As a result, it was proved that the Cu-Au-Sn ternary IMCs were (Cu, Au)6Sn5. In the case of a large solder joint such as BGA (Ball Grid Array) or CSP (Chip Scale Package), most of the Au deposited on a metal pad was dissolved in the melting solder region due to relatively little Au content. However, in the case of TSV Cu pillar/SnAg solder bump jointed on the Au coated Cu pad, Au atoms were completely dissolved in the solder and participated in the IMC reaction due to the very small amount of solder.
研究了3D-TSV互连中用于片与片共晶键合的细间距Cu柱/SnAg焊点的IMC生长。在共晶键合过程中,大部分SnAg焊料被Cu-Sn金属间化合物(IMC)生长迅速消耗。IMC相为Cu-Au-Sn三元相,TEM衍射图与Cu6Sn5晶体结构吻合较好,每两个强点之间的2周衍射点与Au原子的超晶格相匹配。结果表明,Cu-Au- sn三元IMCs为(Cu, Au)6Sn5。对于大型焊点,如BGA(球栅阵列)或CSP(芯片规模封装),由于相对较少的Au含量,沉积在金属焊盘上的大部分Au溶解在熔化的焊点区域。然而,当TSV Cu柱/SnAg钎料凸点连接在Au包覆的Cu衬垫上时,由于钎料量非常少,Au原子完全溶解在钎料中并参与IMC反应。
{"title":"A study on the intermetallic growth of fine-pitch Cu pillar/SnAg solder bump for 3D-TSV interconnection","authors":"Y. Park, Jiwon Shin, Yong-Won Choi, K. Paik","doi":"10.1109/ECTC.2012.6249123","DOIUrl":"https://doi.org/10.1109/ECTC.2012.6249123","url":null,"abstract":"The IMC growth of fine pitch Cu pillar/SnAg solder bumps used for the chip to chip eutectic bonding of 3D-TSV interconnection was investigated. Most of SnAg solder was rapidly consumed by Cu-Sn intermetallic compound (IMC) growth during the eutectic bonding process. The composition of the IMC phase were identified as Cu-Au-Sn ternary phase and the main TEM diffraction patterns were well matched with the Cu6Sn5 crystal structure and the two week diffraction spots between every two strong spots matched with the superlattice of Au atoms. As a result, it was proved that the Cu-Au-Sn ternary IMCs were (Cu, Au)6Sn5. In the case of a large solder joint such as BGA (Ball Grid Array) or CSP (Chip Scale Package), most of the Au deposited on a metal pad was dissolved in the melting solder region due to relatively little Au content. However, in the case of TSV Cu pillar/SnAg solder bump jointed on the Au coated Cu pad, Au atoms were completely dissolved in the solder and participated in the IMC reaction due to the very small amount of solder.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87152173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Reverse wire bonding and phosphor printing for LED wafer level packaging 用于LED晶圆级封装的反向焊线和荧光粉印刷
Pub Date : 2012-07-30 DOI: 10.1109/ECTC.2012.6249084
J. Lo, S. Lee, Rong Zhang, Mei Li
Solid state lighting is a good alternative light source with reduced energy consumption. Light-emitting diode (LED) is very efficient in turning electrical energy into light. LED has a number of advantages over the traditional light sources. The optical performance of the LED component is very critical. In general, white light can be obtained by applying phosphor on a blue LED chip. The blue light from the LED excites the phosphor to emit yellow light. The blue and yellow light mixes together to give white light. In order to obtain a good optical performance, it is necessary to apply phosphor properly. It is challenging to distribute a right amount of phosphor on the LED die. Besides, phosphor dispensing is usually the slowest process when compared with die bonding and wire bonding. This controls the overall throughput of the LED packaging process. There are different methods to apply the phosphor. The phosphor is mixed with epoxy or silicone to form slurry and is then dispensed onto the chip. However, the spatial color distribution is poor if phosphor slurry is used. Conformal phosphor coating can be used to improve the spatial color distribution. In this paper, an innovative phosphor stencil printing method is proposed. This paper demonstrates the feasibility of the phosphor stencil printing process for wafer-level LED packaging. LEDs are first mounted on a wafer submount. Wire bonds are used as interconnect. The phosphor is stencil printed on the chip surface after wire bond. The minimum phosphor layer thickness is controlled by the wire bond loop height. In order to achieve a low loop height, reverse wire bonding is used. The first bond is on the wafer submount and the second bond is on the LED chip. The reverse wire bond has a very low profile which allows a thin layer of phosphor to be printed on the chip surface. Prototypes are successfully fabricated. A uniform layer of phosphor is stencil printed on the LED chip on the wafer submount. Experimental result shows that the proposed phosphor printing method is very effective in distributing the right amount of phosphor on the chip surface.
固态照明是一种很好的替代光源,降低了能源消耗。发光二极管(LED)在将电能转化为光方面效率很高。与传统光源相比,LED有许多优点。LED元件的光学性能非常关键。一般来说,在蓝色LED芯片上涂上荧光粉可以获得白光。LED发出的蓝光激发荧光粉发出黄光。蓝光和黄光混合在一起产生白光。为了获得良好的光学性能,有必要适当地使用荧光粉。在LED芯片上分配适量的荧光粉是一项挑战。此外,荧光粉点胶通常是最慢的过程相比,模具键合和电线键合。这控制了LED封装过程的整体吞吐量。有不同的方法来应用荧光粉。将荧光粉与环氧树脂或硅树脂混合形成浆料,然后涂在芯片上。但是,如果使用荧光粉浆,则空间色彩分布差。采用保形荧光粉涂层可以改善空间色彩分布。本文提出了一种新颖的荧光粉模板印刷方法。本文论证了荧光粉模板印刷工艺用于圆片级LED封装的可行性。led首先安装在晶圆座上。线键用作互连。该荧光粉经丝键合后用模板印刷在芯片表面。最小荧光粉层厚度由线键环高度控制。为了实现低回路高度,采用反向焊丝键合。第一个键在晶圆底座上,第二个键在LED芯片上。反向线键具有非常低的轮廓,允许在芯片表面上印刷一层薄薄的荧光粉。原型被成功制造。一层均匀的荧光粉被模板印刷在晶圆底座上的LED芯片上。实验结果表明,所提出的荧光粉打印方法能够有效地将适量的荧光粉分布在芯片表面。
{"title":"Reverse wire bonding and phosphor printing for LED wafer level packaging","authors":"J. Lo, S. Lee, Rong Zhang, Mei Li","doi":"10.1109/ECTC.2012.6249084","DOIUrl":"https://doi.org/10.1109/ECTC.2012.6249084","url":null,"abstract":"Solid state lighting is a good alternative light source with reduced energy consumption. Light-emitting diode (LED) is very efficient in turning electrical energy into light. LED has a number of advantages over the traditional light sources. The optical performance of the LED component is very critical. In general, white light can be obtained by applying phosphor on a blue LED chip. The blue light from the LED excites the phosphor to emit yellow light. The blue and yellow light mixes together to give white light. In order to obtain a good optical performance, it is necessary to apply phosphor properly. It is challenging to distribute a right amount of phosphor on the LED die. Besides, phosphor dispensing is usually the slowest process when compared with die bonding and wire bonding. This controls the overall throughput of the LED packaging process. There are different methods to apply the phosphor. The phosphor is mixed with epoxy or silicone to form slurry and is then dispensed onto the chip. However, the spatial color distribution is poor if phosphor slurry is used. Conformal phosphor coating can be used to improve the spatial color distribution. In this paper, an innovative phosphor stencil printing method is proposed. This paper demonstrates the feasibility of the phosphor stencil printing process for wafer-level LED packaging. LEDs are first mounted on a wafer submount. Wire bonds are used as interconnect. The phosphor is stencil printed on the chip surface after wire bond. The minimum phosphor layer thickness is controlled by the wire bond loop height. In order to achieve a low loop height, reverse wire bonding is used. The first bond is on the wafer submount and the second bond is on the LED chip. The reverse wire bond has a very low profile which allows a thin layer of phosphor to be printed on the chip surface. Prototypes are successfully fabricated. A uniform layer of phosphor is stencil printed on the LED chip on the wafer submount. Experimental result shows that the proposed phosphor printing method is very effective in distributing the right amount of phosphor on the chip surface.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85448884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Evaluation of 3D interconnect routing and stacking strategy to optimize high speed signal transmission for memory on logic 基于逻辑存储器的高速信号传输三维互连路由和堆叠策略评估
Pub Date : 2012-07-30 DOI: 10.1109/ECTC.2012.6248798
J. Roullard, A. Farcy, S. Capraro, T. Lacrevaz, C. Bermond, G. Houzet, J. Charbonnier, C. Fuchs, C. Ferrandon, P. Leduc, B. Fléchet
3D stacking technologies are electrically studied to predict high speed data transmission for memory on logic applications. Maximal frequency of bandwidth for memory-processor and processor-BGA channels are extracted and compared for Face to Face and Face to Back 3D stacking and between an interposer technology. Using expected electrical specifications of Wide IO applications in terms of data rates, a roadmap is proposed in accordance to the integration density, carried out by the TSV density.
对三维堆叠技术进行了电学研究,以预测存储在逻辑应用中的高速数据传输。提取了存储器-处理器和处理器- bga通道的最大带宽频率,并对Face to Face和Face to Back 3D叠加以及中间体技术进行了比较。根据数据速率方面宽IO应用的预期电气规范,根据TSV密度执行的集成密度提出了路线图。
{"title":"Evaluation of 3D interconnect routing and stacking strategy to optimize high speed signal transmission for memory on logic","authors":"J. Roullard, A. Farcy, S. Capraro, T. Lacrevaz, C. Bermond, G. Houzet, J. Charbonnier, C. Fuchs, C. Ferrandon, P. Leduc, B. Fléchet","doi":"10.1109/ECTC.2012.6248798","DOIUrl":"https://doi.org/10.1109/ECTC.2012.6248798","url":null,"abstract":"3D stacking technologies are electrically studied to predict high speed data transmission for memory on logic applications. Maximal frequency of bandwidth for memory-processor and processor-BGA channels are extracted and compared for Face to Face and Face to Back 3D stacking and between an interposer technology. Using expected electrical specifications of Wide IO applications in terms of data rates, a roadmap is proposed in accordance to the integration density, carried out by the TSV density.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85451585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
期刊
2012 IEEE 62nd Electronic Components and Technology Conference
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1