首页 > 最新文献

2010 IEEE International Solid-State Circuits Conference - (ISSCC)最新文献

英文 中文
Session 8 overview: High-speed wireline transceivers 第8部分概述:高速有线收发器
Pub Date : 2010-03-18 DOI: 10.1109/ISSCC.2010.5434012
A. Sheikholeslami, T. Saito
The demand for higher bandwidth in chip-to-chip and backplane communication is driven by the video transmission over the internet. This demand has driven the data rates to 10Gb/s and beyond. Currently, there are two approaches to address the increasing bandwidth requirement for high-speed transceivers: one is to increase the number of parallel lines while maintaining the line rate and the other is to increase the data rate per line while maintaining the number of parallel lines. The former eases the requirement for clock and data recovery, as the clock can be forwarded with small overhead. This is applicable to cases where the channel is short and linear equalization is sufficient to compensate for the channel loss. The latter reduces the number of pins on the chips and reduces the board area at the expense of more complicated equalization scheme and techniques for clock and data recovery (CDR). This is applicable to cases where the channel is long and linear equalization is no longer sufficient.
网络视频传输推动了芯片间和背板通信对更高带宽的需求。这种需求推动数据速率达到10Gb/s甚至更高。目前,为了满足高速收发器日益增长的带宽需求,有两种方法:一种是在保持线路速率的同时增加并行线路的数量,另一种是在保持并行线路数量的同时增加每条线路的数据速率。前者减少了对时钟和数据恢复的需求,因为时钟可以以很小的开销转发。这适用于信道较短且线性均衡足以补偿信道损耗的情况。后者减少了芯片上的引脚数量,并以更复杂的均衡方案和时钟和数据恢复(CDR)技术为代价减少了电路板面积。这适用于通道较长且线性均衡不再足够的情况。
{"title":"Session 8 overview: High-speed wireline transceivers","authors":"A. Sheikholeslami, T. Saito","doi":"10.1109/ISSCC.2010.5434012","DOIUrl":"https://doi.org/10.1109/ISSCC.2010.5434012","url":null,"abstract":"The demand for higher bandwidth in chip-to-chip and backplane communication is driven by the video transmission over the internet. This demand has driven the data rates to 10Gb/s and beyond. Currently, there are two approaches to address the increasing bandwidth requirement for high-speed transceivers: one is to increase the number of parallel lines while maintaining the line rate and the other is to increase the data rate per line while maintaining the number of parallel lines. The former eases the requirement for clock and data recovery, as the clock can be forwarded with small overhead. This is applicable to cases where the channel is short and linear equalization is sufficient to compensate for the channel loss. The latter reduces the number of pins on the chips and reduces the board area at the expense of more complicated equalization scheme and techniques for clock and data recovery (CDR). This is applicable to cases where the channel is long and linear equalization is no longer sufficient.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82623669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 45nm SOI embedded DRAM macro for POWER7TM 32MB on-chip L3 cache 一个45nm SOI嵌入式DRAM宏,用于POWER7TM 32MB片上L3高速缓存
Pub Date : 2010-03-18 DOI: 10.1109/ISSCC.2010.5433814
J. Barth, D. Plass, E. Nelson, C. Hwang, G. Fredeman, M. Sperling, A. Mathews, W. Reohr, Kavita Nair, N. Cao
Logic-based embedded DRAM has matured into a wide range of ASIC applications, SRAM replacements [1] and off-chip caches for microprocessors [2]. While embedded DRAM has been leveraged in supercomputers such as IBM's BlueGene/L [3], it's use has been limited to moderate performance bulk logic technologies. Although prototypes have been demonstrated [4], DRAM has yet to be embedded on a high performance microprocessor. This paper discloses an SOI DRAM macro implemented on-chip with the IBM POWER7™ high performance microprocessor [5], and introduces enhancements to the micro sense amp (µSA) architecture [6]. This high performance DRAM macro is used to construct a large 32MB L3 cache on-chip, eliminating delay, area and power from the off-chip interface, simultaneously improving system performance, reducing cost, power and soft error vulnerability. Figure 19.1.1a shows an SEM of the 45nm SOI DRAM Device and Deep Trench (DT) capacitor [7]. DT offers 25x more capacitance than planar structures and was also utilized to reduce on-chip voltage island supply noise.
基于逻辑的嵌入式DRAM已经成熟到广泛的ASIC应用,SRAM替代品[1]和微处理器的片外缓存[2]。虽然嵌入式DRAM已经被用于超级计算机,如IBM的BlueGene/L[3],但它的使用仅限于中等性能的批量逻辑技术。虽然原型已经被证明[4],DRAM还没有被嵌入到高性能微处理器上。本文公开了一个采用IBM POWER7™高性能微处理器实现的SOI DRAM宏[5],并介绍了对微感放大器(µSA)架构的增强[6]。采用该高性能DRAM宏在片上构建32MB的大型L3缓存,从片外接口上消除延迟、面积和功耗,同时提高系统性能,降低成本、功耗和软错误脆弱性。图19.1.1a显示了45nm SOI DRAM器件和深沟(DT)电容器的SEM[7]。DT提供比平面结构多25倍的电容,还用于降低片上电压岛电源噪声。
{"title":"A 45nm SOI embedded DRAM macro for POWER7TM 32MB on-chip L3 cache","authors":"J. Barth, D. Plass, E. Nelson, C. Hwang, G. Fredeman, M. Sperling, A. Mathews, W. Reohr, Kavita Nair, N. Cao","doi":"10.1109/ISSCC.2010.5433814","DOIUrl":"https://doi.org/10.1109/ISSCC.2010.5433814","url":null,"abstract":"Logic-based embedded DRAM has matured into a wide range of ASIC applications, SRAM replacements [1] and off-chip caches for microprocessors [2]. While embedded DRAM has been leveraged in supercomputers such as IBM's BlueGene/L [3], it's use has been limited to moderate performance bulk logic technologies. Although prototypes have been demonstrated [4], DRAM has yet to be embedded on a high performance microprocessor. This paper discloses an SOI DRAM macro implemented on-chip with the IBM POWER7™ high performance microprocessor [5], and introduces enhancements to the micro sense amp (µSA) architecture [6]. This high performance DRAM macro is used to construct a large 32MB L3 cache on-chip, eliminating delay, area and power from the off-chip interface, simultaneously improving system performance, reducing cost, power and soft error vulnerability. Figure 19.1.1a shows an SEM of the 45nm SOI DRAM Device and Deep Trench (DT) capacitor [7]. DT offers 25x more capacitance than planar structures and was also utilized to reduce on-chip voltage island supply noise.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84630398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 33
Compact voltage and current stimulation buffer for high-density microelectrode arrays 用于高密度微电极阵列的紧凑型电压和电流刺激缓冲器
Pub Date : 2010-03-18 DOI: 10.1109/ISSCC.2010.5433935
P. Livi, F. Heer, U. Frey, D. Bakkum, A. Hierlemann
The most sophisticated information processing system, the human brain, consists of a huge number of neurons that form part of an intricate network and communicate through electrical and chemical signals via synapses. To elucidate interneuronal communication and network characteristics, it is important to gain bidirectional access (recording and stimulation) to individual neurons and to be able to do closed-loop experiments in cultures. The targeted stimulation of individual neurons, and the subsequent tracking of a signal's propagation is a valuable tool to decipher network structures as well as strength and plasticity of involved connections. CMOS-based microelectrode arrays (MEAs) featuring high spatial resolution (subcellular) and low noise provide a wealth of information. Extracellular electrodes ensure cell integrity and long-term recordings; neuronal stimulation is performed by either current or voltage pulses, with typical amplitudes of 0.1 to 1V or 5 to 10µA, and durations of 50 to 900µs [1].
人类大脑是最复杂的信息处理系统,它由大量神经元组成,这些神经元构成了一个复杂网络的一部分,并通过突触通过电信号和化学信号进行交流。为了阐明神经元间的通信和网络特性,重要的是获得对单个神经元的双向访问(记录和刺激),并能够在培养中进行闭环实验。对单个神经元的定向刺激以及随后的信号传播跟踪是破译网络结构以及相关连接的强度和可塑性的重要工具。基于cmos的微电极阵列(MEAs)具有高空间分辨率(亚细胞)和低噪声的特点,提供了丰富的信息。细胞外电极确保细胞完整性和长期记录;神经元刺激可通过电流或电压脉冲进行,典型振幅为0.1至1V或5至10 μ A,持续时间为50至900 μ s[1]。
{"title":"Compact voltage and current stimulation buffer for high-density microelectrode arrays","authors":"P. Livi, F. Heer, U. Frey, D. Bakkum, A. Hierlemann","doi":"10.1109/ISSCC.2010.5433935","DOIUrl":"https://doi.org/10.1109/ISSCC.2010.5433935","url":null,"abstract":"The most sophisticated information processing system, the human brain, consists of a huge number of neurons that form part of an intricate network and communicate through electrical and chemical signals via synapses. To elucidate interneuronal communication and network characteristics, it is important to gain bidirectional access (recording and stimulation) to individual neurons and to be able to do closed-loop experiments in cultures. The targeted stimulation of individual neurons, and the subsequent tracking of a signal's propagation is a valuable tool to decipher network structures as well as strength and plasticity of involved connections. CMOS-based microelectrode arrays (MEAs) featuring high spatial resolution (subcellular) and low noise provide a wealth of information. Extracellular electrodes ensure cell integrity and long-term recordings; neuronal stimulation is performed by either current or voltage pulses, with typical amplitudes of 0.1 to 1V or 5 to 10µA, and durations of 50 to 900µs [1].","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83344593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
A 16b 250MS/s IF-sampling pipelined A/D converter with background calibration 带有背景校准的16b 250MS/s中频采样流水线A/D转换器
Pub Date : 2010-03-18 DOI: 10.1109/ISSCC.2010.5433923
Ahmed M. A. Ali, Andrew S. Morgan, C. Dillon, G. Patterson, S. Puckett, M. Hensley, Russell Stop, Paritosh Bhoraskar, S. Bardsley, David Lattimore, Jeff Bray, Carroll Speir, Robert Sneed
Wireless communication applications have driven the development of high-resolution A/D converters (ADCs) with high sample rates, good AC performance and IF sampling capability to enable wider cellular coverage, more carriers, and to simplify the system design. We describe a 16b ADC with a sample rate up to 250MS/s that employs background calibration of the residue amplifier (RA) gain errors. The ADC has an integrated input buffer and is fabricated on a 0.18µm BiCMOS process. When the input buffer is bypassed, the SNR is 77.5dB and the SFDR is 90dB at 10MHz input frequency. With the input buffer, the SNR is 76dB and the SFDR is 95dB. The ADC consumes 850mW from a 1.8V supply, and the input buffer consumes 150mW from a 3V supply. The input span is 2.6Vp-p and the jitter is 60fs.
无线通信应用推动了高采样率、良好交流性能和中频采样能力的高分辨率A/D转换器(adc)的发展,以实现更广泛的蜂窝覆盖、更多的载波,并简化系统设计。我们描述了一个采样率高达250MS/s的16b ADC,该ADC采用残留放大器(RA)增益误差的背景校准。ADC具有集成输入缓冲器,采用0.18µm BiCMOS工艺制造。旁路输入缓冲器时,在10MHz输入频率下信噪比为77.5dB, SFDR为90dB。使用输入缓冲器时,信噪比为76dB, SFDR为95dB。ADC从1.8V电源消耗850mW,输入缓冲器从3V电源消耗150mW。输入跨度2.6Vp-p,抖动60fs。
{"title":"A 16b 250MS/s IF-sampling pipelined A/D converter with background calibration","authors":"Ahmed M. A. Ali, Andrew S. Morgan, C. Dillon, G. Patterson, S. Puckett, M. Hensley, Russell Stop, Paritosh Bhoraskar, S. Bardsley, David Lattimore, Jeff Bray, Carroll Speir, Robert Sneed","doi":"10.1109/ISSCC.2010.5433923","DOIUrl":"https://doi.org/10.1109/ISSCC.2010.5433923","url":null,"abstract":"Wireless communication applications have driven the development of high-resolution A/D converters (ADCs) with high sample rates, good AC performance and IF sampling capability to enable wider cellular coverage, more carriers, and to simplify the system design. We describe a 16b ADC with a sample rate up to 250MS/s that employs background calibration of the residue amplifier (RA) gain errors. The ADC has an integrated input buffer and is fabricated on a 0.18µm BiCMOS process. When the input buffer is bypassed, the SNR is 77.5dB and the SFDR is 90dB at 10MHz input frequency. With the input buffer, the SNR is 76dB and the SFDR is 95dB. The ADC consumes 850mW from a 1.8V supply, and the input buffer consumes 150mW from a 3V supply. The input span is 2.6Vp-p and the jitter is 60fs.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83327107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 46
An 80×60 range image sensor based on 10µm 50MHz lock-in pixels in 0.18µm CMOS 基于0.18µm CMOS中的10µm 50MHz锁定像素的80×60距离图像传感器
Pub Date : 2010-03-18 DOI: 10.1109/ISSCC.2010.5433980
D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, L. Gonzo
Because we are living in a three-dimensional world, the usual intensity map provided by standard digital cameras is often not sufficient to build the sophisticated models required by systems capable of analyzing and interpreting their environment. A three-dimensional (3D) image sensor has great potential for improvement in many areas like ambient-assisted living, virtual reality, gaming, security and surveillance, etc., because it significantly increases the robustness of object classification and avoids time-consuming post-processing steps. Although the first commercial products are now available on the market, one of the main barriers to mass deployment of such 3D vision tools is the large pixel dimension, which ultimately reduces the sensor resolution and increases costs.
因为我们生活在一个三维世界中,标准数码相机提供的通常的强度图往往不足以建立分析和解释其环境的系统所需的复杂模型。三维(3D)图像传感器在环境辅助生活、虚拟现实、游戏、安全和监控等许多领域具有巨大的改进潜力,因为它显著提高了目标分类的鲁棒性,避免了耗时的后处理步骤。虽然第一批商业产品现已上市,但大规模部署此类3D视觉工具的主要障碍之一是大像素尺寸,这最终降低了传感器分辨率并增加了成本。
{"title":"An 80×60 range image sensor based on 10µm 50MHz lock-in pixels in 0.18µm CMOS","authors":"D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, L. Gonzo","doi":"10.1109/ISSCC.2010.5433980","DOIUrl":"https://doi.org/10.1109/ISSCC.2010.5433980","url":null,"abstract":"Because we are living in a three-dimensional world, the usual intensity map provided by standard digital cameras is often not sufficient to build the sophisticated models required by systems capable of analyzing and interpreting their environment. A three-dimensional (3D) image sensor has great potential for improvement in many areas like ambient-assisted living, virtual reality, gaming, security and surveillance, etc., because it significantly increases the robustness of object classification and avoids time-consuming post-processing steps. Although the first commercial products are now available on the market, one of the main barriers to mass deployment of such 3D vision tools is the large pixel dimension, which ultimately reduces the sensor resolution and increases costs.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83907158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
A 5Gb/s transceiver with an ADC-based feedforward CDR and CMA adaptive equalizer in 65nm CMOS 5Gb/s收发器,基于adc的前馈CDR和CMA自适应均衡器,采用65nm CMOS
Pub Date : 2010-03-18 DOI: 10.1109/ISSCC.2010.5434001
H. Yamaguchi, H. Tamura, Y. Doi, Y. Tomita, T. Hamada, M. Kibune, Shuhei Ohmoto, Keita Tateishi, Oleksiy Tyshchenko, A. Sheikholeslami, Tomokazu Higuchi, J. Ogawa, Tamio Saito, H. Ishida, K. Gotoh
A high bandwidth and a robust performance are demanded in the consumer market applications. An ADC-based transceiver satisfies these demands and enables power/area scaling with process [1,2]. We developed and tested a spread-spectrum-clocking (SSC) compliant 5-Gb/s transceiver in 65-nm CMOS. The receiver uses an ADC-based front-end that samples the incoming signal without adjusting the phase relation between the sampling clock and the signal, hence eliminating the need for phase control of the sampling clock (Fig. 8.7.1). The phase tracking of the incoming signal and the data decision are performed entirely in the numerical domain without generating physical sampling-clock phases. An adaptive digital FFE (feed-forward equalizer) compensates for a channel loss up to 15dB at 2.5 GHz, using an on-chip adaptation controller based on CMA (constant-modulus algorithm). The CDR operated with BER less than 1E-12 when the transmitter and receiver clock signals were independently SSC-modulated at a modulation frequency of 30 kHz with a frequency deviation of 0 to −5000ppm.
在消费市场的应用中,对高带宽和稳定的性能有很高的要求。基于adc的收发器可以满足这些需求,并通过工艺实现功率/面积缩放[1,2]。我们开发并测试了65纳米CMOS扩频时钟(SSC)兼容的5gb /s收发器。接收机采用基于adc的前端,无需调整采样时钟与信号之间的相位关系即可对输入信号进行采样,因此无需对采样时钟进行相位控制(图8.7.1)。输入信号的相位跟踪和数据判定完全在数值域中进行,不产生物理采样时钟相位。自适应数字FFE(前馈均衡器)补偿2.5 GHz时高达15dB的信道损耗,使用基于CMA(恒模算法)的片上自适应控制器。当发射器和接收器时钟信号在30 kHz的调制频率下独立ssc调制,频率偏差为0到- 5000ppm时,CDR的误码率小于1E-12。
{"title":"A 5Gb/s transceiver with an ADC-based feedforward CDR and CMA adaptive equalizer in 65nm CMOS","authors":"H. Yamaguchi, H. Tamura, Y. Doi, Y. Tomita, T. Hamada, M. Kibune, Shuhei Ohmoto, Keita Tateishi, Oleksiy Tyshchenko, A. Sheikholeslami, Tomokazu Higuchi, J. Ogawa, Tamio Saito, H. Ishida, K. Gotoh","doi":"10.1109/ISSCC.2010.5434001","DOIUrl":"https://doi.org/10.1109/ISSCC.2010.5434001","url":null,"abstract":"A high bandwidth and a robust performance are demanded in the consumer market applications. An ADC-based transceiver satisfies these demands and enables power/area scaling with process [1,2]. We developed and tested a spread-spectrum-clocking (SSC) compliant 5-Gb/s transceiver in 65-nm CMOS. The receiver uses an ADC-based front-end that samples the incoming signal without adjusting the phase relation between the sampling clock and the signal, hence eliminating the need for phase control of the sampling clock (Fig. 8.7.1). The phase tracking of the incoming signal and the data decision are performed entirely in the numerical domain without generating physical sampling-clock phases. An adaptive digital FFE (feed-forward equalizer) compensates for a channel loss up to 15dB at 2.5 GHz, using an on-chip adaptation controller based on CMA (constant-modulus algorithm). The CDR operated with BER less than 1E-12 when the transmitter and receiver clock signals were independently SSC-modulated at a modulation frequency of 30 kHz with a frequency deviation of 0 to −5000ppm.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88834840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 33
A 2.4GHz/915MHz 51µW wake-up receiver with offset and noise suppression 2.4GHz/915MHz 51µW唤醒接收器,具有偏移和噪声抑制功能
Pub Date : 2010-03-18 DOI: 10.1109/ISSCC.2010.5433958
Xiongchuan Huang, Simonetta Rampu, Xiaoyang Wang, G. Dolmans, H. D. Groot
In order to simultaneously optimize network lifetime and latency in wireless sensor networks (WSN), an always-on wake-up receiver (WuRx) can be used to monitor the radio link continuously. For truly autonomous sensor nodes employing energy scavenging, only 50µW power is available for the WuRx [1]. An envelope detector is a popular choice in WuRx because of its low power consumption. However, the detector is always the bottleneck of the receiver sensitivity since it attenuates low level input signal and adds excessive noise. One way of improving sensitivity is to amplify the signal before the detector, for example at RF [2, 3] or IF [4] stages, to enhance the SNR at the output.
为了同时优化无线传感器网络(WSN)中的网络生存时间和延迟,可以使用始终在线的唤醒接收器(WuRx)对无线链路进行连续监测。对于采用能量清除的真正自主传感器节点,WuRx只有50 μ W的功率可用[1]。包络检测器是WuRx中一个受欢迎的选择,因为它的低功耗。然而,由于检测器对低电平输入信号的衰减和增加过多的噪声,一直是接收机灵敏度的瓶颈。提高灵敏度的一种方法是在检测器之前放大信号,例如在RF[2,3]或IF[4]级,以提高输出端的信噪比。
{"title":"A 2.4GHz/915MHz 51µW wake-up receiver with offset and noise suppression","authors":"Xiongchuan Huang, Simonetta Rampu, Xiaoyang Wang, G. Dolmans, H. D. Groot","doi":"10.1109/ISSCC.2010.5433958","DOIUrl":"https://doi.org/10.1109/ISSCC.2010.5433958","url":null,"abstract":"In order to simultaneously optimize network lifetime and latency in wireless sensor networks (WSN), an always-on wake-up receiver (WuRx) can be used to monitor the radio link continuously. For truly autonomous sensor nodes employing energy scavenging, only 50µW power is available for the WuRx [1]. An envelope detector is a popular choice in WuRx because of its low power consumption. However, the detector is always the bottleneck of the receiver sensitivity since it attenuates low level input signal and adds excessive noise. One way of improving sensitivity is to amplify the signal before the detector, for example at RF [2, 3] or IF [4] stages, to enhance the SNR at the output.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77108882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 173
A 64Mb MRAM with clamped-reference and adequate-reference schemes 具有箝位参考和充分参考方案的64Mb MRAM
Pub Date : 2010-03-18 DOI: 10.1109/ISSCC.2010.5433948
K. Tsuchida, T. Inaba, K. Fujita, Y. Ueda, Takafumi Shimizu, Y. Asao, T. Kajiyama, M. Iwayama, K. Sugiura, S. Ikegawa, T. Kishi, T. Kai, M. Amano, N. Shimomura, H. Yoda, Y. Watanabe
In order to realize a sub-Giga bit scale NVRAM, the novel MRAM based on the spin-transfer-torque (STT) switching has been intensively investigated due to its excellent scalability compared with a conventional magnetic field induce switching MRAM [1]. However, the memory cell size of STT-MRAM reported so far is still over 1µm2, and the memory capacity is limited to 32Mbit even in almost 100mm2 die size [2]. The large cell size is due to the large switching current of MRAM cells. In order to reduce the cell size, we have proposed the perpendicular tunnel magnetoresistance (P-TMR) device, and have confirmed its high potential to achieve lower switching current [3]. In this paper, a 64Mb STTMRAM with the P-TMR device having the circuit techniques to maximize operational margin is described.
为了实现亚千兆比特规模的NVRAM,与传统的磁场感应开关MRAM相比,基于自旋转移-扭矩(STT)开关的新型MRAM具有出色的可扩展性,因此受到了广泛的研究[1]。然而,目前报道的STT-MRAM的存储单元尺寸仍然在1µm2以上,即使在接近100mm2的芯片尺寸下,存储容量也被限制在32Mbit[2]。电池的大尺寸是由于MRAM电池的大开关电流。为了减小电池尺寸,我们提出了垂直隧道磁阻(P-TMR)器件,并证实其具有实现较低开关电流的高电位[3]。在本文中,一个64Mb STTMRAM与P-TMR器件具有电路技术,以最大限度地提高运行余量描述。
{"title":"A 64Mb MRAM with clamped-reference and adequate-reference schemes","authors":"K. Tsuchida, T. Inaba, K. Fujita, Y. Ueda, Takafumi Shimizu, Y. Asao, T. Kajiyama, M. Iwayama, K. Sugiura, S. Ikegawa, T. Kishi, T. Kai, M. Amano, N. Shimomura, H. Yoda, Y. Watanabe","doi":"10.1109/ISSCC.2010.5433948","DOIUrl":"https://doi.org/10.1109/ISSCC.2010.5433948","url":null,"abstract":"In order to realize a sub-Giga bit scale NVRAM, the novel MRAM based on the spin-transfer-torque (STT) switching has been intensively investigated due to its excellent scalability compared with a conventional magnetic field induce switching MRAM [1]. However, the memory cell size of STT-MRAM reported so far is still over 1µm2, and the memory capacity is limited to 32Mbit even in almost 100mm2 die size [2]. The large cell size is due to the large switching current of MRAM cells. In order to reduce the cell size, we have proposed the perpendicular tunnel magnetoresistance (P-TMR) device, and have confirmed its high potential to achieve lower switching current [3]. In this paper, a 64Mb STTMRAM with the P-TMR device having the circuit techniques to maximize operational margin is described.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82443604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 205
A 1.296-to-5.184Gb/s Transceiver with 2.4mW/(Gb/s) Burst-mode CDR using Dual-Edge Injection-Locked Oscillator 基于双边缘注入锁定振荡器的1.296 ~ 5.184Gb/s突发模式CDR收发器
Pub Date : 2010-03-18 DOI: 10.1109/ISSCC.2010.5433821
Kenichi Maruko, Tatsuya Sugioka, H. Hayashi, Zhiwei Zhou, Yasunori Tsukuda, Y. Yagishita, H. Konishi, Toshikyuki Ogata, Hisashi Owa, T. Niki, K. Konda, M. Sato, Hiroshi Shiroshita, Takeshi Ogura, T. Aoki, H. Kihara, Sachiya Tanaka
Since the I/O bandwidth demand for mobile consumer electronics has been growing rapidly, the importance of high-speed low-power I/O links has also been increasing. Among proposed I/O architectures, [1] and [2] are attractive solutions. However, for an application that needs the burst-mode operation, the lock-in time should be within the period of several tens of bits. Therefore, the PLL-based phase rotator with a longer lock-in time, is not suitable for this purpose. In this paper, a 1.296-to-5.184Gb/s transceiver uses an injection-locking-based CDR. The proposed CDR architecture, dual-edge injection-locked oscillator CDR (DILO-CDR), realizes fast lock (≪20 bits), continuous-rate capability (1.296 to 5.184Gb/s) and 2× power efficiency [2.4mW/(Gb/s)] of previous fast-lock continuous-rate CDRs [3, 4].
由于移动消费电子的I/O带宽需求一直在快速增长,高速低功耗I/O链路的重要性也在不断增加。在提出的I/O架构中,[1]和[2]是很有吸引力的解决方案。但是,对于需要突发模式操作的应用程序,锁定时间应该在几十位的周期内。因此,锁相器锁相时间较长,不适合用于此目的。在本文中,1.296到5.184 gb /s的收发器使用基于注入锁定的CDR。所提出的CDR架构——双边注入锁定振荡器CDR (DILO-CDR),实现了快速锁定(≪20 bits)、连续速率能力(1.296至5.184Gb/s)和之前快速锁定连续速率CDR[3,4]的2倍功率效率[2.4mW/(Gb/s)]。
{"title":"A 1.296-to-5.184Gb/s Transceiver with 2.4mW/(Gb/s) Burst-mode CDR using Dual-Edge Injection-Locked Oscillator","authors":"Kenichi Maruko, Tatsuya Sugioka, H. Hayashi, Zhiwei Zhou, Yasunori Tsukuda, Y. Yagishita, H. Konishi, Toshikyuki Ogata, Hisashi Owa, T. Niki, K. Konda, M. Sato, Hiroshi Shiroshita, Takeshi Ogura, T. Aoki, H. Kihara, Sachiya Tanaka","doi":"10.1109/ISSCC.2010.5433821","DOIUrl":"https://doi.org/10.1109/ISSCC.2010.5433821","url":null,"abstract":"Since the I/O bandwidth demand for mobile consumer electronics has been growing rapidly, the importance of high-speed low-power I/O links has also been increasing. Among proposed I/O architectures, [1] and [2] are attractive solutions. However, for an application that needs the burst-mode operation, the lock-in time should be within the period of several tens of bits. Therefore, the PLL-based phase rotator with a longer lock-in time, is not suitable for this purpose. In this paper, a 1.296-to-5.184Gb/s transceiver uses an injection-locking-based CDR. The proposed CDR architecture, dual-edge injection-locked oscillator CDR (DILO-CDR), realizes fast lock (≪20 bits), continuous-rate capability (1.296 to 5.184Gb/s) and 2× power efficiency [2.4mW/(Gb/s)] of previous fast-lock continuous-rate CDRs [3, 4].","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72704425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
A 0.06mm2 8.9b ENOB 40MS/s pipelined SAR ADC in 65nm CMOS 一个0.06mm2 8.9b ENOB 40MS/s的65nm CMOS流水线SAR ADC
Pub Date : 2010-03-18 DOI: 10.1109/ISSCC.2010.5433968
M. Furuta, M. Nozawa, T. Itakura
In 10b SAR ADCs, one of the major design challenges is the large number of capacitors for implementing the capacitor array. A large unit capacitance should be used due to the design constraint of capacitor mismatches and/or layout design rules. As a result, the total capacitance is typically much larger than what is required by kT/C noise. In [1], a 10-bit SAR ADC is presented that achieves an area of 0.075mm2 with a charge redistribution architecture using a small unit capacitance of 10fF, while SNDR is low becasue of using such a small unit capacitance. The charge-sharing SAR proposed in [2] allows a relatively large unit capacitance by reducing the required number of capacitors. However, it requires a large (10pF) S/H capacitor for precise operation. The ADC presented in [3] needs large logic circuits to implement a complex calibration. The converter presented in [4] is a pipelined ADC. The pipelined architecture overcomes the unit capacitance issue of SAR, but the area and the power consumption of the amplifiers are still large.
在10b SAR adc中,主要的设计挑战之一是用于实现电容器阵列的大量电容器。由于电容不匹配的设计约束和/或布局设计规则,应使用较大的单位电容。因此,总电容通常比kT/C噪声所要求的大得多。在[1]中,提出了一个10位SAR ADC,该ADC使用10fF的小单位电容实现了0.075mm2的电荷再分配架构,而由于使用了如此小的单位电容,SNDR很低。[2]中提出的电荷共享SAR通过减少所需的电容器数量,实现了相对较大的单位电容。然而,它需要一个大的(10pF) S/H电容器来精确操作。[3]中提出的ADC需要大型逻辑电路来实现复杂的校准。[4]中给出的转换器是一个流水线ADC。流水线结构克服了SAR的单位电容问题,但放大器的面积和功耗仍然很大。
{"title":"A 0.06mm2 8.9b ENOB 40MS/s pipelined SAR ADC in 65nm CMOS","authors":"M. Furuta, M. Nozawa, T. Itakura","doi":"10.1109/ISSCC.2010.5433968","DOIUrl":"https://doi.org/10.1109/ISSCC.2010.5433968","url":null,"abstract":"In 10b SAR ADCs, one of the major design challenges is the large number of capacitors for implementing the capacitor array. A large unit capacitance should be used due to the design constraint of capacitor mismatches and/or layout design rules. As a result, the total capacitance is typically much larger than what is required by kT/C noise. In [1], a 10-bit SAR ADC is presented that achieves an area of 0.075mm2 with a charge redistribution architecture using a small unit capacitance of 10fF, while SNDR is low becasue of using such a small unit capacitance. The charge-sharing SAR proposed in [2] allows a relatively large unit capacitance by reducing the required number of capacitors. However, it requires a large (10pF) S/H capacitor for precise operation. The ADC presented in [3] needs large logic circuits to implement a complex calibration. The converter presented in [4] is a pipelined ADC. The pipelined architecture overcomes the unit capacitance issue of SAR, but the area and the power consumption of the amplifiers are still large.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73206192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
期刊
2010 IEEE International Solid-State Circuits Conference - (ISSCC)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1