首页 > 最新文献

Microchimica Acta最新文献

英文 中文
Water-stable Eu(III) coordination polymer-based ratiometric fluorescence sensor integrated with smartphone for onsite monitoring of doxycycline hydrochloride in milk
IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-03-12 DOI: 10.1007/s00604-025-07081-5
Cancan Zhang, Xiaochen Deng, Huanhuan Tan, Xiaoxin Zhang, Jiao Wu, Yuyang Zhao, Lingyan Zhao

The widespread misuse of doxycycline hydrochloride (Dox) in livestock farming has necessitated the development of rapid and reliable methods for monitoring its residues in food products. Herein, a water-stable europium coordination polymer-Eu(C2O4)1.5(H2O)ₙ (Eu-CP) with a layered structure was synthesized via a one-step hydrothermal approach. Leveraging its dual-emission properties (455 nm ligand-centered blue emission and 615 nm Eu(III)-based red emission), we engineered a ratiometric fluorescence sensor (I₆₁₅/I₄₅₅) for Dox detection. The sensing mechanism involves synergistic effects of the antenna effect and Dox@Eu-CP complexation, enabling selective Dox recognition with a wide linear range (10–100 μM) and a low detection limit (0.46 μM, S/N = 3). To facilitate onsite analysis, a smartphone-integrated platform was developed, translating the Dox concentration-dependent color transition (blue → red) into quantifiable R/G values via a custom Android application. Practical applicability was demonstrated in milk samples, achieving recoveries of 82.4–119.4% (fluorescence) and 87.8–113.3% (smartphone) with RSD < 5%. This work pioneers the integration of lanthanide coordination polymers with portable digital detection, offering a green and visual strategy for antibiotic residue monitoring in food safety.

Graphical Abstract

{"title":"Water-stable Eu(III) coordination polymer-based ratiometric fluorescence sensor integrated with smartphone for onsite monitoring of doxycycline hydrochloride in milk","authors":"Cancan Zhang,&nbsp;Xiaochen Deng,&nbsp;Huanhuan Tan,&nbsp;Xiaoxin Zhang,&nbsp;Jiao Wu,&nbsp;Yuyang Zhao,&nbsp;Lingyan Zhao","doi":"10.1007/s00604-025-07081-5","DOIUrl":"10.1007/s00604-025-07081-5","url":null,"abstract":"<div><p>The widespread misuse of doxycycline hydrochloride (Dox) in livestock farming has necessitated the development of rapid and reliable methods for monitoring its residues in food products. Herein, a water-stable europium coordination polymer-Eu(C<sub>2</sub>O<sub>4</sub>)1.5(H<sub>2</sub>O)ₙ (Eu-CP) with a layered structure was synthesized via a one-step hydrothermal approach. Leveraging its dual-emission properties (455 nm ligand-centered blue emission and 615 nm Eu(III)-based red emission), we engineered a ratiometric fluorescence sensor (I₆₁₅/I₄₅₅) for Dox detection. The sensing mechanism involves synergistic effects of the antenna effect and Dox@Eu-CP complexation, enabling selective Dox recognition with a wide linear range (10–100 μM) and a low detection limit (0.46 μM, S/N = 3). To facilitate onsite analysis, a smartphone-integrated platform was developed, translating the Dox concentration-dependent color transition (blue → red) into quantifiable R/G values via a custom Android application. Practical applicability was demonstrated in milk samples, achieving recoveries of 82.4–119.4% (fluorescence) and 87.8–113.3% (smartphone) with RSD &lt; 5%. This work pioneers the integration of lanthanide coordination polymers with portable digital detection, offering a green and visual strategy for antibiotic residue monitoring in food safety.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A visual COD sensor based on the magnetically oriented graphite flake-enhanced photoelectrochromic effect
IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-03-12 DOI: 10.1007/s00604-025-07088-y
Bin Feng, Hongze Yang, Yanmei Zhang, Rui Jiang, Panpan Mou, Zhimei Wang, Guosong Chen, Liming Huang

A visual chemical oxygen demand (COD) sensor was developed by electrodepositing Prussian blue (PB) on indium tin oxide (ITO) conductive glass to form an electrochromic layer, followed by the vertical alignment and immobilization of graphite flakes under a magnetic field. A TiO₂/g-C₃N₄ heterojunction photocatalyst was in situ integrated with the graphite flakes to enhance the performance. Under the irradiation of visible light, reductive substances in the water sample are oxidized by photogenerated holes from TiO₂/g-C₃N₄, while photogenerated electrons are conducted through the graphite flakes to the electrochromic layer, reducing PB to Prussian white (PW) and causing a color change. The RGB values of the captured image are used to calculate the total color difference, enabling visual quantification of COD. The overlapping of the photo-oxidation layer (POL) and the electrochromic reduction layer (EDL) shortens electron transport distances. Vertically aligned graphite flakes further reduce electron transport resistance, improving photogenerated electron efficiency and lowering the COD detection limit. Additionally, the alignment increases the sensor’s effective light-capture area and the photocatalyst loading capacity, expanding the measurement range to 3.2–320 mg/L. The sensor can be easily regenerated by simple cleaning and air oxidation within 1 h, allowing repeated use without interference from chloride ions. The relative standard deviation for repeated measurements and the relative error compared to standard methods are both around 10%, demonstrating good practical applicability.

Graphical Abstract

{"title":"A visual COD sensor based on the magnetically oriented graphite flake-enhanced photoelectrochromic effect","authors":"Bin Feng,&nbsp;Hongze Yang,&nbsp;Yanmei Zhang,&nbsp;Rui Jiang,&nbsp;Panpan Mou,&nbsp;Zhimei Wang,&nbsp;Guosong Chen,&nbsp;Liming Huang","doi":"10.1007/s00604-025-07088-y","DOIUrl":"10.1007/s00604-025-07088-y","url":null,"abstract":"<div><p>A visual chemical oxygen demand (COD) sensor was developed by electrodepositing Prussian blue (PB) on indium tin oxide (ITO) conductive glass to form an electrochromic layer, followed by the vertical alignment and immobilization of graphite flakes under a magnetic field. A TiO₂/g-C₃N₄ heterojunction photocatalyst was in situ integrated with the graphite flakes to enhance the performance. Under the irradiation of visible light, reductive substances in the water sample are oxidized by photogenerated holes from TiO₂/g-C₃N₄, while photogenerated electrons are conducted through the graphite flakes to the electrochromic layer, reducing PB to Prussian white (PW) and causing a color change. The RGB values of the captured image are used to calculate the total color difference, enabling visual quantification of COD. The overlapping of the photo-oxidation layer (POL) and the electrochromic reduction layer (EDL) shortens electron transport distances. Vertically aligned graphite flakes further reduce electron transport resistance, improving photogenerated electron efficiency and lowering the COD detection limit. Additionally, the alignment increases the sensor’s effective light-capture area and the photocatalyst loading capacity, expanding the measurement range to 3.2–320 mg/L. The sensor can be easily regenerated by simple cleaning and air oxidation within 1 h, allowing repeated use without interference from chloride ions. The relative standard deviation for repeated measurements and the relative error compared to standard methods are both around 10%, demonstrating good practical applicability.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A ratiometric electrochemical sensor based on Cu@Ni/MWCNTs for detection of chloramphenicol
IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-03-11 DOI: 10.1007/s00604-025-07091-3
Xiaoxue Liu, Dongyang Wang, Rongxuan Xu, Xing Gao, Mingyang Han, Yurong Guo, Lei Yu

A signal tag was successfully designed by means of two-step reduction approach, in which CuNi nanoparticles (CuNi NPs) uniformly distributed on the surface of multiwall carbon nanotubes (MWCNTs). This composites not only inherits excellent conductivity and surface area of MWCNTs, but also endows the material with superior electrocatalytic performance due to the introduction of CuNi NPs. Then, a ratiometric sensing platform coupled with built-in correction ability for convenient direct determination of chloramphenicol (CAP) was exploited, wherein Cu@Ni/MWCNTs were used as signal label and ferrocene (Fc) as internal reference. It is noteworthy that ratiometric measurement was performed by directly incorporating Fc into the electrolyte solution. The profound investigation into the sensing performance of the implemented sensor revealed that Cu@Ni/MWCNTs nanocomposites exhibit satisfactory electrocatalytic activity and stability. Additionally, the integration of the ratiometric strategy markedly enhanced the reliability and repeatability and exhibited decent performance in CAP determination varying from 0.1 to 10 μM. Overall, the corporation of Cu@Ni/MWCNTs with excellent electrocatalytic ability as well as elaborated ratiometric method makes it a valuable tool for future assaying an extensive range of substances.

Graphical Abstract

{"title":"A ratiometric electrochemical sensor based on Cu@Ni/MWCNTs for detection of chloramphenicol","authors":"Xiaoxue Liu,&nbsp;Dongyang Wang,&nbsp;Rongxuan Xu,&nbsp;Xing Gao,&nbsp;Mingyang Han,&nbsp;Yurong Guo,&nbsp;Lei Yu","doi":"10.1007/s00604-025-07091-3","DOIUrl":"10.1007/s00604-025-07091-3","url":null,"abstract":"<div><p>A signal tag was successfully designed by means of two-step reduction approach, in which CuNi nanoparticles (CuNi NPs) uniformly distributed on the surface of multiwall carbon nanotubes (MWCNTs). This composites not only inherits excellent conductivity and surface area of MWCNTs, but also endows the material with superior electrocatalytic performance due to the introduction of CuNi NPs. Then, a ratiometric sensing platform coupled with built-in correction ability for convenient direct determination of chloramphenicol (CAP) was exploited, wherein Cu@Ni/MWCNTs were used as signal label and ferrocene (Fc) as internal reference. It is noteworthy that ratiometric measurement was performed by directly incorporating Fc into the electrolyte solution. The profound investigation into the sensing performance of the implemented sensor revealed that Cu@Ni/MWCNTs nanocomposites exhibit satisfactory electrocatalytic activity and stability. Additionally, the integration of the ratiometric strategy markedly enhanced the reliability and repeatability and exhibited decent performance in CAP determination varying from 0.1 to 10 μM. Overall, the corporation of Cu@Ni/MWCNTs with excellent electrocatalytic ability as well as elaborated ratiometric method makes it a valuable tool for future assaying an extensive range of substances.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction and application of magnetic surface molecularly imprinted solid-phase extraction for the detection of 5-hydroxytryptamine in peripheral blood
IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-03-11 DOI: 10.1007/s00604-025-07058-4
Gege Zhu, Xinyu Li, Qianjie Ma, Zhanying Hong, Dan Zhong, Xiaodong Sun

The 5-Hydroxytryptamine (5-HT) level determination is crucial for predicting, pathogenesis, diagnosis, and pharmacological treatment of schizophrenia. To realize the extraction of trace 5-HT in complex matrix samples, a magnetic molecularly imprinted solid-phase extraction (MMISPE) pretreatment method was developed. In combination with UPLC-MS/MS, the method was possible to achieve the quantification of 1 ng/mL 5-HT in tissue samples. The type of adsorbent, magnetic surface molecularly imprinted polymers (MMIPs) adsorbent dosage, adsorption temperature, and adsorption method were screened to obtain the better extraction of 5-HT. After optimizing the extraction and separation method, we applied the MMISPE method to the detection of 5-HT in peripheral blood of clinical schizophrenia patients. The results showed that the average concentration of 5-HT in the peripheral blood of healthy controls was 74.30 ng/mL, whereas the 5-HT content in the samples from schizophrenic patients was 1.17 ng/mL.

Graphical Abstract

{"title":"Construction and application of magnetic surface molecularly imprinted solid-phase extraction for the detection of 5-hydroxytryptamine in peripheral blood","authors":"Gege Zhu,&nbsp;Xinyu Li,&nbsp;Qianjie Ma,&nbsp;Zhanying Hong,&nbsp;Dan Zhong,&nbsp;Xiaodong Sun","doi":"10.1007/s00604-025-07058-4","DOIUrl":"10.1007/s00604-025-07058-4","url":null,"abstract":"<div><p>The 5-Hydroxytryptamine (5-HT) level determination is crucial for predicting, pathogenesis, diagnosis, and pharmacological treatment of schizophrenia. To realize the extraction of trace 5-HT in complex matrix samples, a magnetic molecularly imprinted solid-phase extraction (MMISPE) pretreatment method was developed. In combination with UPLC-MS/MS, the method was possible to achieve the quantification of 1 ng/mL 5-HT in tissue samples. The type of adsorbent, magnetic surface molecularly imprinted polymers (MMIPs) adsorbent dosage, adsorption temperature, and adsorption method were screened to obtain the better extraction of 5-HT. After optimizing the extraction and separation method, we applied the MMISPE method to the detection of 5-HT in peripheral blood of clinical schizophrenia patients. The results showed that the average concentration of 5-HT in the peripheral blood of healthy controls was 74.30 ng/mL, whereas the 5-HT content in the samples from schizophrenic patients was 1.17 ng/mL.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143583596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfonated reduced graphene oxide-doped polypyrrole film prepared by in situ electropolymerization and coating in fabrication of ammonia gas sensor for exhaled breath analysis of patients with kidney failure
IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-03-11 DOI: 10.1007/s00604-025-07075-3
Fatemeh Ferdosi, Mahsa Amiri, Naader Alizadeh

Detection of the level of ammonia gas in exhaled breath provides non-invasive and fast diagnosis of kidney failure. Here, we fabricated room temperature and sensitive chemiresistive ammonia gas sensor by in situ electropolymerization and deposition of polypyrrole/sulfonated graphene oxide (PPy/SRGO) on/between gold interdigitated electrodes (Au-IDEs). The prepared sensors were characterized by using field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FT-IR). The fabricated ammonia gas sensor was tested at different operating temperatures (26–50°C) and we selected room temperature for simplifying operation (26°C). At this temperature, the sensor showed two linear ranges of 5–40 ppb (R2 = 0.99) and 40–5000 ppb (R2 = 0.98) with the detection limit of 2.7 ppb. The fabricated gas sensor showed good selectivity toward ammonia in comparison with different interfering gases like acetone, dibutylamine, ethanol, methanol, and humid air (RH = 86%). According to the exhaled breath analysis, the fabricated sensor can determine ammonia level in the patient with kidney failure compared with the healthy persons. The results are with a good linear correlation to the clinical blood test. So this study presents the facile, rapid, and sensitive measurement of ammonia gas in human exhaled breath as a non-invasive diagnosis of kidney disease.

Graphical Abstract

{"title":"Sulfonated reduced graphene oxide-doped polypyrrole film prepared by in situ electropolymerization and coating in fabrication of ammonia gas sensor for exhaled breath analysis of patients with kidney failure","authors":"Fatemeh Ferdosi,&nbsp;Mahsa Amiri,&nbsp;Naader Alizadeh","doi":"10.1007/s00604-025-07075-3","DOIUrl":"10.1007/s00604-025-07075-3","url":null,"abstract":"<div><p>Detection of the level of ammonia gas in exhaled breath provides non-invasive and fast diagnosis of kidney failure. Here, we fabricated room temperature and sensitive chemiresistive ammonia gas sensor by in situ electropolymerization and deposition of polypyrrole/sulfonated graphene oxide (PPy/SRGO) on/between gold interdigitated electrodes (Au-IDEs). The prepared sensors were characterized by using field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FT-IR). The fabricated ammonia gas sensor was tested at different operating temperatures (26–50°C) and we selected room temperature for simplifying operation (26°C). At this temperature, the sensor showed two linear ranges of 5–40 ppb (R<sup>2</sup> = 0.99) and 40–5000 ppb (R<sup>2</sup> = 0.98) with the detection limit of 2.7 ppb. The fabricated gas sensor showed good selectivity toward ammonia in comparison with different interfering gases like acetone, dibutylamine, ethanol, methanol, and humid air (RH = 86%). According to the exhaled breath analysis, the fabricated sensor can determine ammonia level in the patient with kidney failure compared with the healthy persons. The results are with a good linear correlation to the clinical blood test. So this study presents the facile, rapid, and sensitive measurement of ammonia gas in human exhaled breath as a non-invasive diagnosis of kidney disease.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MoS₂-DNA tetrahedral bioconjugate for high-performance DNA biosensors: application in viral infection diagnostics
IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-03-11 DOI: 10.1007/s00604-025-07084-2
Estefanía Enebral-Romero, Emiliano Martínez-Periñán, David López-Diego, Mónica Luna, Marina Garrido, Cristina Navío, Emilio M. Pérez, Encarnación Lorenzo, Tania García-Mendiola

An electrochemical DNA biosensor is presented for early viral infection detection, integrating molybdenum disulphide (MoS₂), tetrahedral DNA nanostructures (TDNs), and thionine-modified carbon nanodots (CNDsTy). The innovation of this work lies in the first-time integration of these nanomaterials for the preparation of a bioconjugate, whose synergy enables the biosensor’s functionality. MoS₂ anchors the TDNs, which carry the capture probe for virus identification via genetic code recognition. CNDsTy allow the electrochemical detection based on their different affinity for single-stranded (ssDNA) and double-stranded DNA (dsDNA), enabling hybridization event identification. The biosensor achieves high sensitivity (detection limit of 5.00 fM) and can distinguish viral loads, validated with the SARS-CoV-2 ORF1ab sequence in human nasopharyngeal samples.

Graphical Abstract

{"title":"MoS₂-DNA tetrahedral bioconjugate for high-performance DNA biosensors: application in viral infection diagnostics","authors":"Estefanía Enebral-Romero,&nbsp;Emiliano Martínez-Periñán,&nbsp;David López-Diego,&nbsp;Mónica Luna,&nbsp;Marina Garrido,&nbsp;Cristina Navío,&nbsp;Emilio M. Pérez,&nbsp;Encarnación Lorenzo,&nbsp;Tania García-Mendiola","doi":"10.1007/s00604-025-07084-2","DOIUrl":"10.1007/s00604-025-07084-2","url":null,"abstract":"<div><p> An electrochemical DNA biosensor is presented for early viral infection detection, integrating molybdenum disulphide (MoS₂), tetrahedral DNA nanostructures (TDNs), and thionine-modified carbon nanodots (CNDsTy). The innovation of this work lies in the first-time integration of these nanomaterials for the preparation of a bioconjugate, whose synergy enables the biosensor’s functionality. MoS₂ anchors the TDNs, which carry the capture probe for virus identification via genetic code recognition. CNDsTy allow the electrochemical detection based on their different affinity for single-stranded (ssDNA) and double-stranded DNA (dsDNA), enabling hybridization event identification. The biosensor achieves high sensitivity (detection limit of 5.00 fM) and can distinguish viral loads, validated with the SARS-CoV-2 ORF1ab sequence in human nasopharyngeal samples.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00604-025-07084-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering fluorescent carbon dot sensor with rare earth europium for the detection of uranium (VI) ion in vivo
IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-03-10 DOI: 10.1007/s00604-025-07078-0
Xiayu Zhou, Yue Wang, Jiayi Song, Lihao Xiong, Xin Zhao, Sihan Chen, Weichao Zhao, Le Li, Deshuai Zhen

Three types of carbon dots were synthesized using the same precursor (folic acid and europium nitrate) via different preparation methods (doping and direct coordination). A comprehensive comparison and analysis of the morphology, surface groups, and optical properties of the prepared carbon dots (CD), europium-doped carbon dots (CD-Eu), and europium-functionalized carbon dots (CD@Eu) were conducted. Moreover, due to the higher quantum yield, excellent stability, and outstanding selectivity for UO22+ exhibited by CD-Eu, we selected CD-Eu as the probe for subsequent applications. CD-Eu showed a sensitive response to UO22+ within the concentration range 25 ~ 200 nM, with a detection limit of 0.84 nM (0.42 μg·L−1). Additionally, CD-Eu demonstrated excellent accuracy and recovery in spiked detection of real water samples. Furthermore, we discovered that this probe could detect UO22+ both in vitro and in vivo. This strategy provides a promising fluorescent sensor for the detection of UO22+ in water and biological samples, holding significant implications for addressing UO22+ contamination issues.

Graphical abstract

{"title":"Engineering fluorescent carbon dot sensor with rare earth europium for the detection of uranium (VI) ion in vivo","authors":"Xiayu Zhou,&nbsp;Yue Wang,&nbsp;Jiayi Song,&nbsp;Lihao Xiong,&nbsp;Xin Zhao,&nbsp;Sihan Chen,&nbsp;Weichao Zhao,&nbsp;Le Li,&nbsp;Deshuai Zhen","doi":"10.1007/s00604-025-07078-0","DOIUrl":"10.1007/s00604-025-07078-0","url":null,"abstract":"<div><p>Three types of carbon dots were synthesized using the same precursor (folic acid and europium nitrate) via different preparation methods (doping and direct coordination). A comprehensive comparison and analysis of the morphology, surface groups, and optical properties of the prepared carbon dots (CD), europium-doped carbon dots (CD-Eu), and europium-functionalized carbon dots (CD@Eu) were conducted. Moreover, due to the higher quantum yield, excellent stability, and outstanding selectivity for UO<sub>2</sub><sup>2+</sup> exhibited by CD-Eu, we selected CD-Eu as the probe for subsequent applications. CD-Eu showed a sensitive response to UO<sub>2</sub><sup>2+</sup> within the concentration range 25 ~ 200 nM, with a detection limit of 0.84 nM (0.42 μg·L<sup>−1</sup>). Additionally, CD-Eu demonstrated excellent accuracy and recovery in spiked detection of real water samples. Furthermore, we discovered that this probe could detect UO<sub>2</sub><sup>2+</sup> both <i>in</i> <i>vitro</i> and <i>in</i> <i>viv</i>o. This strategy provides a promising fluorescent sensor for the detection of UO<sub>2</sub><sup>2+</sup> in water and biological samples, holding significant implications for addressing UO<sub>2</sub><sup>2+</sup> contamination issues.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143583340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A label-free colorimetric assay for sensitive screening of T4 polynucleotide kinase activity and inhibition based on enzyme-aided cyclic strand displacement amplification and PNA-gold nanoparticle platform
IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-03-10 DOI: 10.1007/s00604-025-07086-0
Xiaojun Yuan, Long Chen, Yang Zhao, Li Cheng, Chao Zhao

The phosphorylation of nucleic acids mediated by 5′-polynucleotide kinase (PNK) exerts a crucial regulatory function in a wide range of significant cellular activities. Nevertheless, the current approaches for detecting PNK require expensive labeled probes and complex instrumentation, making it impossible to achieve real-time, on-site, and rapid analysis. Here, we take T4 PNK as a model and establish a novel colorimetric strategy for the detection of PNK activity and its inhibition by means of a coupled enzyme-assisted cyclic strand displacement amplification (SDA) and peptide nucleic acid (PNA)-gold nanoparticle (AuNP) based platform. The inspiration for this innovative strategy comes from the high stability, strong binding ability, and potent regulatory effect of PNA probes on AuNPs. Under the catalysis of PNK, the 5′-hydroxyl end of the hairpin-shaped DNA (hpDNA) is initially phosphorylated and subsequently digested by λ exonuclease (λ exo). This results in the release of a single-stranded DNA, which serves as a triggering factor to initiate the strand displacement reaction (SDR). The replaced PNA probe adheres to the surface of AuNPs, inducing their aggregation and causing a remarkable color change. Meanwhile, the double-stranded SDR product releases the SDR trigger with the aid of a nicking enzyme, triggering the next round of the SDR cycle and achieving highly efficient and controllable signal amplification. This assay is simple to operate and does not require bulky and expensive instruments or complex labeled probes. Compared with existing colorimetric methods, the detection sensitivity has been greatly improved, reaching 3.52 × 10−4 U/mL. Additionally, the method has demonstrated satisfactory results when applied to intricate biological matrices and the screening of T4 PNK inhibitors. Therefore, the proposed strategy holds significant potential for real-time analysis, high-throughput detection, and PNK-related drug screening.

Graphical abstract

{"title":"A label-free colorimetric assay for sensitive screening of T4 polynucleotide kinase activity and inhibition based on enzyme-aided cyclic strand displacement amplification and PNA-gold nanoparticle platform","authors":"Xiaojun Yuan,&nbsp;Long Chen,&nbsp;Yang Zhao,&nbsp;Li Cheng,&nbsp;Chao Zhao","doi":"10.1007/s00604-025-07086-0","DOIUrl":"10.1007/s00604-025-07086-0","url":null,"abstract":"<div><p>The phosphorylation of nucleic acids mediated by 5′-polynucleotide kinase (PNK) exerts a crucial regulatory function in a wide range of significant cellular activities. Nevertheless, the current approaches for detecting PNK require expensive labeled probes and complex instrumentation, making it impossible to achieve real-time, on-site, and rapid analysis. Here, we take T4 PNK as a model and establish a novel colorimetric strategy for the detection of PNK activity and its inhibition by means of a coupled enzyme-assisted cyclic strand displacement amplification (SDA) and peptide nucleic acid (PNA)-gold nanoparticle (AuNP) based platform. The inspiration for this innovative strategy comes from the high stability, strong binding ability, and potent regulatory effect of PNA probes on AuNPs. Under the catalysis of PNK, the 5′-hydroxyl end of the hairpin-shaped DNA (hpDNA) is initially phosphorylated and subsequently digested by λ exonuclease (λ exo). This results in the release of a single-stranded DNA, which serves as a triggering factor to initiate the strand displacement reaction (SDR). The replaced PNA probe adheres to the surface of AuNPs, inducing their aggregation and causing a remarkable color change. Meanwhile, the double-stranded SDR product releases the SDR trigger with the aid of a nicking enzyme, triggering the next round of the SDR cycle and achieving highly efficient and controllable signal amplification. This assay is simple to operate and does not require bulky and expensive instruments or complex labeled probes. Compared with existing colorimetric methods, the detection sensitivity has been greatly improved, reaching 3.52 × 10<sup>−4</sup> U/mL. Additionally, the method has demonstrated satisfactory results when applied to intricate biological matrices and the screening of T4 PNK inhibitors. Therefore, the proposed strategy holds significant potential for real-time analysis, high-throughput detection, and PNK-related drug screening.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00604-025-07086-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143581259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of trypsin-protected CsPbCl3 fluorescent nanocrystals for hydroxyl radical sensing
IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-03-10 DOI: 10.1007/s00604-025-07070-8
Suresh Kumar Kailasa, Kartik Pankajbhai Makwana, Madhura Pradeep Deshpande, Yoojin Choi, Ruth Stephanie, Chan Yeong Park, Tae Jung Park

Water-dispersible perovskite nanocrystals (PNCs) show promising applications in recognizing ionic and molecular species because of their excellent optical properties. However, lead halide PNCs have some limitations when they are used as probes for molecular species sensing in aqueous media. Here, we introduce trypsin (Try) as a bioligand for the synthesis of cesium lead chloride (CsPbCl3) PNCs with high water stability. The as-fabricated Try-CsPbCl3 PNCs show λEm/Ex at 433/370 nm with a quantum yield of 17.26%. The fluorescence emission spectral characteristics of Try-CsPbCl3 PNCs demonstrated that water-stable Try-CsPbCl3 PNCs acted as a promising fluorescent probe for the detection of hydroxyl radical (OH) via turn-off mechanism. The Try-CsPbCl3 PNCs-based turn-off fluorescence approach displayed good selectivity for hydroxyl radical in water, showing a wider linear range (0.01–5 µM) with a remarkable detection limit of 3.10 nM for hydroxyl radical. The Try-CsPbCl3 PNCs were demonstrated to be a facile probe for sensing OH in water samples, which signifies that Try-CsPbCl3 PNCs exhibited broad applications for hydroxyl radical sensing in real samples.

Graphical Abstract

{"title":"Synthesis of trypsin-protected CsPbCl3 fluorescent nanocrystals for hydroxyl radical sensing","authors":"Suresh Kumar Kailasa,&nbsp;Kartik Pankajbhai Makwana,&nbsp;Madhura Pradeep Deshpande,&nbsp;Yoojin Choi,&nbsp;Ruth Stephanie,&nbsp;Chan Yeong Park,&nbsp;Tae Jung Park","doi":"10.1007/s00604-025-07070-8","DOIUrl":"10.1007/s00604-025-07070-8","url":null,"abstract":"<div><p>Water-dispersible perovskite nanocrystals (PNCs) show promising applications in recognizing ionic and molecular species because of their excellent optical properties. However, lead halide PNCs have some limitations when they are used as probes for molecular species sensing in aqueous media. Here, we introduce trypsin (Try) as a bioligand for the synthesis of cesium lead chloride (CsPbCl<sub>3</sub>) PNCs with high water stability. The as-fabricated Try-CsPbCl<sub>3</sub> PNCs show λ<sub>Em/Ex</sub> at 433/370 nm with a quantum yield of 17.26%. The fluorescence emission spectral characteristics of Try-CsPbCl<sub>3</sub> PNCs demonstrated that water-stable Try-CsPbCl<sub>3</sub> PNCs acted as a promising fluorescent probe for the detection of hydroxyl radical (<sup>•</sup>OH) via turn-off mechanism. The Try-CsPbCl<sub>3</sub> PNCs-based turn-off fluorescence approach displayed good selectivity for hydroxyl radical in water, showing a wider linear range (0.01–5 µM) with a remarkable detection limit of 3.10 nM for hydroxyl radical. The Try-CsPbCl<sub>3</sub> PNCs were demonstrated to be a facile probe for sensing <sup>•</sup>OH in water samples, which signifies that Try-CsPbCl<sub>3</sub> PNCs exhibited broad applications for hydroxyl radical sensing in real samples.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00604-025-07070-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143581260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioaccessibility and cellular transport study of silver and titanium dioxide nanoparticles from exposed seaweed and mussels using Caco-2 cells
IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-03-08 DOI: 10.1007/s00604-025-07066-4
Juan José López-Mayán, Raquel Domínguez-González, María Carmen Barciela-Alonso, Elena Peña-Vázquez, Antonio Moreda-Piñeiro, Pablo Taboada-Antelo, Pilar Bermejo-Barrera

Bioavailability studies on pollution pre-concentrator organisms such as algae and mussels are necessary to ensure food safety, particularly in the case of nanomaterials whose industrial applications have increased in recent years. Thus, the bioaccessibility and the bioavailability of total Ag and Ti and AgNPs and TiO2NPs from raw and cooked seaweed (Palmaria palmata and Ulva sp.) and cooked mussels (Mytilus edulis) exposed to 1.0 mg L−1 of 15 nm PVP-AgNPs, 1.0 mg L−1 of 25 nm citrate-TiO2NPs, or 1.0 mg L−1 5 nm citrate-TiO2NPs, for 28 days, were evaluated. Samples were subjected to an in vitro process simulating human gastrointestinal digestion while cell transport from the intestinal lumen to the bloodstream was mimicked using Caco-2 cell cultures. Total Ag and Ti in the digest samples, the bioaccessible fractions, the apical, and basolateral fractions were determined by ICP-MS, while AgNPs and TiO2NPs were determined by single-particle-ICP-MS (SP-ICP-MS). Finally, the presence of nanoparticles in the Caco-2 cells was verified by single-cell-ICP-MS (SC-ICP-MS). AgNP bioaccessibility ratios were between 22% and 97% for seaweed and 18% for mussels, while for TiO2NPs were between 17% and 81% (seaweed) and 76% and 100% (mussels). Nanoparticle cellular transports were in all cases less than 1%. However, the mass percentages of Ag as NPs and Ti as NPs in the Caco-2 cells for raw and cooked seaweed were 9% and 7% and 20% and 6%, respectively. These results confirm a small transport of the nanoparticles through the Caco-2 cells under the proposed experimental conditions.

Graphical abstract

{"title":"Bioaccessibility and cellular transport study of silver and titanium dioxide nanoparticles from exposed seaweed and mussels using Caco-2 cells","authors":"Juan José López-Mayán,&nbsp;Raquel Domínguez-González,&nbsp;María Carmen Barciela-Alonso,&nbsp;Elena Peña-Vázquez,&nbsp;Antonio Moreda-Piñeiro,&nbsp;Pablo Taboada-Antelo,&nbsp;Pilar Bermejo-Barrera","doi":"10.1007/s00604-025-07066-4","DOIUrl":"10.1007/s00604-025-07066-4","url":null,"abstract":"<div><p>Bioavailability studies on pollution pre-concentrator organisms such as algae and mussels are necessary to ensure food safety, particularly in the case of nanomaterials whose industrial applications have increased in recent years. Thus, the bioaccessibility and the bioavailability of total Ag and Ti and AgNPs and TiO<sub>2</sub>NPs from raw and cooked seaweed (<i>Palmaria palmata</i> and <i>Ulva</i> sp.) and cooked mussels (<i>Mytilus edulis</i>) exposed to 1.0 mg L<sup>−1</sup> of 15 nm PVP-AgNPs, 1.0 mg L<sup>−1</sup> of 25 nm citrate-TiO<sub>2</sub>NPs, or 1.0 mg L<sup>−1</sup> 5 nm citrate-TiO<sub>2</sub>NPs, for 28 days, were evaluated. Samples were subjected to an in vitro process simulating human gastrointestinal digestion while cell transport from the intestinal lumen to the bloodstream was mimicked using Caco-2 cell cultures. Total Ag and Ti in the digest samples, the bioaccessible fractions, the apical, and basolateral fractions were determined by ICP-MS, while AgNPs and TiO<sub>2</sub>NPs were determined by single-particle-ICP-MS (SP-ICP-MS). Finally, the presence of nanoparticles in the Caco-2 cells was verified by single-cell-ICP-MS (SC-ICP-MS). AgNP bioaccessibility ratios were between 22% and 97% for seaweed and 18% for mussels, while for TiO<sub>2</sub>NPs were between 17% and 81% (seaweed) and 76% and 100% (mussels). Nanoparticle cellular transports were in all cases less than 1%. However, the mass percentages of Ag as NPs and Ti as NPs in the Caco-2 cells for raw and cooked seaweed were 9% and 7% and 20% and 6%, respectively. These results confirm a small transport of the nanoparticles through the Caco-2 cells under the proposed experimental conditions.\u0000</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00604-025-07066-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143581152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microchimica Acta
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1