首页 > 最新文献

Bioprocess and Biosystems Engineering最新文献

英文 中文
Adsorption of extracellular lipase in a packed-bed reactor: an alternative immobilization approach. 细胞外脂肪酶在填料床反应器中的吸附:另一种固定化方法。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-05 DOI: 10.1007/s00449-024-03066-5
Amanda Noli Freitas, Daniela Remonatto, Rodney Helder Miotti Junior, João Francisco Cabral do Nascimento, Adriana Candido da Silva Moura, Valéria de Carvalho Santos Ebinuma, Ariela Veloso de Paula

In light of the growing demand for novel biocatalysts and enzyme production methods, this study aimed to evaluate the potential of Aspergillus tubingensis for producing lipase under submerged culture investigating the influence of culture time and inducer treatment. Moreover, this study also investigated conditions for the immobilization of A. tubingensis lipase by physical adsorption on styrene-divinylbenzene beads (Diaion HP-20), for these conditions to be applied to an alternative immobilization system with a packed-bed reactor. Furthermore, A. tubingensis lipase and its immobilized derivative were characterized in terms of their optimal ranges of pH and temperature. A. tubingensis was shown to be a good producer of lipase, obviating the need for inducer addition. The enzyme extract had a hydrolytic activity of 23 U mL-1 and achieved better performance in the pH range of 7.5 to 9.0 and in the temperature range of 20 to 50 °C. The proposed immobilization system was effective, yielding an immobilized derivative with enhanced hydrolytic activity (35 U g-1), optimum activity over a broader pH range (5.6 to 8.4), and increased tolerance to high temperatures (40 to 60 ℃). This research represents a first step toward lipase production from A. tubingensis under a submerged culture and the development of an alternative immobilization system with a packed-bed reactor. The proposed system holds promise for saving time and resources in future industrial applications.

鉴于对新型生物催化剂和酶生产方法的需求日益增长,本研究旨在评估管曲霉在浸没培养条件下生产脂肪酶的潜力,调查培养时间和诱导剂处理的影响。此外,本研究还调查了管曲霉脂肪酶在苯乙烯-二乙烯基苯珠(Diaion HP-20)上的物理吸附固定条件,以便将这些条件应用于填料床反应器的替代固定系统。此外,还对管氏脂肪酶及其固定化衍生物的最佳 pH 值和温度范围进行了表征。结果表明,管状芽孢杆菌是一种很好的脂肪酶生产者,无需添加诱导剂。该酶提取物的水解活性为 23 U mL-1,在 pH 值为 7.5 至 9.0 和温度为 20 至 50 ℃ 的范围内性能更佳。拟议的固定化系统是有效的,产生的固定化衍生物具有更高的水解活性(35 U g-1),在更宽的 pH 值范围(5.6 至 8.4)内具有最佳活性,对高温(40 至 60 ℃)的耐受性更强。这项研究标志着管氏酵母在浸没培养条件下生产脂肪酶迈出了第一步,并开发出了一种使用填料床反应器的替代固定化系统。拟议的系统有望在未来的工业应用中节省时间和资源。
{"title":"Adsorption of extracellular lipase in a packed-bed reactor: an alternative immobilization approach.","authors":"Amanda Noli Freitas, Daniela Remonatto, Rodney Helder Miotti Junior, João Francisco Cabral do Nascimento, Adriana Candido da Silva Moura, Valéria de Carvalho Santos Ebinuma, Ariela Veloso de Paula","doi":"10.1007/s00449-024-03066-5","DOIUrl":"10.1007/s00449-024-03066-5","url":null,"abstract":"<p><p>In light of the growing demand for novel biocatalysts and enzyme production methods, this study aimed to evaluate the potential of Aspergillus tubingensis for producing lipase under submerged culture investigating the influence of culture time and inducer treatment. Moreover, this study also investigated conditions for the immobilization of A. tubingensis lipase by physical adsorption on styrene-divinylbenzene beads (Diaion HP-20), for these conditions to be applied to an alternative immobilization system with a packed-bed reactor. Furthermore, A. tubingensis lipase and its immobilized derivative were characterized in terms of their optimal ranges of pH and temperature. A. tubingensis was shown to be a good producer of lipase, obviating the need for inducer addition. The enzyme extract had a hydrolytic activity of 23 U mL<sup>-1</sup> and achieved better performance in the pH range of 7.5 to 9.0 and in the temperature range of 20 to 50 °C. The proposed immobilization system was effective, yielding an immobilized derivative with enhanced hydrolytic activity (35 U g<sup>-1</sup>), optimum activity over a broader pH range (5.6 to 8.4), and increased tolerance to high temperatures (40 to 60 ℃). This research represents a first step toward lipase production from A. tubingensis under a submerged culture and the development of an alternative immobilization system with a packed-bed reactor. The proposed system holds promise for saving time and resources in future industrial applications.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1735-1749"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biotransformation of ginsenoside compound K using β-glucosidase in deep eutectic solvents. 利用β-葡萄糖苷酶在深共晶溶剂中对人参皂苷化合物K进行生物转化。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-06-27 DOI: 10.1007/s00449-024-03056-7
Yinan Hong, Yue Shi, Yurou Fan, Hong Pan, Xiangyu Yao, Yu Xie, Xiaojun Wang

Ginsenoside compound K (CK) holds significant potential for application in the pharmaceutical industry, which exhibits numerous pharmacological activity such as cardioprotective and antidiabetic. However, the difficult separation technique and limited yield of CK hinder its widespread use. The study investigated the process of converting ginsenoside CK using β-glucosidase. It aimed to determine the specific site where the enzyme binds and the most favorable arrangement of the enzyme. Molecular docking was also employed to determine the interaction between β-glucosidase and ginsenosides, indicating a strong and spontaneous contact force between them. The effectiveness of the conversion process was further improved using a "green" deep eutectic solvent (DES). A univariate experimental design was used to determine the composition of DES and the optimal hydrolysis conditions for β-glucosidase to convert ginsenoside Rb1 into ginsenoside CK. The employment of β-glucosidase enzymatic hydrolysis in the synthesis of rare ginsenoside CK applying the environmentally friendly solvent DES is not only viable and effective but also appropriate for industrial use. The characterization methods confirmed that DES did not disrupt the structure and conformation of β-glucosidase. In ChCl:EG = 2:1 (30%, v/v), pH 5.0 of DES buffer, reaction temperature 50 ℃, enzyme substrate mass ratio 1:1, after 36 h of reaction, the CK yield was 1.24 times that in acetate buffer, which can reach 86.2%. In this study, the process of using β-glucosidase enzymatic hydrolysis and producing rare ginsenoside CK in green solvent DES is feasible, efficient and suitable for industrial production and application.

人参皂苷化合物 K(CK)具有保护心脏和抗糖尿病等多种药理活性,在制药业的应用潜力巨大。然而,人参皂苷化合物 K 的分离技术难度大、产量有限,阻碍了其广泛应用。本研究利用β-葡萄糖苷酶研究了人参皂苷 CK 的转化过程。研究旨在确定酶结合的特定位点以及酶的最有利排列。此外,还采用分子对接法确定了β-葡萄糖苷酶与人参皂苷之间的相互作用,结果表明它们之间存在很强的自发接触力。使用 "绿色 "深共晶溶剂(DES)进一步提高了转化过程的有效性。采用单变量实验设计确定了 DES 的组成以及 β-葡萄糖苷酶将人参皂苷 Rb1 转化为人参皂苷 CK 的最佳水解条件。利用β-葡萄糖苷酶酶解法合成稀有人参皂苷 CK,采用环境友好型溶剂 DES,不仅可行、有效,而且适合工业化应用。表征方法证实,DES 不会破坏 β-葡萄糖苷酶的结构和构象。在 ChCl:EG = 2:1 (30%, v/v)、pH 值为 5.0 的 DES 缓冲液中,反应温度为 50 ℃,酶底物质量比为 1:1,反应 36 h 后,CK 收率是醋酸盐缓冲液的 1.24 倍,可达 86.2%。本研究认为,在绿色溶剂DES中利用β-葡萄糖苷酶酶解生产稀有人参皂苷CK的工艺可行、高效,适合工业化生产和应用。
{"title":"Biotransformation of ginsenoside compound K using β-glucosidase in deep eutectic solvents.","authors":"Yinan Hong, Yue Shi, Yurou Fan, Hong Pan, Xiangyu Yao, Yu Xie, Xiaojun Wang","doi":"10.1007/s00449-024-03056-7","DOIUrl":"10.1007/s00449-024-03056-7","url":null,"abstract":"<p><p>Ginsenoside compound K (CK) holds significant potential for application in the pharmaceutical industry, which exhibits numerous pharmacological activity such as cardioprotective and antidiabetic. However, the difficult separation technique and limited yield of CK hinder its widespread use. The study investigated the process of converting ginsenoside CK using β-glucosidase. It aimed to determine the specific site where the enzyme binds and the most favorable arrangement of the enzyme. Molecular docking was also employed to determine the interaction between β-glucosidase and ginsenosides, indicating a strong and spontaneous contact force between them. The effectiveness of the conversion process was further improved using a \"green\" deep eutectic solvent (DES). A univariate experimental design was used to determine the composition of DES and the optimal hydrolysis conditions for β-glucosidase to convert ginsenoside Rb1 into ginsenoside CK. The employment of β-glucosidase enzymatic hydrolysis in the synthesis of rare ginsenoside CK applying the environmentally friendly solvent DES is not only viable and effective but also appropriate for industrial use. The characterization methods confirmed that DES did not disrupt the structure and conformation of β-glucosidase. In ChCl:EG = 2:1 (30%, v/v), pH 5.0 of DES buffer, reaction temperature 50 ℃, enzyme substrate mass ratio 1:1, after 36 h of reaction, the CK yield was 1.24 times that in acetate buffer, which can reach 86.2%. In this study, the process of using β-glucosidase enzymatic hydrolysis and producing rare ginsenoside CK in green solvent DES is feasible, efficient and suitable for industrial production and application.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1647-1657"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein rational design and modification of erythrose reductase for the improvement of erythritol production in Yarrowia lipolytica. 合理设计和改造赤藓酮糖还原酶,提高脂肪分解亚罗酵母的赤藓糖醇产量。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-05 DOI: 10.1007/s00449-024-03057-6
Lianggang Huang, Wenjia Wang, Kai Wang, Yurong Li, Junping Zhou, Aiping Pang, Bo Zhang, Zhiqiang Liu, Yuguo Zheng

Erythritol is a natural non-caloric sweetener, which is produced by fermentation and extensively applied in food, medicine and chemical industries. The final step of the erythritol synthesis pathway is involved in erythritol reductase, whose activity and NADPH-dependent become the limiting node of erythritol production efficiency. Herein, we implemented a strategy combining molecular docking and thermal stability screening to construct an ER mutant library. And we successfully obtained a double mutant ERK26N/V295M (ER*) whose catalytic activity was 1.48 times that of wild-type ER. Through structural analysis and MD analysis, we found that the catalytic pocket and the enzyme stability of ER* were both improved. We overexpressed ER* in the engineered strain ΔKU70 to obtain the strain YLE-1. YLE-1 can produce 39.47 g/L of erythritol within 144 h, representing a 35% increase compared to the unmodified strain, and a 10% increase compared to the strain overexpressing wild-type ER. Considering the essentiality of NADPH supply, we further co-expressed ER* with two genes from the oxidative phase of PPP, ZWF1 and GND1. This resulted in the construction of YLE-3, which exhibited a significant increase in production, producing 47.85 g/L of erythritol within 144 h, representing a 63.90% increase compared to the original chassis strain. The productivity and the yield of the engineered strain YLE-3 were 0.33 g/L/h and 0.48 g/g glycerol, respectively. This work provided an ER mutation with excellent performance, and also proved the importance of cofactors in the process of erythritol synthesis, which will promote the industrial production of erythritol by metabolic engineering of Y. lipolytica.

赤藓糖醇是一种天然无热量甜味剂,由发酵法生产,广泛应用于食品、医药和化工行业。赤藓糖醇合成途径的最后一步涉及赤藓糖醇还原酶,其活性和 NADPH 依赖性成为赤藓糖醇生产效率的限制性节点。在此,我们采用分子对接和热稳定性筛选相结合的策略,构建了ER突变体库。我们成功地获得了双突变体ERK26N/V295M(ER*),其催化活性是野生型ER的1.48倍。通过结构分析和 MD 分析,我们发现 ER* 的催化口袋和酶稳定性都得到了改善。我们在工程菌株ΔKU70中过表达了ER*,得到了菌株YLE-1。YLE-1 在 144 小时内可生产 39.47 克/升赤藓糖醇,与未改造菌株相比提高了 35%,与过表达野生型 ER 的菌株相比提高了 10%。考虑到 NADPH 供应的重要性,我们进一步将 ER* 与 PPP 氧化阶段的两个基因 ZWF1 和 GND1 共同表达。结果构建出了 YLE-3,它的产量有了显著提高,在 144 小时内生产了 47.85 克/升赤藓糖醇,与原始基质菌株相比提高了 63.90%。工程菌株 YLE-3 的生产率和产量分别为 0.33 克/升/小时和 0.48 克/克甘油。这项工作提供了一种性能优异的ER突变,同时也证明了辅助因子在赤藓糖醇合成过程中的重要性,这将促进脂溶性酵母菌代谢工程赤藓糖醇的工业化生产。
{"title":"Protein rational design and modification of erythrose reductase for the improvement of erythritol production in Yarrowia lipolytica.","authors":"Lianggang Huang, Wenjia Wang, Kai Wang, Yurong Li, Junping Zhou, Aiping Pang, Bo Zhang, Zhiqiang Liu, Yuguo Zheng","doi":"10.1007/s00449-024-03057-6","DOIUrl":"10.1007/s00449-024-03057-6","url":null,"abstract":"<p><p>Erythritol is a natural non-caloric sweetener, which is produced by fermentation and extensively applied in food, medicine and chemical industries. The final step of the erythritol synthesis pathway is involved in erythritol reductase, whose activity and NADPH-dependent become the limiting node of erythritol production efficiency. Herein, we implemented a strategy combining molecular docking and thermal stability screening to construct an ER mutant library. And we successfully obtained a double mutant ER<sup>K26N/V295M</sup> (ER*) whose catalytic activity was 1.48 times that of wild-type ER. Through structural analysis and MD analysis, we found that the catalytic pocket and the enzyme stability of ER* were both improved. We overexpressed ER* in the engineered strain ΔKU70 to obtain the strain YLE-1. YLE-1 can produce 39.47 g/L of erythritol within 144 h, representing a 35% increase compared to the unmodified strain, and a 10% increase compared to the strain overexpressing wild-type ER. Considering the essentiality of NADPH supply, we further co-expressed ER* with two genes from the oxidative phase of PPP, ZWF1 and GND1. This resulted in the construction of YLE-3, which exhibited a significant increase in production, producing 47.85 g/L of erythritol within 144 h, representing a 63.90% increase compared to the original chassis strain. The productivity and the yield of the engineered strain YLE-3 were 0.33 g/L/h and 0.48 g/g glycerol, respectively. This work provided an ER mutation with excellent performance, and also proved the importance of cofactors in the process of erythritol synthesis, which will promote the industrial production of erythritol by metabolic engineering of Y. lipolytica.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1659-1668"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellobionate production from sodium hydroxide pretreated wheat straw by engineered Neurospora crassa HL10. HL10 工程神经孢子菌利用氢氧化钠预处理过的小麦秸秆生产纤维二酸酯。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-12 DOI: 10.1007/s00449-024-03061-w
Jiajie Wang, Takao Kasuga, Zhiliang Fan

This study investigated cellobionate production from a lignocellulosic substrate using Neurospora crassa HL10. Utilizing NaOH-pretreated wheat straw as the substrate obviated the need for an exogenous redox mediator addition, as lignin contained in the pretreated wheat served as a natural mediator. The low laccase production by N. crassa HL10 on pretreated wheat straw caused slow cellobionate production, and exogenous laccase addition accelerated the process. Cycloheximide induced substantial laccase production in N. crassa HL10, enabling the strain to yield approximately 57 mM cellobionate from pretreated wheat straw (equivalent to 20 g/L cellulose), shortening the conversion time from 8 to 6 days. About 92% of the cellulose contained in the pretreated wheat straw is converted to cellobionate. In contrast to existing methods requiring pure cellobiose or cellulase enzymes, this process efficiently converts a low-cost feedstock into cellobionate at a high yield without enzyme or redox mediator supplementation.

本研究利用十字花科黑孢子属(Neurospora crassa HL10)研究了木质纤维素基质生产纤维硫酸盐的情况。使用 NaOH 预处理过的小麦秸秆作为底物,无需添加外源氧化还原介质,因为预处理过的小麦中所含的木质素可作为天然介质。在预处理过的小麦秸秆上,N. crassa HL10 的漆酶产量较低,导致胞二酸产生缓慢,而外源漆酶的添加加速了这一过程。环己亚胺诱导 N. crassa HL10 产生大量漆酶,使该菌株能从预处理过的小麦秸秆(相当于 20 克/升纤维素)中产生约 57 毫摩尔的纤维二酸酯,将转化时间从 8 天缩短到 6 天。预处理过的小麦秸秆中所含的纤维素约有 92% 转化为纤维二酸。与需要纯纤维素生物糖或纤维素酶的现有方法相比,该工艺无需补充酶或氧化还原介质,即可高效地将低成本原料转化为高产率的纤维酮酸盐。
{"title":"Cellobionate production from sodium hydroxide pretreated wheat straw by engineered Neurospora crassa HL10.","authors":"Jiajie Wang, Takao Kasuga, Zhiliang Fan","doi":"10.1007/s00449-024-03061-w","DOIUrl":"10.1007/s00449-024-03061-w","url":null,"abstract":"<p><p>This study investigated cellobionate production from a lignocellulosic substrate using Neurospora crassa HL10. Utilizing NaOH-pretreated wheat straw as the substrate obviated the need for an exogenous redox mediator addition, as lignin contained in the pretreated wheat served as a natural mediator. The low laccase production by N. crassa HL10 on pretreated wheat straw caused slow cellobionate production, and exogenous laccase addition accelerated the process. Cycloheximide induced substantial laccase production in N. crassa HL10, enabling the strain to yield approximately 57 mM cellobionate from pretreated wheat straw (equivalent to 20 g/L cellulose), shortening the conversion time from 8 to 6 days. About 92% of the cellulose contained in the pretreated wheat straw is converted to cellobionate. In contrast to existing methods requiring pure cellobiose or cellulase enzymes, this process efficiently converts a low-cost feedstock into cellobionate at a high yield without enzyme or redox mediator supplementation.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1683-1690"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel differential scanning calorimetry (DSC) application to select polyhydroxyalkanoate (PHA) producers correlating 3-hydroxyhexanoate (3-HHx) monomer with melting enthalpy. 应用新型差示扫描量热法 (DSC) 挑选聚羟基烷酸酯 (PHA) 生产商,将 3-hydroxyhexanoate (3-HHx) 单体与熔化焓相关联。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-06 DOI: 10.1007/s00449-024-03054-9
Hee Ju Jung, Byungchan Kim, Tae-Rim Choi, Suk Jin Oh, Suwon Kim, Yeda Lee, Yuni Shin, Suhye Choi, Jinok Oh, So Yeon Park, Young Sik Lee, Young Heon Choi, Yung-Hun Yang

Polyhydroxyalkanoate (PHA) is an environmental alternative to petroleum-based plastics because of its biodegradability. The polymer properties of PHA have been improved by the incorporation of different monomers. Traditionally, the monomer composition of PHA has been analyzed using gas chromatography (GC) and nuclear magnetic resonance (NMR), providing accurate monomer composition. However, sequential analysis of the thermal properties of PHA using differential scanning calorimetry (DSC) remains necessary, providing crucial insights into its thermal characteristics. To shorten the monomer composition and thermal property analysis, we directly applied DSC to the analysis of the obtained PHA film and observed a high correlation (r2 = 0.98) between melting enthalpy and the 3-hydroxyhexanoate (3-HHx) mole fraction in the polymer. A higher 3-HHx fraction resulted in a lower melting enthalpy as 3-HHx provided the polymer with higher flexibility. Based on this, we selected the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)) producing strain from Cupriavidus strains that newly screened and transformed with vectors containing P(3HB-co-3HHx) biosynthetic genes, achieving an average error rate below 1.8% between GC and DSC results. Cupriavidus sp. BK2 showed a high 3-HHx mole fraction, up to 10.38 mol%, with T(℃) = 171.5 and ΔH of Tm (J/g) = 48.0, simultaneously detected via DSC. This study is an example of the expansion of DSC for PHA analysis from polymer science to microbial engineering.

聚羟基烷酸酯(PHA)具有生物降解性,是石油基塑料的环保替代品。通过加入不同的单体,PHA 的聚合物特性得到了改善。传统上,PHA 的单体组成是通过气相色谱法(GC)和核磁共振法(NMR)进行分析,从而提供准确的单体组成。然而,使用差示扫描量热仪(DSC)对 PHA 的热特性进行连续分析仍然是必要的,这将为深入了解其热特性提供重要依据。为了缩短单体成分和热特性分析的时间,我们直接使用 DSC 分析所获得的 PHA 薄膜,并观察到熔化焓与聚合物中 3-hydroxyhexanoate (3-HHx) 分子分数之间存在高度相关性(r2 = 0.98)。3-HHx 分数越高,熔化焓越低,因为 3-HHx 使聚合物具有更高的柔韧性。基于这一点,我们从新筛选并用含有 P(3HB-co-3HHx)生物合成基因的载体转化的铜绿微囊藻菌株中选出了生产聚(3-羟基丁酸-co-3-羟基己酸)(P(3HB-co-3HHx))的菌株,使 GC 和 DSC 结果之间的平均误差率低于 1.8%。Cupriavidus sp. BK2 表现出较高的 3-HHx 分子分数,高达 10.38 摩尔%,Tm (℃) = 171.5,Tm 的 ΔH (J/g) = 48.0,同时通过 DSC 检测到。这项研究是将 DSC 用于 PHA 分析从聚合物科学扩展到微生物工程的一个范例。
{"title":"Novel differential scanning calorimetry (DSC) application to select polyhydroxyalkanoate (PHA) producers correlating 3-hydroxyhexanoate (3-HHx) monomer with melting enthalpy.","authors":"Hee Ju Jung, Byungchan Kim, Tae-Rim Choi, Suk Jin Oh, Suwon Kim, Yeda Lee, Yuni Shin, Suhye Choi, Jinok Oh, So Yeon Park, Young Sik Lee, Young Heon Choi, Yung-Hun Yang","doi":"10.1007/s00449-024-03054-9","DOIUrl":"10.1007/s00449-024-03054-9","url":null,"abstract":"<p><p>Polyhydroxyalkanoate (PHA) is an environmental alternative to petroleum-based plastics because of its biodegradability. The polymer properties of PHA have been improved by the incorporation of different monomers. Traditionally, the monomer composition of PHA has been analyzed using gas chromatography (GC) and nuclear magnetic resonance (NMR), providing accurate monomer composition. However, sequential analysis of the thermal properties of PHA using differential scanning calorimetry (DSC) remains necessary, providing crucial insights into its thermal characteristics. To shorten the monomer composition and thermal property analysis, we directly applied DSC to the analysis of the obtained PHA film and observed a high correlation (r<sup>2</sup> = 0.98) between melting enthalpy and the 3-hydroxyhexanoate (3-HHx) mole fraction in the polymer. A higher 3-HHx fraction resulted in a lower melting enthalpy as 3-HHx provided the polymer with higher flexibility. Based on this, we selected the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)) producing strain from Cupriavidus strains that newly screened and transformed with vectors containing P(3HB-co-3HHx) biosynthetic genes, achieving an average error rate below 1.8% between GC and DSC results. Cupriavidus sp. BK2 showed a high 3-HHx mole fraction, up to 10.38 mol%, with T<sub>m </sub>(℃) = 171.5 and ΔH of T<sub>m</sub> (J/g) = 48.0, simultaneously detected via DSC. This study is an example of the expansion of DSC for PHA analysis from polymer science to microbial engineering.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1619-1631"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosynthesis and biological activities of magnesium hydroxide nanoparticles using Tinospora cordifolia leaf extract 利用椴树叶提取物合成氢氧化镁纳米颗粒并提高其生物活性
IF 3.8 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-16 DOI: 10.1007/s00449-024-03089-y
Manickam Rajkumar, S. I. Davis Presley, Farid Menaa, Serag Eldin I. Elbehairi, Mohammad Y. Alfaifi, Ali A. Shati, Aishah E. Albalawi, Norah A. Althobaiti, Dharmalingam Kirubakaran, Prabha Govindaraj, Krishnan Meenambigai, Thandapani Gomathi

The synthesis of magnesium hydroxide nanoparticles (Mg(OH)2 NPs) using plant extracts are known to be a practical, economical, and an environmentally friendly approach. In this work, Mg(OH)2 NPs were synthesized using aqueous leaf extract of Tinospora cordifolia, a medicinal plant commonly found in India. The synthesized Mg(OH)2 NPs were characterized using various spectroscopic techniques. The ultraviolet–visible (UV–Vis) absorption peak of the Mg(OH)2 NPs was detected at 289 nm, Fourier transform infrared (FTIR) analysis confirmed the presence of various functional groups, and X-ray diffraction (XRD) patterns revealed the well-crystallized structure of the Mg(OH)2 NPs. High-resolution transmission electron microscopy (HR-TEM) and scanning electron microscopy (SEM) analyses depicted spherical morphology and an average particle size (PS) of 27.71 nm. The energy-dispersive X-ray (EDX) analysis confirmed the presence of C, O, and Mg elements, and the X-ray photoelectron spectroscopy (XPS) survey spectrum confirmed the elements for the Su 1 s peak at 280.2 eV. The dynamic light scattering (DLS) analysis displayed an average PS of 54.3 nm, and the Zeta potential (ZP) was of 9.89 mV. The fabricated Mg(OH)2 NPs displayed notable antibacterial activity against S. epidermidis, E. coli, and S. aureus. In addition, these NPs exhibited strong antioxidant properties (> 75%) based on DPPH, ABTS, and hydrogen peroxide (H2O2) assays. Further, the same NPs exerted a potent anti-inflammatory activity (> 65%) based on COX-1 and COX-2 evaluations. The anti-Alzheimer’ disease (AD) potential of Mg(OH)2 NPs was assessed through effective inhibition (> 70%) of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities. Molecular docking (MD) studies confirmed that caryophyllene has higher binding affinity with AChE (−5.3 kcal/mol) and BuChE (−6.4 kcal/mol) enzymes. This study emphasizes the green synthesis of Mg(OH)2 NPs using T. cordifolia as a plant source and highlights their potential for biomedical applications.

众所周知,利用植物提取物合成氢氧化镁纳米颗粒(Mg(OH)2 NPs)是一种实用、经济和环保的方法。本研究利用印度常见的药用植物--Tinospora cordifolia 的水性叶提取物合成了 Mg(OH)2 NPs。利用各种光谱技术对合成的 Mg(OH)2 NPs 进行了表征。Mg(OH)2 NPs 的紫外可见吸收峰在 289 纳米波长处,傅立叶变换红外(FTIR)分析证实了各种官能团的存在,X 射线衍射(XRD)图显示了 Mg(OH)2 NPs 的良好结晶结构。高分辨率透射电子显微镜(HR-TEM)和扫描电子显微镜(SEM)分析表明了其球形形态和 27.71 纳米的平均粒径(PS)。能量色散 X 射线(EDX)分析证实了 C、O 和 Mg 元素的存在,X 射线光电子能谱(XPS)勘测光谱证实了 280.2 eV 处 Su 1 s 峰的元素。动态光散射(DLS)分析显示,平均 PS 值为 54.3 nm,Zeta 电位(ZP)为 9.89 mV。制备的 Mg(OH)2 NPs 对表皮葡萄球菌、大肠杆菌和金黄色葡萄球菌具有显著的抗菌活性。此外,根据 DPPH、ABTS 和过氧化氢(H2O2)测定,这些 NPs 还具有很强的抗氧化性(75%)。此外,根据对 COX-1 和 COX-2 的评估,这些 NPs 还具有很强的抗炎活性(65%)。通过有效抑制乙酰胆碱酯酶(AChE)和丁酰胆碱酯酶(BChE)活性(> 70%),评估了 Mg(OH)2 NPs 的抗阿尔茨海默病(AD)潜力。分子对接(MD)研究证实,茶碱与乙酰胆碱酯酶(AChE)(-5.3 kcal/mol)和丁酰胆碱酯酶(BChE)(-6.4 kcal/mol)具有更高的结合亲和力。本研究强调了以 T. cordifolia 为植物源绿色合成 Mg(OH)2 NPs,并突出了其在生物医学方面的应用潜力。
{"title":"Biosynthesis and biological activities of magnesium hydroxide nanoparticles using Tinospora cordifolia leaf extract","authors":"Manickam Rajkumar, S. I. Davis Presley, Farid Menaa, Serag Eldin I. Elbehairi, Mohammad Y. Alfaifi, Ali A. Shati, Aishah E. Albalawi, Norah A. Althobaiti, Dharmalingam Kirubakaran, Prabha Govindaraj, Krishnan Meenambigai, Thandapani Gomathi","doi":"10.1007/s00449-024-03089-y","DOIUrl":"https://doi.org/10.1007/s00449-024-03089-y","url":null,"abstract":"<p>The synthesis of magnesium hydroxide nanoparticles (Mg(OH)<sub>2</sub> NPs) using plant extracts are known to be a practical, economical, and an environmentally friendly approach. In this work, Mg(OH)<sub>2</sub> NPs were synthesized using aqueous leaf extract of <i>Tinospora cordifolia</i>, a medicinal plant commonly found in India. The synthesized Mg(OH)<sub>2</sub> NPs were characterized using various spectroscopic techniques. The ultraviolet–visible (UV–Vis) absorption peak of the Mg(OH)<sub>2</sub> NPs was detected at 289 nm, Fourier transform infrared (FTIR) analysis confirmed the presence of various functional groups, and X-ray diffraction (XRD) patterns revealed the well-crystallized structure of the Mg(OH)<sub>2</sub> NPs. High-resolution transmission electron microscopy (HR-TEM) and scanning electron microscopy (SEM) analyses depicted spherical morphology and an average particle size (PS) of 27.71 nm. The energy-dispersive X-ray (EDX) analysis confirmed the presence of C, O, and Mg elements, and the X-ray photoelectron spectroscopy (XPS) survey spectrum confirmed the elements for the Su 1<i> s</i> peak at 280.2 eV. The dynamic light scattering (DLS) analysis displayed an average PS of 54.3 nm, and the Zeta potential (ZP) was of 9.89 mV. The fabricated Mg(OH)<sub>2</sub> NPs displayed notable antibacterial activity against <i>S. epidermidis</i>, <i>E. coli</i>, and <i>S. aureus</i>. In addition, these NPs exhibited strong antioxidant properties (&gt; 75%) based on DPPH, ABTS, and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) assays. Further, the same NPs exerted a potent anti-inflammatory activity (&gt; 65%) based on COX-1 and COX-2 evaluations. The anti-Alzheimer’ disease (AD) potential of Mg(OH)<sub>2</sub> NPs was assessed through effective inhibition (&gt; 70%) of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities. Molecular docking (MD) studies confirmed that caryophyllene has higher binding affinity with AChE (−5.3 kcal/mol) and BuChE (−6.4 kcal/mol) enzymes. This study emphasizes the green synthesis of Mg(OH)<sub>2</sub> NPs using <i>T. cordifolia</i> as a plant source and highlights their potential for biomedical applications.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":"1 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid substrate-based pH autobuffering GABA fermentation by Levilactobacillus brevis CD0817 布氏左旋乳酸杆菌(Levilactobacillus brevis)CD0817 基于混合底物的 pH 自缓冲 GABA 发酵
IF 3.8 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-13 DOI: 10.1007/s00449-024-03088-z
Lingqin Wang, Mengya Jia, Dandan Gao, Haixing Li

The probiotic fermentation of the bioactive substance gamma-aminobutyric acid (GABA) is an attractive research topic. There is still room for further improvement in reported GABA fermentation methods based on a single substrate (l-glutamic acid or l-monosodium glutamate). Here, we devised a pH auto-buffering strategy to facilitate the fermentation of GABA by Levilactobacillus brevis CD0817. This strategy features a mixture of neutral monosodium l-glutamate plus acidic l-glutamic acid as the substrate. This mixture provides a mild initial pH; moreover, the newly dissolved l-glutamic acid automatically offsets the pH increase caused by substrate decarboxylation, maintaining the acidity essential for GABA fermentation. In this study, a flask trial was first performed to optimize the GABA fermentation parameters of Levilactobacillus brevis CD0817. The optimized parameters were further validated in a 10 L fermenter. The flask trial results revealed that the appropriate fermentation medium was composed of powdery l-glutamic acid (750 g/L), monosodium l-glutamate (34 g/L [0.2 mol/L]), glucose (5 g/L), yeast extract (35 g/L), MnSO4·H2O (50 mg/L [0.3 mmol/L]), and Tween 80 (1.0 g/L). The appropriate fermentation temperature was 30 °C. The fermenter trial results revealed that GABA was slowly synthesized from 0–4 h, rapidly synthesized until 32 h, and finally reached 353.1 ± 8.3 g/L at 48 h, with the pH increasing from the initial value of 4.56 to the ultimate value of 6.10. The proposed pH auto-buffering strategy may be popular for other GABA fermentations.

生物活性物质γ-氨基丁酸(GABA)的益生菌发酵是一个极具吸引力的研究课题。已报道的基于单一底物(l-谷氨酸或 l-谷氨酸钠)的 GABA 发酵方法仍有进一步改进的空间。在此,我们设计了一种 pH 自动缓冲策略,以促进 Levilactobacillus brevis CD0817 发酵 GABA。该策略以中性谷氨酸钠和酸性谷氨酸的混合物为底物。这种混合物可提供温和的初始 pH 值;此外,新溶解的 l-谷氨酸可自动抵消底物脱羧引起的 pH 值升高,从而保持 GABA 发酵所必需的酸度。本研究首先进行了烧瓶试验,以优化 Levilactobacillus brevis CD0817 的 GABA 发酵参数。优化后的参数在 10 升发酵罐中进行了进一步验证。烧瓶试验结果表明,合适的发酵培养基由粉末状 l-谷氨酸(750 g/L)、l-谷氨酸钠(34 g/L [0.2 mol/L])、葡萄糖(5 g/L)、酵母提取物(35 g/L)、MnSO4-H2O(50 mg/L [0.3 mmol/L])和吐温 80(1.0 g/L)组成。适宜的发酵温度为 30 °C。发酵罐试验结果表明,GABA 在 0-4 小时内合成缓慢,32 小时内合成迅速,48 小时内达到 353.1 ± 8.3 g/L,pH 值从初始值 4.56 升至最终值 6.10。所提出的 pH 自动缓冲策略可能会在其他 GABA 发酵过程中得到推广。
{"title":"Hybrid substrate-based pH autobuffering GABA fermentation by Levilactobacillus brevis CD0817","authors":"Lingqin Wang, Mengya Jia, Dandan Gao, Haixing Li","doi":"10.1007/s00449-024-03088-z","DOIUrl":"https://doi.org/10.1007/s00449-024-03088-z","url":null,"abstract":"<p>The probiotic fermentation of the bioactive substance gamma-aminobutyric acid (GABA) is an attractive research topic. There is still room for further improvement in reported GABA fermentation methods based on a single substrate (<span>l</span>-glutamic acid or <span>l</span>-monosodium glutamate). Here, we devised a pH auto-buffering strategy to facilitate the fermentation of GABA by <i>Levilactobacillus brevis</i> CD0817. This strategy features a mixture of neutral monosodium <span>l</span>-glutamate plus acidic <span>l</span>-glutamic acid as the substrate. This mixture provides a mild initial pH; moreover, the newly dissolved <span>l</span>-glutamic acid automatically offsets the pH increase caused by substrate decarboxylation, maintaining the acidity essential for GABA fermentation. In this study, a flask trial was first performed to optimize the GABA fermentation parameters of <i>Levilactobacillus brevis</i> CD0817. The optimized parameters were further validated in a 10 L fermenter. The flask trial results revealed that the appropriate fermentation medium was composed of powdery <span>l</span>-glutamic acid (750 g/L), monosodium <span>l</span>-glutamate (34 g/L [0.2 mol/L]), glucose (5 g/L), yeast extract (35 g/L), MnSO<sub>4</sub>·H<sub>2</sub>O (50 mg/L [0.3 mmol/L]), and Tween 80 (1.0 g/L). The appropriate fermentation temperature was 30 °C. The fermenter trial results revealed that GABA was slowly synthesized from 0–4 h, rapidly synthesized until 32 h, and finally reached 353.1 ± 8.3 g/L at 48 h, with the pH increasing from the initial value of 4.56 to the ultimate value of 6.10. The proposed pH auto-buffering strategy may be popular for other GABA fermentations.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":"12 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production and concentration of keratinases and application of fermentation residual in removing hexavalent chromium 角蛋白酶的生产和浓缩以及发酵残渣在去除六价铬中的应用
IF 3.8 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-13 DOI: 10.1007/s00449-024-03087-0
Andressa Janaína Warken, Simone Kubeneck, Aline Frumi Camargo, Vitória Dassoler Longo, Larissa Capeletti Romani, Gabriel Henrique Klein, Sérgio L. Alves, Maulin P. Shah, Helen Treichel

The production of keratinases was evaluated in submerged fermentation with Aspergillus niger and by pigs’ swine hair in a batch bioreactor. Experimental planning was performed to assess the interaction between different variables. The enzyme extract produced was characterized at various pH and temperatures and subjected to enzyme concentration using a biphasic aqueous system and salt/solvent precipitation techniques. In addition, the substrate’s potential in reducing hexavalent chromium from synthetic potassium dichromate effluent with an initial concentration of 20 mg L−1 of chromium was evaluated. The resulting enzyme extract showed 89 ± 2 U mL−1 of keratinase. The enzyme concentration resulted in a purification factor of 1.3, while sodium chloride/acetone and ammonium sulfate/acetone resulted in a purification factor of 1.9 and 1.4, respectively. Still using the residual substrate of swine hair from the fermentation, a 94% reduction of hexavalent chromium concentration occurred after 9 h of reaction. Thus, the study proved relevant for producing keratinases, with further environmental applicability and the possibility of concentrating the extract via low-cost processes.

评估了黑曲霉浸没发酵法和批量生物反应器中猪的猪毛生产角蛋白酶的情况。进行了实验规划,以评估不同变量之间的相互作用。在不同的 pH 值和温度下,对产生的酶提取物进行了表征,并使用双相水体系和盐/溶剂沉淀技术对酶进行了浓缩。此外,还评估了底物从初始浓度为 20 mg L-1 的合成重铬酸钾污水中还原六价铬的潜力。所得酶提取物显示出 89 ± 2 U mL-1 的角蛋白酶。酶浓度的纯化系数为 1.3,而氯化钠/丙酮和硫酸铵/丙酮的纯化系数分别为 1.9 和 1.4。仍然使用发酵过程中残留的猪毛底物,反应 9 小时后,六价铬浓度降低了 94%。因此,该研究证明了生产角蛋白酶的相关性,具有进一步的环境适用性,并有可能通过低成本工艺浓缩提取物。
{"title":"Production and concentration of keratinases and application of fermentation residual in removing hexavalent chromium","authors":"Andressa Janaína Warken, Simone Kubeneck, Aline Frumi Camargo, Vitória Dassoler Longo, Larissa Capeletti Romani, Gabriel Henrique Klein, Sérgio L. Alves, Maulin P. Shah, Helen Treichel","doi":"10.1007/s00449-024-03087-0","DOIUrl":"https://doi.org/10.1007/s00449-024-03087-0","url":null,"abstract":"<p>The production of keratinases was evaluated in submerged fermentation with <i>Aspergillus niger</i> and by pigs’ swine hair in a batch bioreactor. Experimental planning was performed to assess the interaction between different variables. The enzyme extract produced was characterized at various pH and temperatures and subjected to enzyme concentration using a biphasic aqueous system and salt/solvent precipitation techniques. In addition, the substrate’s potential in reducing hexavalent chromium from synthetic potassium dichromate effluent with an initial concentration of 20 mg L<sup>−1</sup> of chromium was evaluated. The resulting enzyme extract showed 89 ± 2 U mL<sup>−1</sup> of keratinase. The enzyme concentration resulted in a purification factor of 1.3, while sodium chloride/acetone and ammonium sulfate/acetone resulted in a purification factor of 1.9 and 1.4, respectively. Still using the residual substrate of swine hair from the fermentation, a 94% reduction of hexavalent chromium concentration occurred after 9 h of reaction. Thus, the study proved relevant for producing keratinases, with further environmental applicability and the possibility of concentrating the extract via low-cost processes.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":"29 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel approach for perfusion process design based on a “Grey-Box” kinetic model 基于 "灰箱 "动力学模型的灌注工艺设计新方法
IF 3.8 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-09 DOI: 10.1007/s00449-024-03082-5
Chenxi Gao, Weijian Zhang, Liang Zhao, Wen-Song Tan

Perfusion cell-culture mode has caught industrial interest in the field of biomanufacturing in recent years. Thanks to new technology, perfusion-culture processes can support higher cell densities, higher productivities and longer process times. However, due to the inherent operational complexity and high running costs, the development and design of perfusion-culture processes remain challenging. Here, we present a model-based approach to design optimized perfusion cultures of Chinese Hamster Ovary cells. Initially, four batches of bench-top reactor continuous-perfusion-culture data were used to fit the model parameters. Then, we proposed the model-based process design approach, aiming to quickly find out the “theoretically optimal” operational parameters combinations (perfusion rate and the proportion of feed medium in perfusion medium) which could achieve the target steady-state VCD while minimizing both medium cost and perfusion rate during steady state. Meanwhile, we proposed a model-based dynamic operational parameters-adjustment strategy to address the issue of cell-growth inhibition due to the high osmolality of concentrated perfusion medium. In addition, we employed a dynamic feedback control method to aid this strategy in preventing potential nutrient depletion scenarios. Finally, we test the feasibility of the model-based process design approach in both shake flask semi-perfusion culture (targeted at 5 × 107 cells/ml) and bench-top reactor continuous perfusion culture (targeted at 1.1 × 108 cells/ml). This approach significantly reduces the number of experiments needed for process design and development, thereby accelerating the advancement of perfusion-mode cell-culture processes.

灌注细胞培养模式近年来在生物制造领域引起了工业界的兴趣。由于采用了新技术,灌流培养工艺可以支持更高的细胞密度、更高的生产率和更长的工艺时间。然而,由于固有的操作复杂性和高运行成本,灌流培养工艺的开发和设计仍面临挑战。在此,我们介绍一种基于模型的方法,用于设计优化的中国仓鼠卵巢细胞灌流培养。首先,我们使用四批台式反应器连续灌流培养数据来拟合模型参数。然后,我们提出了基于模型的工艺设计方法,旨在快速找出 "理论上最优 "的操作参数组合(灌注速率和灌注培养基中的给料培养基比例),这些参数组合既能达到目标稳态VCD,又能在稳态期间使培养基成本和灌注速率最小化。同时,我们提出了基于模型的动态运行参数调整策略,以解决高浓度灌流介质的高渗透压抑制细胞生长的问题。此外,我们还采用了一种动态反馈控制方法来辅助这一策略,以防止潜在的营养耗竭情况。最后,我们在摇瓶半灌流培养(目标浓度为 5 × 107 cells/ml)和台式反应器连续灌流培养(目标浓度为 1.1 × 108 cells/ml)中测试了基于模型的流程设计方法的可行性。这种方法大大减少了工艺设计和开发所需的实验数量,从而加快了灌流模式细胞培养工艺的发展。
{"title":"A novel approach for perfusion process design based on a “Grey-Box” kinetic model","authors":"Chenxi Gao, Weijian Zhang, Liang Zhao, Wen-Song Tan","doi":"10.1007/s00449-024-03082-5","DOIUrl":"https://doi.org/10.1007/s00449-024-03082-5","url":null,"abstract":"<p>Perfusion cell-culture mode has caught industrial interest in the field of biomanufacturing in recent years. Thanks to new technology, perfusion-culture processes can support higher cell densities, higher productivities and longer process times. However, due to the inherent operational complexity and high running costs, the development and design of perfusion-culture processes remain challenging. Here, we present a model-based approach to design optimized perfusion cultures of Chinese Hamster Ovary cells. Initially, four batches of bench-top reactor continuous-perfusion-culture data were used to fit the model parameters. Then, we proposed the model-based process design approach, aiming to quickly find out the “theoretically optimal” operational parameters combinations (perfusion rate and the proportion of feed medium in perfusion medium) which could achieve the target steady-state VCD while minimizing both medium cost and perfusion rate during steady state. Meanwhile, we proposed a model-based dynamic operational parameters-adjustment strategy to address the issue of cell-growth inhibition due to the high osmolality of concentrated perfusion medium. In addition, we employed a dynamic feedback control method to aid this strategy in preventing potential nutrient depletion scenarios. Finally, we test the feasibility of the model-based process design approach in both shake flask semi-perfusion culture (targeted at 5 × 10<sup>7</sup> cells/ml) and bench-top reactor continuous perfusion culture (targeted at 1.1 × 10<sup>8</sup> cells/ml). This approach significantly reduces the number of experiments needed for process design and development, thereby accelerating the advancement of perfusion-mode cell-culture processes.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":"14 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection methods for antibiotics in wastewater: a review. 废水中抗生素的检测方法:综述。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-06-22 DOI: 10.1007/s00449-024-03033-0
Yuting Luo, Yiwei Sun, Xiuxia Wei, Yuyang He, Haoxiang Wang, Zewen Cui, Jiaqi Ma, Xingcai Liu, Ruxin Shu, Huaqing Lin, Dongpo Xu

Antibiotics are widely used as fungicides because of their antibacterial and bactericidal effects. However, it is necessary to control their dosage. If the amount of antbiotics is too much, it cannot be completely metabolized and absorbed, will pollute the environment, and have a great impact on human health. Many antibiotics usually left in factory or aquaculture wastewater pollute the environment, so it is vital to detect the content of antibiotics in wastewater. This article summarizes several common methods of antibiotic detection and pretreatment steps. The detection methods of antibiotics in wastewater mainly include immunoassay, instrumental analysis method, and sensor. Studies have shown that immunoassay can detect deficient concentrations of antibiotics, but it is affected by external factors leading to errors. The detection speed of the instrumental analysis method is fast, but the repeatability is poor, the price is high, and the operation is complicated. The sensor is a method that is currently increasingly studied, including electrochemical sensors, optical sensors, biosensors, photoelectrochemical sensors, and surface plasmon resonance sensors. It has the advantages of fast detection speed, high accuracy, and strong sensitivity. However, the reproducibility and stability of the sensor are poor. At present, there is no method that can comprehensively integrate the advantages. This paper aims to review the enrichment and detection methods of antibiotics in wastewater from 2020 to the present. It also aims to provide some ideas for future research directions in this field.

抗生素具有抗菌和杀菌作用,因此被广泛用作杀菌剂。但是,必须控制其用量。如果抗生素用量过多,就不能被完全代谢和吸收,会污染环境,对人体健康造成很大影响。许多抗生素通常会残留在工厂或水产养殖废水中污染环境,因此检测废水中抗生素的含量至关重要。本文总结了几种常见的抗生素检测方法和预处理步骤。废水中抗生素的检测方法主要有免疫分析法、仪器分析法和传感器法。研究表明,免疫测定法可以检测出抗生素浓度不足的情况,但受外界因素影响,容易产生误差。仪器分析法的检测速度快,但重复性差,价格高,操作复杂。传感器是目前研究较多的一种方法,包括电化学传感器、光学传感器、生物传感器、光电化学传感器、表面等离子体共振传感器等。它具有检测速度快、准确度高、灵敏度强等优点。但传感器的再现性和稳定性较差。目前,还没有一种方法能全面整合这些优点。本文旨在回顾 2020 年至今废水中抗生素的富集和检测方法。本文还旨在为该领域未来的研究方向提供一些思路。
{"title":"Detection methods for antibiotics in wastewater: a review.","authors":"Yuting Luo, Yiwei Sun, Xiuxia Wei, Yuyang He, Haoxiang Wang, Zewen Cui, Jiaqi Ma, Xingcai Liu, Ruxin Shu, Huaqing Lin, Dongpo Xu","doi":"10.1007/s00449-024-03033-0","DOIUrl":"10.1007/s00449-024-03033-0","url":null,"abstract":"<p><p>Antibiotics are widely used as fungicides because of their antibacterial and bactericidal effects. However, it is necessary to control their dosage. If the amount of antbiotics is too much, it cannot be completely metabolized and absorbed, will pollute the environment, and have a great impact on human health. Many antibiotics usually left in factory or aquaculture wastewater pollute the environment, so it is vital to detect the content of antibiotics in wastewater. This article summarizes several common methods of antibiotic detection and pretreatment steps. The detection methods of antibiotics in wastewater mainly include immunoassay, instrumental analysis method, and sensor. Studies have shown that immunoassay can detect deficient concentrations of antibiotics, but it is affected by external factors leading to errors. The detection speed of the instrumental analysis method is fast, but the repeatability is poor, the price is high, and the operation is complicated. The sensor is a method that is currently increasingly studied, including electrochemical sensors, optical sensors, biosensors, photoelectrochemical sensors, and surface plasmon resonance sensors. It has the advantages of fast detection speed, high accuracy, and strong sensitivity. However, the reproducibility and stability of the sensor are poor. At present, there is no method that can comprehensively integrate the advantages. This paper aims to review the enrichment and detection methods of antibiotics in wastewater from 2020 to the present. It also aims to provide some ideas for future research directions in this field.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1433-1451"},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bioprocess and Biosystems Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1