Rongzhen Suo, K. Sandhu, Mingjiu Wang, F. You, R. Conner, E. Cober, A. Hou
Abstract Soybean (Glycine max L.) is the most important legume crop in the world and provides protein and oil for human consumption and animal feed. Cold and waterlogging or flooding are abiotic stress that are commonly encountered during soybean germination in short-season growing conditions in the Northern latitudes. Imbibition of cold water during the germination disrupts the cell membranes and increases leakage of their contents and makes seeds vulnerable to biotic stress. The cold tolerance is associated with the ability of cells to avoid or repair the damage to their membranes and organelles, restoring membrane function and metabolism, and managing the reactive oxygen species generated during the process. Excess moisture impedes aerobic respiration by oxygen deprivation and increases the likelihood of soil-borne diseases further reducing the germination rate. Tolerance to waterlogging is associated with mechanisms that slow down the rate of water uptake and help maintain efficient anaerobic metabolism. The quantitative trait loci mapping, transcriptomics, and proteomic studies have revealed several genes and pathways that likely play a role in seed response to cold and waterlogging stress. This review discusses the effects of cold and waterlogging on soybean seed germination at the physiological level, describes the molecular mechanisms involved, and provides an overview of soybean waterlogging and cold tolerance research. The methodologies commonly used to study the molecular mechanisms controlling tolerance to waterlogging and cold stress are also reviewed and discussed.
摘要大豆(Glycine max L.)是世界上最重要的豆科作物,为人类和动物饲料提供蛋白质和油脂。寒冷和涝渍或洪水是在北纬地区短季节生长条件下大豆发芽过程中经常遇到的非生物胁迫。在萌发过程中,冷水的吸吮破坏了细胞膜,增加了其内容物的泄漏,使种子容易受到生物胁迫。耐寒性与细胞避免或修复膜和细胞器损伤、恢复膜功能和代谢以及管理在此过程中产生的活性氧的能力有关。过多的水分通过缺氧阻碍了有氧呼吸,增加了土传疾病的可能性,进一步降低了发芽率。对内涝的耐受性与减缓水分吸收速率和帮助维持有效的无氧代谢的机制有关。数量性状位点定位、转录组学和蛋白质组学研究揭示了一些基因和途径可能在种子对寒冷和涝渍胁迫的反应中起作用。本文从生理水平上论述了低温和涝渍对大豆种子萌发的影响,阐述了其中的分子机制,并对大豆耐涝和耐冷性的研究进行了综述。对国内外研究耐涝冷胁迫分子机制的常用方法进行了综述和讨论。
{"title":"Soybean (Glycine max L.) seed germination in response to waterlogging and cold climate: a review on the genetics and molecular mechanisms of resistance to the abiotic stress","authors":"Rongzhen Suo, K. Sandhu, Mingjiu Wang, F. You, R. Conner, E. Cober, A. Hou","doi":"10.1139/cjps-2022-0111","DOIUrl":"https://doi.org/10.1139/cjps-2022-0111","url":null,"abstract":"Abstract Soybean (Glycine max L.) is the most important legume crop in the world and provides protein and oil for human consumption and animal feed. Cold and waterlogging or flooding are abiotic stress that are commonly encountered during soybean germination in short-season growing conditions in the Northern latitudes. Imbibition of cold water during the germination disrupts the cell membranes and increases leakage of their contents and makes seeds vulnerable to biotic stress. The cold tolerance is associated with the ability of cells to avoid or repair the damage to their membranes and organelles, restoring membrane function and metabolism, and managing the reactive oxygen species generated during the process. Excess moisture impedes aerobic respiration by oxygen deprivation and increases the likelihood of soil-borne diseases further reducing the germination rate. Tolerance to waterlogging is associated with mechanisms that slow down the rate of water uptake and help maintain efficient anaerobic metabolism. The quantitative trait loci mapping, transcriptomics, and proteomic studies have revealed several genes and pathways that likely play a role in seed response to cold and waterlogging stress. This review discusses the effects of cold and waterlogging on soybean seed germination at the physiological level, describes the molecular mechanisms involved, and provides an overview of soybean waterlogging and cold tolerance research. The methodologies commonly used to study the molecular mechanisms controlling tolerance to waterlogging and cold stress are also reviewed and discussed.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"13 - 28"},"PeriodicalIF":1.2,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45702481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Climate change, resulting from increased atmospheric CO2, will affect temperature and precipitation amount and regularity. Changes in solar radiation have been observed in the recent past. Precipitation irregularity is a measure of rainfall distribution during a growing season (calculated as the standard error of the slope from regression of cumulative precipitation on day of the growing season). We investigated whether precipitation irregularity and solar radiation contributed to soybean yield. Fourteen short-season cultivars, released from 1930 to 1992, were grown from 1993 to 2019 at Ottawa, Canada. Stepwise multiple linear regression was used to investigate the contribution to seed yield of precipitation irregularity and solar radiation, and also previously modeled parameters genetic improvement, annual [CO2], and cumulative precipitation and average minimum temperature during the vegetative, flowering and podding, and seed filling growth stages. While solar radiation and precipitation irregularity did not trend over the years of our study and precipitation irregularity was not related to growing season precipitation, both were significant factors in our model, accounting for 2.5% and 6.5%, respectively, of the seed yield variability. Precipitation during all three stages were similar as they each accounted for 4%–7% of seed yield variability. We observed contrasting temperature effects where higher minimum temperature during vegetative and seed filling reduced yield, while during flowering and podding increased yield. Estimated yield improvement due to elevated [CO2] was 7.8 kg ha−1 ppm−1 and to genetic improvement over time was 7.1 kg ha−1 year−1. Over the extremes of our study we found that precipitation irregularity could cause up to a 30% yield reduction.
{"title":"Precipitation irregularity and solar radiation play a role in determining short-season soybean yield","authors":"E. Cober, M. Morrison","doi":"10.1139/cjps-2022-0104","DOIUrl":"https://doi.org/10.1139/cjps-2022-0104","url":null,"abstract":"Abstract Climate change, resulting from increased atmospheric CO2, will affect temperature and precipitation amount and regularity. Changes in solar radiation have been observed in the recent past. Precipitation irregularity is a measure of rainfall distribution during a growing season (calculated as the standard error of the slope from regression of cumulative precipitation on day of the growing season). We investigated whether precipitation irregularity and solar radiation contributed to soybean yield. Fourteen short-season cultivars, released from 1930 to 1992, were grown from 1993 to 2019 at Ottawa, Canada. Stepwise multiple linear regression was used to investigate the contribution to seed yield of precipitation irregularity and solar radiation, and also previously modeled parameters genetic improvement, annual [CO2], and cumulative precipitation and average minimum temperature during the vegetative, flowering and podding, and seed filling growth stages. While solar radiation and precipitation irregularity did not trend over the years of our study and precipitation irregularity was not related to growing season precipitation, both were significant factors in our model, accounting for 2.5% and 6.5%, respectively, of the seed yield variability. Precipitation during all three stages were similar as they each accounted for 4%–7% of seed yield variability. We observed contrasting temperature effects where higher minimum temperature during vegetative and seed filling reduced yield, while during flowering and podding increased yield. Estimated yield improvement due to elevated [CO2] was 7.8 kg ha−1 ppm−1 and to genetic improvement over time was 7.1 kg ha−1 year−1. Over the extremes of our study we found that precipitation irregularity could cause up to a 30% yield reduction.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":" 38","pages":"93 - 100"},"PeriodicalIF":1.2,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41332325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Houghton, K. Bevandick, D. Neilsen, K. Hannam, L. Nelson
Abstract The timing and availability of water supply are changing in the Okanagan Valley, and the availability of irrigation water in the late summers is a growing concern. Postharvest deficit irrigation (PDI) is a strategy that can be used to reduce water demands in sweet cherry orchards; previous studies in this region have reported no change in plant physiology or tree growth with irrigation volume reductions of up to 25%, postharvest. However, the effects of more severe postharvest reductions in irrigation volume remain unknown. We compared the effects of full irrigation (100% of conventional grower practice through the growing season) with 27%–33% reductions in irrigation postharvest (∼70% of conventional grower practice) and 47%–52% reductions in irrigation postharvest (∼50% of conventional grower practice) over a 3-year period (2019–2021) in five commercial sweet cherry orchards that ranged in elevation and latitude across the Okanagan Valley, BC, Canada. In the growing season following treatment application, PDI had no effect on stem water potential or photosynthesis in any year and at any site; there were also no effects of PDI treatment on tree growth. Findings from this study suggest that postharvest stem water potentials from −0.5 to −1.3 MPa, and one-time stem water potentials as low as −2.0 MPa, have no lasting effects on future plant water status, rates of photosynthesis, or plant growth. PDI shows potential as an effective water-saving measure in sweet cherry orchards in the Okanagan Valley.
{"title":"Effects of postharvest deficit irrigation on sweet cherry (Prunus avium) in five Okanagan Valley, Canada, orchards: I. Tree water status, photosynthesis, and growth","authors":"E. Houghton, K. Bevandick, D. Neilsen, K. Hannam, L. Nelson","doi":"10.1139/cjps-2022-0200","DOIUrl":"https://doi.org/10.1139/cjps-2022-0200","url":null,"abstract":"Abstract The timing and availability of water supply are changing in the Okanagan Valley, and the availability of irrigation water in the late summers is a growing concern. Postharvest deficit irrigation (PDI) is a strategy that can be used to reduce water demands in sweet cherry orchards; previous studies in this region have reported no change in plant physiology or tree growth with irrigation volume reductions of up to 25%, postharvest. However, the effects of more severe postharvest reductions in irrigation volume remain unknown. We compared the effects of full irrigation (100% of conventional grower practice through the growing season) with 27%–33% reductions in irrigation postharvest (∼70% of conventional grower practice) and 47%–52% reductions in irrigation postharvest (∼50% of conventional grower practice) over a 3-year period (2019–2021) in five commercial sweet cherry orchards that ranged in elevation and latitude across the Okanagan Valley, BC, Canada. In the growing season following treatment application, PDI had no effect on stem water potential or photosynthesis in any year and at any site; there were also no effects of PDI treatment on tree growth. Findings from this study suggest that postharvest stem water potentials from −0.5 to −1.3 MPa, and one-time stem water potentials as low as −2.0 MPa, have no lasting effects on future plant water status, rates of photosynthesis, or plant growth. PDI shows potential as an effective water-saving measure in sweet cherry orchards in the Okanagan Valley.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"73 - 92"},"PeriodicalIF":1.2,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46791792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Intensifying winter wheat (Triticum aestivum)–grain sorghum [Sorghum bicolor (L.) Moench]–fallow (W–GS–FL) crop rotation with annual forages can increase productivity and resource use efficiency. The objective of this research was to quantify the impact of increasing crop intensity by growing forages in a traditional W–GS–FL rotation on cropping system productivity, water use, precipitation use efficiency, and net income. The study was conducted at the Southwest Research-Extension Center near Garden City, Kansas, from 2013 through 2020. Winter wheat (W), grain sorghum (GS), forage sorghum (FS), and forage oats (FO, Avena sativa L.) were used to generate six crop rotation treatments. These rotation treatments interspersed with fallow periods (FL) were W–GS–FL, W–FS–FL, W/FS–GS–FO, W/FS–FS–FO, W/FS–GS–FL, and W/FS–FS–FL. A W/FS indicates winter wheat double crop FS planted in the same year. The yield of FS was 45%–56% more with W/FS–FS–FO and W/FS–FS–FL compared with W–FS–FL. Available soil water at GS planting was 23%–30% less, and GS yield was 52%–60% smaller with W/FS–GS–FL compared to W–GS–FL. Water productivity and pre-season soil water storage were greatest with W/FS–FS–FL and W/FS–FS–FO. Inclusion of W/FS increased cost of production compared with W–GS(FS)–FL rotations. Gross return was greatest with W/FS–FS–FO and W/FS–FS–FL. The W/FS–FS–FO increased cropping intensity, productivity, resource use, and gross margin relative to other rotations in the semi-arid Great Plains. Producers should consider double-cropping of FS after wheat harvest, followed by a second year of FS in dryland cropping systems if there is sufficient forage demand.
{"title":"Forage sorghum grown in a conventional wheat–grain sorghum–fallow rotation increased cropping system productivity and profitability","authors":"J. Holman, A. Obour, Y. Assefa","doi":"10.1139/cjps-2022-0171","DOIUrl":"https://doi.org/10.1139/cjps-2022-0171","url":null,"abstract":"Abstract Intensifying winter wheat (Triticum aestivum)–grain sorghum [Sorghum bicolor (L.) Moench]–fallow (W–GS–FL) crop rotation with annual forages can increase productivity and resource use efficiency. The objective of this research was to quantify the impact of increasing crop intensity by growing forages in a traditional W–GS–FL rotation on cropping system productivity, water use, precipitation use efficiency, and net income. The study was conducted at the Southwest Research-Extension Center near Garden City, Kansas, from 2013 through 2020. Winter wheat (W), grain sorghum (GS), forage sorghum (FS), and forage oats (FO, Avena sativa L.) were used to generate six crop rotation treatments. These rotation treatments interspersed with fallow periods (FL) were W–GS–FL, W–FS–FL, W/FS–GS–FO, W/FS–FS–FO, W/FS–GS–FL, and W/FS–FS–FL. A W/FS indicates winter wheat double crop FS planted in the same year. The yield of FS was 45%–56% more with W/FS–FS–FO and W/FS–FS–FL compared with W–FS–FL. Available soil water at GS planting was 23%–30% less, and GS yield was 52%–60% smaller with W/FS–GS–FL compared to W–GS–FL. Water productivity and pre-season soil water storage were greatest with W/FS–FS–FL and W/FS–FS–FO. Inclusion of W/FS increased cost of production compared with W–GS(FS)–FL rotations. Gross return was greatest with W/FS–FS–FO and W/FS–FS–FL. The W/FS–FS–FO increased cropping intensity, productivity, resource use, and gross margin relative to other rotations in the semi-arid Great Plains. Producers should consider double-cropping of FS after wheat harvest, followed by a second year of FS in dryland cropping systems if there is sufficient forage demand.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"61 - 72"},"PeriodicalIF":1.2,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43742196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Zaidi, Ashok Somalraju, Kaushik Ghose, J. Mccallum, A. Mills, S. Fillmore, B. Fofana
Abstract Studies on wild and landrace hops from the Canadian Maritimes are scarce. This study was undertaken to broaden the genetic base of hops and to assess the reaction of the generated variants to downy mildew (DM) disease. A landrace hop (PE Royalty (P-RL)) and a commercial cultivar (Alpharoma) were mutagenized using ethylmethane sulphonate (EMS), and single nucleotide polymorphism (SNP) variations were determined using an amplicon sequencing genetic diversity study. A subset of wild types and a subset of mutagenized hops were inoculated with DM spores and rated for disease symptoms in a controlled environment. The data showed large EMS-induced genetic diversity in the target genes along with natural variations in the wild types. A diversity in DM resistance within the studied collection was also observed. The study showed DM tolerance in some P-RL landrace seedlings, suggesting that these P-RL landraces must have acquired and developed adaptation mechanisms to co-evolve with DM disease in the environment. Further, EMS-induced mutagenesis increased allelic variations that contributed to increased DM resistance in some seedlings. The data recommend the use of true hop seeds for increased genetic variability in breeding programs.
{"title":"Diversity in genetic and downy mildew resistance among wild and mutagenized hops as revealed by single nucleotide polymorphisms and disease rating","authors":"M. Zaidi, Ashok Somalraju, Kaushik Ghose, J. Mccallum, A. Mills, S. Fillmore, B. Fofana","doi":"10.1139/cjps-2022-0102","DOIUrl":"https://doi.org/10.1139/cjps-2022-0102","url":null,"abstract":"Abstract Studies on wild and landrace hops from the Canadian Maritimes are scarce. This study was undertaken to broaden the genetic base of hops and to assess the reaction of the generated variants to downy mildew (DM) disease. A landrace hop (PE Royalty (P-RL)) and a commercial cultivar (Alpharoma) were mutagenized using ethylmethane sulphonate (EMS), and single nucleotide polymorphism (SNP) variations were determined using an amplicon sequencing genetic diversity study. A subset of wild types and a subset of mutagenized hops were inoculated with DM spores and rated for disease symptoms in a controlled environment. The data showed large EMS-induced genetic diversity in the target genes along with natural variations in the wild types. A diversity in DM resistance within the studied collection was also observed. The study showed DM tolerance in some P-RL landrace seedlings, suggesting that these P-RL landraces must have acquired and developed adaptation mechanisms to co-evolve with DM disease in the environment. Further, EMS-induced mutagenesis increased allelic variations that contributed to increased DM resistance in some seedlings. The data recommend the use of true hop seeds for increased genetic variability in breeding programs.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"48 - 60"},"PeriodicalIF":1.2,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42894241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Bing, D. Beauchesne, M. Miller, R. Cuthbert, B. Mollison, H. Naeem
Abstract AAC Julius is a semi-leafless, yellow cotyledonary field pea (Pisum sativum L.) variety developed at Lacombe Research and Development Centre, Agriculture and Agri-Food Canada , Lacombe, AB, Canada. It has a maturity of 100days, 1000-seed weight of 210g, and a lodging score of 3.6 on the scale of 1–9. The seed crude protein content of AAC Julius is 24.8%. AAC Julius is resistant to powdery mildew (caused by Erysiphe pisi D.C.) and moderately susceptible to mycosphaerella blight (caused by Mycosphaerella pinodes) and Fusarium root rot (caused by Fusarium avenaceum (Fr.) Sacc. and F. solani).
AAC Julius是一种半无叶、黄色子叶的大田豌豆(Pisum sativum L.)品种,由加拿大农业和农业食品部Lacombe研究与发展中心(Lacombe Research and Development Centre)开发。成熟期100天,千粒重210g,倒伏得分(1-9分)3.6分。枳实种子粗蛋白质含量为24.8%。AAC朱利叶斯对白粉病(由赤藓菌引起)具有抗性,对真菌孢子菌枯萎病(由pinodes真菌孢子菌引起)和镰刀菌根腐病(由avenaceum (Fr.) Sacc引起)中度敏感。和F. solani)。
{"title":"AAC Julius field pea","authors":"D. Bing, D. Beauchesne, M. Miller, R. Cuthbert, B. Mollison, H. Naeem","doi":"10.1139/cjps-2022-0123","DOIUrl":"https://doi.org/10.1139/cjps-2022-0123","url":null,"abstract":"Abstract AAC Julius is a semi-leafless, yellow cotyledonary field pea (Pisum sativum L.) variety developed at Lacombe Research and Development Centre, Agriculture and Agri-Food Canada , Lacombe, AB, Canada. It has a maturity of 100days, 1000-seed weight of 210g, and a lodging score of 3.6 on the scale of 1–9. The seed crude protein content of AAC Julius is 24.8%. AAC Julius is resistant to powdery mildew (caused by Erysiphe pisi D.C.) and moderately susceptible to mycosphaerella blight (caused by Mycosphaerella pinodes) and Fusarium root rot (caused by Fusarium avenaceum (Fr.) Sacc. and F. solani).","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"136 - 137"},"PeriodicalIF":1.2,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45693814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract AAC Aberdeen is a semi-leafless, yellow cotyledonary field pea (Pisum sativum L.) cultivar developed at Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada. It has a maturity of 98days, 1000-seed weight of 243g, and a lodging score of 3.3 on the scale of 1–9. The seed crude protein content of AAC Aberdeen is 20.1%. AAC Aberdeen is resistant to powdery mildew (caused by Erysiphe pisi D.C.) and moderately susceptible to mycosphaerella blight (caused by Mycosphaerella pinodes) and Fusarium root rot (caused by Fusarium avenaceum (Fr.) Sacc.).
AAC Aberdeen是一种半无叶、黄色子叶的大田豌豆(Pisum sativum L.)品种,由加拿大农业与农业食品部Lacombe研究与发展中心(Lacombe Research and Development Centre)开发。成熟期98天,千粒重243克,倒伏得分3.3分(1-9分)。种子粗蛋白质含量为20.1%。AAC阿伯丁抗白粉病(由赤霉病引起),对白僵菌(由pinoides mycosphaerella引起)和镰刀菌根腐病(由avenaceum (Fr.) Sacc.引起)中度敏感。
{"title":"AAC Aberdeen field pea","authors":"D. Bing, D. Beauchesne, R. Cuthbert, H. Naeem","doi":"10.1139/cjps-2022-0122","DOIUrl":"https://doi.org/10.1139/cjps-2022-0122","url":null,"abstract":"Abstract AAC Aberdeen is a semi-leafless, yellow cotyledonary field pea (Pisum sativum L.) cultivar developed at Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada. It has a maturity of 98days, 1000-seed weight of 243g, and a lodging score of 3.3 on the scale of 1–9. The seed crude protein content of AAC Aberdeen is 20.1%. AAC Aberdeen is resistant to powdery mildew (caused by Erysiphe pisi D.C.) and moderately susceptible to mycosphaerella blight (caused by Mycosphaerella pinodes) and Fusarium root rot (caused by Fusarium avenaceum (Fr.) Sacc.).","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"133 - 135"},"PeriodicalIF":1.2,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47387968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Suitable rootstock enhances apple tree resilience. In 2021, we studied “Buckeye Gala” apple (Malus domestica var. Buckeye Gala") on nine rootstocks with contrasting vigor in NS and BC, Canada. Rootstock effects on vigor, yield, and midday stem water potential were significant in BC. After sustained heat events, the large-dwarfing rootstocks Geneva 935, Geneva 4814, and Geneva 969 had lower ratio of sunburn fruits, resulting in higher projected damage-free yield. We discussed how higher stem water potential and larger canopy volume supported by vigorous rootstocks contributed to alleviate heat stress and improve apple resilience to global warming.
适宜的砧木可提高苹果树的抗逆性。2021年,我们在加拿大NS和BC的9根砧木上研究了“Buckeye Gala”苹果(Malus domestica var. Buckeye Gala)。砧木对冬小麦活力、产量和正午茎秆水势的影响显著。在持续高温条件下,大矮化砧木日内瓦935、日内瓦4814和日内瓦969的晒伤果实率较低,预计无害化产量较高。本文讨论了在粗壮砧木的支持下,较高的茎水势和较大的冠层体积对缓解苹果热胁迫和提高苹果对全球变暖的适应能力的作用。
{"title":"Tools for climate resilience in tree fruit I: large-dwarfing rootstocks can alleviate sunburn damage in “Buckeye Gala” apple","authors":"Hao Xu, S. Blatt, D. Ediger","doi":"10.1139/cjps-2022-0080","DOIUrl":"https://doi.org/10.1139/cjps-2022-0080","url":null,"abstract":"Abstract Suitable rootstock enhances apple tree resilience. In 2021, we studied “Buckeye Gala” apple (Malus domestica var. Buckeye Gala\") on nine rootstocks with contrasting vigor in NS and BC, Canada. Rootstock effects on vigor, yield, and midday stem water potential were significant in BC. After sustained heat events, the large-dwarfing rootstocks Geneva 935, Geneva 4814, and Geneva 969 had lower ratio of sunburn fruits, resulting in higher projected damage-free yield. We discussed how higher stem water potential and larger canopy volume supported by vigorous rootstocks contributed to alleviate heat stress and improve apple resilience to global warming.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"128 - 132"},"PeriodicalIF":1.2,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45327165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Zuzak, S. Strelkov, G. Turnbull, V. Manolii, S. Hwang
Abstract Clubroot, a damaging disease of canola (Brassica napus L.) caused by the soilborne parasite Plasmodiophora brassicae Woronin, is spreading across Alberta and other provinces of western Canada. The movement of infested soil on field machinery is the main mechanism of dispersal, with clubroot generally occurring first as localized patches near field entrances. In this study, the soil fumigant Vapam (metam sodium) was evaluated as a management option for foci of P. brassicae infestation. Replicated experiments at two field sites in central Alberta showed reductions in clubroot severity ranging from 9% to 51% following treatment with varying rates of Vapam. Decreases in clubroot severity of up to 28% were observed in the year following Vapam treatment, indicating some potential residual effects and (or) a reduction in the amount of inoculum returned to the soil in the previous year. While Vapam shows some promise as a clubroot management tool, an integrated approach will be required for the sustainable management of this disease on canola.
{"title":"Soil fumigation with Vapam (metam sodium) to control clubroot (Plasmodiophora brassicae) of canola (Brassica napus)","authors":"K. Zuzak, S. Strelkov, G. Turnbull, V. Manolii, S. Hwang","doi":"10.1139/cjps-2022-0086","DOIUrl":"https://doi.org/10.1139/cjps-2022-0086","url":null,"abstract":"Abstract Clubroot, a damaging disease of canola (Brassica napus L.) caused by the soilborne parasite Plasmodiophora brassicae Woronin, is spreading across Alberta and other provinces of western Canada. The movement of infested soil on field machinery is the main mechanism of dispersal, with clubroot generally occurring first as localized patches near field entrances. In this study, the soil fumigant Vapam (metam sodium) was evaluated as a management option for foci of P. brassicae infestation. Replicated experiments at two field sites in central Alberta showed reductions in clubroot severity ranging from 9% to 51% following treatment with varying rates of Vapam. Decreases in clubroot severity of up to 28% were observed in the year following Vapam treatment, indicating some potential residual effects and (or) a reduction in the amount of inoculum returned to the soil in the previous year. While Vapam shows some promise as a clubroot management tool, an integrated approach will be required for the sustainable management of this disease on canola.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"29 - 38"},"PeriodicalIF":1.2,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43856793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Hydrogen peroxide (H2O2) is a reactive oxygen species that can damage a variety of cellular structures. Recent studies have shown that H2O2 can mediate multiple physiological and biochemical processes by acting as a signaling molecule. This study was performed to explore the optimum H2O2 treatments for increasing the bioactive compounds in Agastache rugosa Fisch. & C.A. May plants with roots temporarily immersed in H2O2 concentrations of 0 (control), 4, 8, 16, 32, 64, and 128mmolL−1 in a hydroponic culture system. All cultivated plants were subjected to root soaking with diniconazole (120µmolL−1) at 7days after transplanting to restrict plant height. H2O2 concentrations of 4, 16, and 64mmolL−1 significantly reduced root length compared with no H2O2 treatment. Root fresh weight was significantly lower in response to exposure to 128mmolL−1 H2O2 compared with control plants. Although shoot and root dry weights were lower in plants exposed to 128mmolL−1 H2O2 compared with control plants, no significant differences were detected among treatments. Soaking roots in 16mmolL−1 H2O2 induced the highest rosmarinic acid (RA) content, and 16, 32, and 64mmolL−1 H2O2 significantly increased tilianin content in the whole plant compared with the control. The highest acacetin content was detected under 32mmolL−1 H2O2. In addition, root extract of A. rugosa had the highest RA concentration, and the tilianin concentration was the highest in flowers. Collectively, these results show that soaking roots in 16 and 32mmolL−1 H2O2 at 3.5weeks after transplanting promotes secondary metabolites of hydroponically grown A. rugosa.
{"title":"Increasing bioactive compound levels in Agastache rugosa by hydrogen peroxide soaking in a hydroponic culture system","authors":"Vu Phong Lam, Vu Ky Anh, Dao Nhan Loi, J. Park","doi":"10.1139/cjps-2022-0088","DOIUrl":"https://doi.org/10.1139/cjps-2022-0088","url":null,"abstract":"Abstract Hydrogen peroxide (H2O2) is a reactive oxygen species that can damage a variety of cellular structures. Recent studies have shown that H2O2 can mediate multiple physiological and biochemical processes by acting as a signaling molecule. This study was performed to explore the optimum H2O2 treatments for increasing the bioactive compounds in Agastache rugosa Fisch. & C.A. May plants with roots temporarily immersed in H2O2 concentrations of 0 (control), 4, 8, 16, 32, 64, and 128mmolL−1 in a hydroponic culture system. All cultivated plants were subjected to root soaking with diniconazole (120µmolL−1) at 7days after transplanting to restrict plant height. H2O2 concentrations of 4, 16, and 64mmolL−1 significantly reduced root length compared with no H2O2 treatment. Root fresh weight was significantly lower in response to exposure to 128mmolL−1 H2O2 compared with control plants. Although shoot and root dry weights were lower in plants exposed to 128mmolL−1 H2O2 compared with control plants, no significant differences were detected among treatments. Soaking roots in 16mmolL−1 H2O2 induced the highest rosmarinic acid (RA) content, and 16, 32, and 64mmolL−1 H2O2 significantly increased tilianin content in the whole plant compared with the control. The highest acacetin content was detected under 32mmolL−1 H2O2. In addition, root extract of A. rugosa had the highest RA concentration, and the tilianin concentration was the highest in flowers. Collectively, these results show that soaking roots in 16 and 32mmolL−1 H2O2 at 3.5weeks after transplanting promotes secondary metabolites of hydroponically grown A. rugosa.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"39 - 47"},"PeriodicalIF":1.2,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48047361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}