Pub Date : 2025-05-01Epub Date: 2025-01-13DOI: 10.1016/j.talanta.2025.127593
Wenxiao Jin, Rongfang Chen, Likang Wu, Canwei Peng, Yonghai Song, Longfei Miao, Li Wang
Cancer Antigen 125 (CA125), is a high molecular weight mucinous glycoprotein found on the surface of ovarian cancer cells. Generally, 90 % of women may appear a high concentration of CA125 when they got the cancer; thus, CA125 can act as a marker for ovarian cancer diagnosis and therapeutic evaluation. COFs have been widely used for disease detection due to their structural stability, high loading capacity and biocompatibility. However, the limited variety of electroactive COFs used as signal probes, fewer enriched signaling molecules, weaker electrical signals generated, and higher oxidation or reduction potentials of electroactive substances, a series of side reactions are easily triggered causing serious interference. To solve the above problems, [Fe(CN)6]3/4- as a signal probe and COFs for signal amplification were selected to creating a highly sensitive electrochemical immunosensor for glycan antigen CA125. Firstly, two-dimensional (2D) EP-TD-COF with ultra-high specific surface area was modified on bare GCE, which could covalently bound numerous Ab1 molecules due to the epoxy-rich functional groups. Then, the electropositive AuNPs@2DCOFBTT-DGMH was prepared by the in situ growth of AuNPs, proved an effective platform for loading Ab2 molecules via Au-S bonds. Based on the positively charged AuNPs@COFBTT-DGMH/Ab2 and negatively charged [Fe(CN)6]3/4- of electrostatic interactions, which could significantly enchaned signal for quantitative and sensitive detection of CA125. The constructed immunosensor exhibits excellent stability performance and high sensitivity, enabling ultrasensitive detection of trace glycan antigens. This study provided a new idea for the use of non-electroactive substances for the construction of electrochemical immunosensors and provided an effective signal amplification strategy.
{"title":"An \"on-off\" electrochemical immunosensor for the detection of the glycan antigen CA125 by amplification signals using electropositive COFs.","authors":"Wenxiao Jin, Rongfang Chen, Likang Wu, Canwei Peng, Yonghai Song, Longfei Miao, Li Wang","doi":"10.1016/j.talanta.2025.127593","DOIUrl":"10.1016/j.talanta.2025.127593","url":null,"abstract":"<p><p>Cancer Antigen 125 (CA125), is a high molecular weight mucinous glycoprotein found on the surface of ovarian cancer cells. Generally, 90 % of women may appear a high concentration of CA125 when they got the cancer; thus, CA125 can act as a marker for ovarian cancer diagnosis and therapeutic evaluation. COFs have been widely used for disease detection due to their structural stability, high loading capacity and biocompatibility. However, the limited variety of electroactive COFs used as signal probes, fewer enriched signaling molecules, weaker electrical signals generated, and higher oxidation or reduction potentials of electroactive substances, a series of side reactions are easily triggered causing serious interference. To solve the above problems, [Fe(CN)6]<sup>3/4-</sup> as a signal probe and COFs for signal amplification were selected to creating a highly sensitive electrochemical immunosensor for glycan antigen CA125. Firstly, two-dimensional (2D) EP-TD-COF with ultra-high specific surface area was modified on bare GCE, which could covalently bound numerous Ab1 molecules due to the epoxy-rich functional groups. Then, the electropositive AuNPs@2DCOFBTT-DGMH was prepared by the in situ growth of AuNPs, proved an effective platform for loading Ab2 molecules via Au-S bonds. Based on the positively charged AuNPs@COFBTT-DGMH/Ab2 and negatively charged [Fe(CN)6]<sup>3/4-</sup> of electrostatic interactions, which could significantly enchaned signal for quantitative and sensitive detection of CA125. The constructed immunosensor exhibits excellent stability performance and high sensitivity, enabling ultrasensitive detection of trace glycan antigens. This study provided a new idea for the use of non-electroactive substances for the construction of electrochemical immunosensors and provided an effective signal amplification strategy.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127593"},"PeriodicalIF":5.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Measuring the radioactivity of organically bound tritium in environmental samples is difficult. For the past twenty years, many laboratories have been working on the development of reliable tritium measurement methods. In this context, several interlaboratory comparisons have been organised to develop these methods and enable laboratories to compare themselves. However, the trueness of the measurement methods has never been estimated due to the lack of certified reference materials available for use during the analyses. This document presents the production of the first certified reference material for the measurement of organically bound tritium radioactivity in environmental samples.
{"title":"First wheat certified reference material for organically bound tritium measurement in the environment.","authors":"Marielle Crozet, Audrey Bacchetta, Nicolas Baglan, Claire Dalencourt, Yvan Losset, Aurélie Ritt, Véronique Labed, Giacomo Canciani, Sébastien Picart, Cédric Rivier","doi":"10.1016/j.talanta.2025.127515","DOIUrl":"10.1016/j.talanta.2025.127515","url":null,"abstract":"<p><p>Measuring the radioactivity of organically bound tritium in environmental samples is difficult. For the past twenty years, many laboratories have been working on the development of reliable tritium measurement methods. In this context, several interlaboratory comparisons have been organised to develop these methods and enable laboratories to compare themselves. However, the trueness of the measurement methods has never been estimated due to the lack of certified reference materials available for use during the analyses. This document presents the production of the first certified reference material for the measurement of organically bound tritium radioactivity in environmental samples.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127515"},"PeriodicalIF":5.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-01-13DOI: 10.1016/j.talanta.2025.127557
Yue Sun, Minxin Mao, Shengmei Tai, Mengjia Chao, Hengyu Xu, Yina Cai, Chifang Peng, Wei Ma, Zhouping Wang
The low sensitivity of Lateral flow assay (LFA) limits its application in rapid detection for trace targets. LFAs with nanozyme (nanozyme-LFA) as signal labels have demonstrated excellent performance in point of care testing (POCT). However, additional operational steps for substrate catalysis in nanozyme LFA are required, which makes the nanozyme-LFA operation complicated. In this work, we designed a LFA based on delayed substrate release (SGF-LFA), in which a commercialized glass fiber membrane embedded with substrate (SGF) was fixed at the sample pad. The SGF could automatically execute substrate delivery and catalysis, thus eventually achieving a one-step LFA operation for the nucleic acid detection of influenza A virus H1N1. In this SGF-LFA, 3,3 '- diaminobenzidine (DAB) was oxidized and deposited, producing a strong signal amplification under the catalysis of Au@PtNP nanozyme. The SGF-LFA could detect the nucleic acid of H1N1, with a linear range of 0.02-50 nM and a limit of detection (LOD) as low as 0.02 nM, which was 25-fold lower than that of the nanozyme-LFA before catalysis. In addition, the analytical performance was close to that of a manual operation mode of catalysis amplification. The application of SGF-LFA for detecting the H1N1 nucleic acid in serum samples obtained a recovery rate of 96 %-102.7 %, indicating that SGF-LFA has great potential in point-of-care testing.
{"title":"Lateral flow assay with automatic signal amplification based on delayed substrate release.","authors":"Yue Sun, Minxin Mao, Shengmei Tai, Mengjia Chao, Hengyu Xu, Yina Cai, Chifang Peng, Wei Ma, Zhouping Wang","doi":"10.1016/j.talanta.2025.127557","DOIUrl":"10.1016/j.talanta.2025.127557","url":null,"abstract":"<p><p>The low sensitivity of Lateral flow assay (LFA) limits its application in rapid detection for trace targets. LFAs with nanozyme (nanozyme-LFA) as signal labels have demonstrated excellent performance in point of care testing (POCT). However, additional operational steps for substrate catalysis in nanozyme LFA are required, which makes the nanozyme-LFA operation complicated. In this work, we designed a LFA based on delayed substrate release (SGF-LFA), in which a commercialized glass fiber membrane embedded with substrate (SGF) was fixed at the sample pad. The SGF could automatically execute substrate delivery and catalysis, thus eventually achieving a one-step LFA operation for the nucleic acid detection of influenza A virus H1N1. In this SGF-LFA, 3,3 '- diaminobenzidine (DAB) was oxidized and deposited, producing a strong signal amplification under the catalysis of Au@PtNP nanozyme. The SGF-LFA could detect the nucleic acid of H1N1, with a linear range of 0.02-50 nM and a limit of detection (LOD) as low as 0.02 nM, which was 25-fold lower than that of the nanozyme-LFA before catalysis. In addition, the analytical performance was close to that of a manual operation mode of catalysis amplification. The application of SGF-LFA for detecting the H1N1 nucleic acid in serum samples obtained a recovery rate of 96 %-102.7 %, indicating that SGF-LFA has great potential in point-of-care testing.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127557"},"PeriodicalIF":5.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-01-10DOI: 10.1016/j.talanta.2025.127571
Sean Power, Louis Free, Ciprian Briciu-Burghina, Chloe Richards, Adrian Delgado, Elena Gomez-Alvarez, Nigel Kent, Fiona Regan
Anthropogenic activities have led to increased stress on our marine and other aquatic environments. There is a pressing need to monitor, measure, understand and mitigate causes of these pressures. This paper presents a novel optical head for monitoring and measuring marine based optical phenomena. The development and preliminary testing of the optical head were designed to detect optically active constituents in the marine and coastal environments. Potential applications may include the detection of Harmful Algal Blooms (HAB), which due to their production of toxins have deleterious effects on marine ecosystems, dissolved organic matter (DOM), oil spills, through the measurement of dissolved fluorescent petroleum compounds and turbidity, a key metric in marine and water quality measurements. Preliminary laboratory based results indicate that the optical head is well suited for measuring in-vivo Chlorophyll a (Chl a) fluorescence, turbidity, fluorescent dissolved organic matter (fDOM) and petroleum. For turbidity and in-vivo Chl a, analytical performance was benchmarked against off-the-shelf commercial sensors. The developed optical head demonstrates good analytical performance with certified reference standards and a very good agreement with the reference instrument.
{"title":"Novel multiparameter optical sensor head design for marine environments.","authors":"Sean Power, Louis Free, Ciprian Briciu-Burghina, Chloe Richards, Adrian Delgado, Elena Gomez-Alvarez, Nigel Kent, Fiona Regan","doi":"10.1016/j.talanta.2025.127571","DOIUrl":"10.1016/j.talanta.2025.127571","url":null,"abstract":"<p><p>Anthropogenic activities have led to increased stress on our marine and other aquatic environments. There is a pressing need to monitor, measure, understand and mitigate causes of these pressures. This paper presents a novel optical head for monitoring and measuring marine based optical phenomena. The development and preliminary testing of the optical head were designed to detect optically active constituents in the marine and coastal environments. Potential applications may include the detection of Harmful Algal Blooms (HAB), which due to their production of toxins have deleterious effects on marine ecosystems, dissolved organic matter (DOM), oil spills, through the measurement of dissolved fluorescent petroleum compounds and turbidity, a key metric in marine and water quality measurements. Preliminary laboratory based results indicate that the optical head is well suited for measuring in-vivo Chlorophyll a (Chl a) fluorescence, turbidity, fluorescent dissolved organic matter (fDOM) and petroleum. For turbidity and in-vivo Chl a, analytical performance was benchmarked against off-the-shelf commercial sensors. The developed optical head demonstrates good analytical performance with certified reference standards and a very good agreement with the reference instrument.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127571"},"PeriodicalIF":5.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-01-10DOI: 10.1016/j.talanta.2025.127567
Nurimangul Muntiza, Wenbin Zhang, Yuzeng Li, Wenquan Ji, Jin Zhao, Hongfeng Zhang, Qinran Li, Qiliang Deng, Donglan Sun, Tianjun Liu
A novel strategy for cytochrome c selective recognition assisted with cucurbit[6]uril by host-guest interaction via N-terminal epitope imprinting and reversible addition-fragmentation chain transfer (RAFT) polymerization was developed. N-terminal nonapeptide of cytochrome c (GI-9) was used as the epitope template to achieve highly selective recognition of cytochrome c. As a common supramolecule in recent years, cucurbit[6]uril can encapsulate the butyrammonium group of lysine residue to capture the peptide and improve the corresponding spatial orientation by the host-guest interaction for GI-9 or cytochrome c recognition. After cucurbit[6]uril modification and epitope immobilization, the imprinted polymer was synthesized by RAFT polymerization with 2-dodecylsulfanylcarbothioylsulfanyl-2-methylpropanoic acid as chain transfer agent. After template removal, the obtained imprinted particles showed good binding ability to GI-9 (20.28 mg g-1, IF = 4.11) and cytochrome c (36.12 mg g-1, IF = 3.91). With the successive addition of cucurbit[6]uril and RAFT agent, the step-by-step improvement of the IF for cytochrome c recognition further illustrated the effects of supramolecular host-guest interaction and regulation of imprinted polymer chain. The imprinted polymers showed obvious advantages for cytochrome c recognition compared to competitive proteins and had good reusability with the repeated reproduction rate 80.8 % after five cycles of adsorption and desorption. Furthermore, the selective recognition for cytochrome c in adult bovine serum proved its potentiality to be applied in practical samples. All these results demonstrated that the combination of epitope imprinting, cucurbit[6]uril host-guest interaction and RAFT strategy presented an efficient new feasible control method for protein recognition with good selectivity, stability and reusability.
提出了一种通过n端表位印迹和可逆加成-片段链转移(RAFT)聚合的宿主-客体相互作用辅助细胞色素c选择性识别的新策略。以细胞色素c的n端非肽(GI-9)作为表位模板,实现对细胞色素c的高选择性识别。作为近年来常见的超分子,葫芦[6]uril可以包封赖氨酸残基的丁铵基来捕获肽,并通过主客体相互作用提高相应的空间取向,从而实现对GI-9或细胞色素c的识别。以2-十二烷基磺酰碳硫基磺酰-2-甲基丙烷酸为链转移剂,通过RAFT聚合法制备印迹聚合物。模板去除后,印迹颗粒对GI-9 (20.28 mg g-1, IF = 4.11)和细胞色素c (36.12 mg g-1, IF = 3.91)具有良好的结合能力。随着瓜b[6]uril和RAFT试剂的相继加入,IF对细胞色素c识别的逐步提高进一步说明了超分子主客体相互作用和印迹聚合物链调控的作用。印迹聚合物对细胞色素c的识别能力明显优于竞争蛋白,并且具有良好的重复利用性,经过5次吸附和解吸后,重复繁殖率达到80.8%。此外,对成年牛血清中细胞色素c的选择性识别也证明了该方法在实际样品中的应用潜力。这些结果表明,表位印迹、瓜bbbbil宿主-客体相互作用和RAFT策略相结合是一种高效可行的蛋白质识别控制新方法,具有良好的选择性、稳定性和可重用性。
{"title":"Cucurbit[6]uril host-guest interaction assisted N-terminal epitope imprinted particles for cytochrome c recognition prepared by reversible addition-fragmentation chain transfer strategy.","authors":"Nurimangul Muntiza, Wenbin Zhang, Yuzeng Li, Wenquan Ji, Jin Zhao, Hongfeng Zhang, Qinran Li, Qiliang Deng, Donglan Sun, Tianjun Liu","doi":"10.1016/j.talanta.2025.127567","DOIUrl":"10.1016/j.talanta.2025.127567","url":null,"abstract":"<p><p>A novel strategy for cytochrome c selective recognition assisted with cucurbit[6]uril by host-guest interaction via N-terminal epitope imprinting and reversible addition-fragmentation chain transfer (RAFT) polymerization was developed. N-terminal nonapeptide of cytochrome c (GI-9) was used as the epitope template to achieve highly selective recognition of cytochrome c. As a common supramolecule in recent years, cucurbit[6]uril can encapsulate the butyrammonium group of lysine residue to capture the peptide and improve the corresponding spatial orientation by the host-guest interaction for GI-9 or cytochrome c recognition. After cucurbit[6]uril modification and epitope immobilization, the imprinted polymer was synthesized by RAFT polymerization with 2-dodecylsulfanylcarbothioylsulfanyl-2-methylpropanoic acid as chain transfer agent. After template removal, the obtained imprinted particles showed good binding ability to GI-9 (20.28 mg g<sup>-1</sup>, IF = 4.11) and cytochrome c (36.12 mg g<sup>-1</sup>, IF = 3.91). With the successive addition of cucurbit[6]uril and RAFT agent, the step-by-step improvement of the IF for cytochrome c recognition further illustrated the effects of supramolecular host-guest interaction and regulation of imprinted polymer chain. The imprinted polymers showed obvious advantages for cytochrome c recognition compared to competitive proteins and had good reusability with the repeated reproduction rate 80.8 % after five cycles of adsorption and desorption. Furthermore, the selective recognition for cytochrome c in adult bovine serum proved its potentiality to be applied in practical samples. All these results demonstrated that the combination of epitope imprinting, cucurbit[6]uril host-guest interaction and RAFT strategy presented an efficient new feasible control method for protein recognition with good selectivity, stability and reusability.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127567"},"PeriodicalIF":5.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-01-13DOI: 10.1016/j.talanta.2025.127586
Dan Meng, Li Ma, Lei Zhang, Xiaoguang San, Zongsheng Xie, Quan Jin, Jian Qi
Formaldehyde (HCHO) is a harmful volatile organic pollutant, which is commonly found in interior decoration and furniture products. Therefore, it is necessary to develop a gas sensor that can quickly and accurately detect formaldehyde for human health and environmental protection. In order to achieve this goal, in this work, SnS2/SnO2 heterostructure was synthesized by in-situ sulfurization process on the basis of SnO2 nanospheres, and its formaldehyde sensing performance was studied. After testing, it was found that the gas sensor based on SnS2/SnO2 heterojunction has more excellent gas sensing performance than pure SnO2 gas sensor at the same operating temperature (100 °C). Specifically, SnS2/SnO2-2 (Sn:S = 3:2) has the advantages of high sensitivity (4.01 at 0.1 ppm), excellent selectivity, low theoretical detection limit (13.26 ppb), good humidity resistance and long-term stability. The excellent sensing performance of SnS2/SnO2 sensors for formaldehyde detection is mainly attributed to the n-n heterojunction formed by SnS2 and SnO2, which generates a built-in electric field to accelerate the electron transport in the material, the higher oxygen vacancy sites adsorb a large number of reactive gas molecules to promote the oxidation of formaldehyde molecules, and the unique porous structure to promote the transmission and diffusion of gases and increase the surface area to provide more adsorption sites and reactive centers for gas molecules. Therefore, the construction of SnS2/SnO2 heterostructures will be an effective way to develop next-generation formaldehyde gas sensors with higher sensing performance.
{"title":"Oxygen vacancy and interface effect dual modulation of SnS<sub>2</sub>/SnO<sub>2</sub> heterojunction for boosting formaldehyde detection at low temperature.","authors":"Dan Meng, Li Ma, Lei Zhang, Xiaoguang San, Zongsheng Xie, Quan Jin, Jian Qi","doi":"10.1016/j.talanta.2025.127586","DOIUrl":"10.1016/j.talanta.2025.127586","url":null,"abstract":"<p><p>Formaldehyde (HCHO) is a harmful volatile organic pollutant, which is commonly found in interior decoration and furniture products. Therefore, it is necessary to develop a gas sensor that can quickly and accurately detect formaldehyde for human health and environmental protection. In order to achieve this goal, in this work, SnS<sub>2</sub>/SnO<sub>2</sub> heterostructure was synthesized by in-situ sulfurization process on the basis of SnO<sub>2</sub> nanospheres, and its formaldehyde sensing performance was studied. After testing, it was found that the gas sensor based on SnS<sub>2</sub>/SnO<sub>2</sub> heterojunction has more excellent gas sensing performance than pure SnO<sub>2</sub> gas sensor at the same operating temperature (100 °C). Specifically, SnS<sub>2</sub>/SnO<sub>2</sub>-2 (Sn:S = 3:2) has the advantages of high sensitivity (4.01 at 0.1 ppm), excellent selectivity, low theoretical detection limit (13.26 ppb), good humidity resistance and long-term stability. The excellent sensing performance of SnS<sub>2</sub>/SnO<sub>2</sub> sensors for formaldehyde detection is mainly attributed to the n-n heterojunction formed by SnS<sub>2</sub> and SnO<sub>2</sub>, which generates a built-in electric field to accelerate the electron transport in the material, the higher oxygen vacancy sites adsorb a large number of reactive gas molecules to promote the oxidation of formaldehyde molecules, and the unique porous structure to promote the transmission and diffusion of gases and increase the surface area to provide more adsorption sites and reactive centers for gas molecules. Therefore, the construction of SnS<sub>2</sub>/SnO<sub>2</sub> heterostructures will be an effective way to develop next-generation formaldehyde gas sensors with higher sensing performance.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127586"},"PeriodicalIF":5.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-01-08DOI: 10.1016/j.talanta.2025.127560
Yuxiang Du, Qianwen Zhang, Huaxiong Wu, Xiaohuan Liu, Genqiang Chen, Yuesong Liang, Qi Li, Yangxin Gu, Minghui Zhang, Hongxing Wang
Glucose detection is crucial for diagnosis, prevention and treatment of diabetes mellitus. In this work, 10 nm Al2O3 thin film was introduced on the channel of diamond solution-gate field-effect transistor (SGFET) to improve the performance of glucose detection. AFM results show the roughness of channel surface increased after Al2O3 thin film deposition. Then, 1-pyrenebutyric acid-N-hydroxy succinimide ester (Pyr-NHS) and glucose oxidase (GOD) were linked on the channel. The morphology after each modification step was evaluated by SEM, and the result indicated an uneven Al2O3 distribution. XPS spectra further confirmed the effective modification of Pyr-NHS and GOD. In addition, the shifts of transfer characteristics for each concentration of glucose were analyzed, which illustrated a wide linear response (10-8-10-2 M), a high sensitivity (-44.01 mV/log10[glucose concentration]) and a low detection limitation (10-8 M). All these results show an excellent detection performance, which may provide a new idea for the design of diamond SGFET biosensor.
血糖检测对糖尿病的诊断、预防和治疗至关重要。本文在金刚石溶液栅场效应晶体管(SGFET)的沟道上引入10nm Al2O3薄膜,以提高葡萄糖检测的性能。AFM结果表明,Al2O3薄膜沉积后,沟道表面粗糙度增大。然后在通道上连接1-芘丁酸- n -羟基琥珀酰亚胺酯(Pyr-NHS)和葡萄糖氧化酶(GOD)。通过SEM对各改性步骤后的形貌进行了分析,结果表明Al2O3的分布不均匀。XPS光谱进一步证实了Pyr-NHS和GOD的有效修饰。此外,还分析了不同葡萄糖浓度下转移特性的变化,显示出宽线性响应(10-8-10-2 M)、高灵敏度(-44.01 mV/log10[葡萄糖浓度])和低检测限(10-8 M),这些结果显示出良好的检测性能,这可能为金刚石SGFET生物传感器的设计提供新的思路。
{"title":"Improvement of glucose detection using 10 nm Al<sub>2</sub>O<sub>3</sub> thin film on diamond solution-gate field-effect transistor.","authors":"Yuxiang Du, Qianwen Zhang, Huaxiong Wu, Xiaohuan Liu, Genqiang Chen, Yuesong Liang, Qi Li, Yangxin Gu, Minghui Zhang, Hongxing Wang","doi":"10.1016/j.talanta.2025.127560","DOIUrl":"10.1016/j.talanta.2025.127560","url":null,"abstract":"<p><p>Glucose detection is crucial for diagnosis, prevention and treatment of diabetes mellitus. In this work, 10 nm Al<sub>2</sub>O<sub>3</sub> thin film was introduced on the channel of diamond solution-gate field-effect transistor (SGFET) to improve the performance of glucose detection. AFM results show the roughness of channel surface increased after Al<sub>2</sub>O<sub>3</sub> thin film deposition. Then, 1-pyrenebutyric acid-N-hydroxy succinimide ester (Pyr-NHS) and glucose oxidase (GOD) were linked on the channel. The morphology after each modification step was evaluated by SEM, and the result indicated an uneven Al<sub>2</sub>O<sub>3</sub> distribution. XPS spectra further confirmed the effective modification of Pyr-NHS and GOD. In addition, the shifts of transfer characteristics for each concentration of glucose were analyzed, which illustrated a wide linear response (10<sup>-8</sup>-10<sup>-2</sup> M), a high sensitivity (-44.01 mV/log<sub>10</sub>[glucose concentration]) and a low detection limitation (10<sup>-8</sup> M). All these results show an excellent detection performance, which may provide a new idea for the design of diamond SGFET biosensor.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127560"},"PeriodicalIF":5.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-01-13DOI: 10.1016/j.talanta.2025.127554
Lingyue Guo, Libo Li, Lijun Luo, Tianyan You
Searching for new alternative to tripropylamine (TPrA) with low toxicity and high chemical stability for the tris(4,4'-dicarboxylic acid-2,2'-bipyridyl)ruthenium (II) (Ru(dcbpy)32+) based coreactant electrochemiluminescence (ECL) system is essential for widespread analytical applications. Here, nitrogen-doped graphene quantum dots (NGQDs) have been discovered to significantly amplify the ECL emission and increase the ECL efficiency of Ru(dcbpy)32+ for the first time. However, the mechanism by which NGQDs act as coreactants is not well comprehended. Therefore, various optical and electrochemical technologies were employed to investigate the ECL mechanism. It is proposed that the amino and carboxyl groups on the surface of NGQDs play crucial roles as the coreactant active sites, catalyzing the oxidation of Ru(dcbpy)32+. Based on this foundation, an "on-off-on" ECL aptasensor for the quantification of acetamiprid was developed, exhibiting a broad linear range and a detection limit of 0.056 pM. Satisfactory recoveries, ranging from 98.0 % to 101.6 %, were achieved in pakchoi samples. Consequently, NGQDs could serve as coreactants for Ru(dcbpy)32+, offering new opportunities for constructing a variety of sensors with extensive analytical applications in the ECL field.
{"title":"Amplified electrochemiluminescence of Ru(dcbpy)<sub>3</sub><sup>2+</sup> via coreactant active sites on nitrogen-doped graphene quantum dots.","authors":"Lingyue Guo, Libo Li, Lijun Luo, Tianyan You","doi":"10.1016/j.talanta.2025.127554","DOIUrl":"10.1016/j.talanta.2025.127554","url":null,"abstract":"<p><p>Searching for new alternative to tripropylamine (TPrA) with low toxicity and high chemical stability for the tris(4,4'-dicarboxylic acid-2,2'-bipyridyl)ruthenium (II) (Ru(dcbpy)<sub>3</sub><sup>2+</sup>) based coreactant electrochemiluminescence (ECL) system is essential for widespread analytical applications. Here, nitrogen-doped graphene quantum dots (NGQDs) have been discovered to significantly amplify the ECL emission and increase the ECL efficiency of Ru(dcbpy)<sub>3</sub><sup>2+</sup> for the first time. However, the mechanism by which NGQDs act as coreactants is not well comprehended. Therefore, various optical and electrochemical technologies were employed to investigate the ECL mechanism. It is proposed that the amino and carboxyl groups on the surface of NGQDs play crucial roles as the coreactant active sites, catalyzing the oxidation of Ru(dcbpy)<sub>3</sub><sup>2+</sup>. Based on this foundation, an \"on-off-on\" ECL aptasensor for the quantification of acetamiprid was developed, exhibiting a broad linear range and a detection limit of 0.056 pM. Satisfactory recoveries, ranging from 98.0 % to 101.6 %, were achieved in pakchoi samples. Consequently, NGQDs could serve as coreactants for Ru(dcbpy)<sub>3</sub><sup>2+</sup>, offering new opportunities for constructing a variety of sensors with extensive analytical applications in the ECL field.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127554"},"PeriodicalIF":5.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photocatalytic reduction of CO2 to valuable chemicals is an effective strategy to address the environmental problems and energy crisis. Covalent organic frameworks (COFs) are emerging materials known for their excellent diverse properties, albeit limited by special synthetic methods, including high temperature (120 °C) and the necessity of inert gas atmosphere. Herein, a novel synthesis method under room temperature and air was optimized to form TpPa-COF (TP-COF) by p-phenylenediamine (Pa) and 2,4,6-triformyl phloroglucinol (Tp) through electrostatic self-assembly. To further expand the application scope of TP-COF, a heterojunction structure was constructed by in-situ growth of TP-COF onto TiO2 to form TiO2@TP-COF. In the photocatalytic CO2 reaction of TiO2@TP-COF composites, TiO2 acts as a reduction site to reduce CO2 to CO, and triethanolamine (TEOA) acts as a hole-sacrificing reagent. It was demonstrated by in situ X-ray photoelectron spectroscopy (XPS) that the direction of electron transfer in the TiO2@TP-COF composites flowed from TP-COF to TiO2. Meanwhile, TEOA on TP-COF was oxidized to consume holes and produce protons for the reduction of CO2. Combining the advantages of organic and inorganic semiconductors, the heterojunction structure effectively improves the photocatalytic properties of TiO2@TP-COF under visible light irradiation. TiO2@TP-COF demonstrates a remarkable photocatalytic CO2 reduction rate of 133.37 μmol/g/h at λ = 420 nm, which is 3.19 and 2.88 times higher than that of TP-COF and TiO2, respectively, while exhibiting a selectivity of 73 % for CO. This convenient method of synthesizing TiO2@TP-COF catalysts will open up new perspectives for future COF-based materials.
{"title":"Sea urchin-like covalent organic frameworks/TiO<sub>2</sub> heterostructure for enhanced photocatalytic CO<sub>2</sub> conversion.","authors":"Xin Zhao, Qianxi Liu, Qi Li, Yihang Yin, Mang Zheng, Fanqi Luo, Huiquan Gu, Baojiang Jiang","doi":"10.1016/j.jcis.2025.01.231","DOIUrl":"10.1016/j.jcis.2025.01.231","url":null,"abstract":"<p><p>Photocatalytic reduction of CO<sub>2</sub> to valuable chemicals is an effective strategy to address the environmental problems and energy crisis. Covalent organic frameworks (COFs) are emerging materials known for their excellent diverse properties, albeit limited by special synthetic methods, including high temperature (120 °C) and the necessity of inert gas atmosphere. Herein, a novel synthesis method under room temperature and air was optimized to form TpPa-COF (TP-COF) by p-phenylenediamine (Pa) and 2,4,6-triformyl phloroglucinol (Tp) through electrostatic self-assembly. To further expand the application scope of TP-COF, a heterojunction structure was constructed by in-situ growth of TP-COF onto TiO<sub>2</sub> to form TiO<sub>2</sub>@TP-COF. In the photocatalytic CO<sub>2</sub> reaction of TiO<sub>2</sub>@TP-COF composites, TiO<sub>2</sub> acts as a reduction site to reduce CO<sub>2</sub> to CO, and triethanolamine (TEOA) acts as a hole-sacrificing reagent. It was demonstrated by in situ X-ray photoelectron spectroscopy (XPS) that the direction of electron transfer in the TiO<sub>2</sub>@TP-COF composites flowed from TP-COF to TiO<sub>2</sub>. Meanwhile, TEOA on TP-COF was oxidized to consume holes and produce protons for the reduction of CO<sub>2</sub>. Combining the advantages of organic and inorganic semiconductors, the heterojunction structure effectively improves the photocatalytic properties of TiO<sub>2</sub>@TP-COF under visible light irradiation. TiO<sub>2</sub>@TP-COF demonstrates a remarkable photocatalytic CO<sub>2</sub> reduction rate of 133.37 μmol/g/h at λ = 420 nm, which is 3.19 and 2.88 times higher than that of TP-COF and TiO<sub>2</sub>, respectively, while exhibiting a selectivity of 73 % for CO. This convenient method of synthesizing TiO<sub>2</sub>@TP-COF catalysts will open up new perspectives for future COF-based materials.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"1068-1076"},"PeriodicalIF":9.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143062674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polymers and dendrimers are macromolecules, possessing unique and intriguing characteristics, that are widely applied in self-assembled functional materials, green catalysis, drug delivery and sensing devices. Traditional approaches for the structural characterization of polymers and dendrimers involve DLS, GPC, NMR, IR and TG, which provide their physiochemical features and ensemble information, whereas their unimolecular conformation and dispersion also are key features allowing to understand their transporting profile in confined ionic nanochannels. This work demonstrates the nanopore approach for the determination of charged homopolymers, neutral block copolymer and dendrimers under distinct bias potentials and pH conditions. The nanopore translocation properties reveal that the dispersion and transporting of PEI is pH-dependent, and its capture rate is much lower than that of PAA. The neutral block copolymer with longest molecular chain threads through with longest blockage duration, its highest capture rate was achieved in 0.5 M KCl at pH 5 with slow diffusion and high temporal resolution. The two generations of neutral dendrimers could also translocate under bias potentials, probably due to the ions adsorption on the dendrimers and driven by Brownian force. The TEG-81 with larger molecular size translocates with longer residence time and higher blockage ratio, as expected. Both of the dendrimers exhibit a higher blockage ratio at pH 7.4 than either acidic or alkalic condition, indicating a larger stretched conformation adopted under neutral condition. This work presents the analysis of unimolecular charged and neutral polymers and dendrimers, which will be insightful in understanding the self-assembly motion and transfer of synthetic macromolecules in confined space. It also provides a good indication for deciphering the macromolecule-nanopore interplay under electrophoretic condition.
高分子和树状大分子具有独特而有趣的特性,广泛应用于自组装功能材料、绿色催化、药物传递和传感器件等领域。聚合物和树状大分子结构表征的传统方法包括DLS、GPC、NMR、IR和TG,这些方法提供了它们的物理化学特征和系综信息,而它们的单分子构象和分散也是了解它们在受限离子纳米通道中的传输特征的关键特征。这项工作证明了纳米孔方法在不同偏压电位和pH条件下测定带电均聚物、中性嵌段共聚物和树状大分子。纳米孔易位特性表明PEI的分散和输运是ph依赖性的,其捕获率远低于PAA。中性嵌段共聚物分子链最长,阻滞时间最长,在0.5 M KCl、pH 5条件下捕获率最高,扩散速度慢,时间分辨率高。两代中性树状大分子在偏置电位下也会发生转移,这可能是由于离子吸附在树状大分子上,并受到布朗力的驱动。分子尺寸较大的TEG-81易位停留时间较长,堵塞率较高。两种树状大分子在pH 7.4条件下均表现出比酸性或碱性条件下更高的堵塞率,表明在中性条件下采用了更大的拉伸构象。这项工作提出了单分子带电和中性聚合物和树状大分子的分析,这将有助于理解合成大分子在有限空间中的自组装运动和转移。这也为在电泳条件下破译高分子与纳米孔的相互作用提供了良好的指示。
{"title":"Single-molecule resolution of the conformation of polymers and dendrimers with solid-state nanopores.","authors":"Meili Ren, Fupeng Qin, Yue Liu, Daixin Liu, Renata Pereira Lopes, Didier Astruc, Liyuan Liang","doi":"10.1016/j.talanta.2025.127544","DOIUrl":"10.1016/j.talanta.2025.127544","url":null,"abstract":"<p><p>Polymers and dendrimers are macromolecules, possessing unique and intriguing characteristics, that are widely applied in self-assembled functional materials, green catalysis, drug delivery and sensing devices. Traditional approaches for the structural characterization of polymers and dendrimers involve DLS, GPC, NMR, IR and TG, which provide their physiochemical features and ensemble information, whereas their unimolecular conformation and dispersion also are key features allowing to understand their transporting profile in confined ionic nanochannels. This work demonstrates the nanopore approach for the determination of charged homopolymers, neutral block copolymer and dendrimers under distinct bias potentials and pH conditions. The nanopore translocation properties reveal that the dispersion and transporting of PEI is pH-dependent, and its capture rate is much lower than that of PAA. The neutral block copolymer with longest molecular chain threads through with longest blockage duration, its highest capture rate was achieved in 0.5 M KCl at pH 5 with slow diffusion and high temporal resolution. The two generations of neutral dendrimers could also translocate under bias potentials, probably due to the ions adsorption on the dendrimers and driven by Brownian force. The TEG-81 with larger molecular size translocates with longer residence time and higher blockage ratio, as expected. Both of the dendrimers exhibit a higher blockage ratio at pH 7.4 than either acidic or alkalic condition, indicating a larger stretched conformation adopted under neutral condition. This work presents the analysis of unimolecular charged and neutral polymers and dendrimers, which will be insightful in understanding the self-assembly motion and transfer of synthetic macromolecules in confined space. It also provides a good indication for deciphering the macromolecule-nanopore interplay under electrophoretic condition.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127544"},"PeriodicalIF":5.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}