Pub Date : 2011-04-18DOI: 10.1109/ESIME.2011.5765861
W. Kanert
Reliability requirements for semiconductor devices have increased tremendously in the past years. However, product qualification is still dominated by standard stress test procedures. Despite improved approaches that have entered the discussion recently, testing alone will not suffice to prove very low failure rates. Understanding of the device behaviour together with physical modelling is indispensable. Simulation plays a key role in this undertaking.
{"title":"Reliability of semiconductor devices - The need for simulation","authors":"W. Kanert","doi":"10.1109/ESIME.2011.5765861","DOIUrl":"https://doi.org/10.1109/ESIME.2011.5765861","url":null,"abstract":"Reliability requirements for semiconductor devices have increased tremendously in the past years. However, product qualification is still dominated by standard stress test procedures. Despite improved approaches that have entered the discussion recently, testing alone will not suffice to prove very low failure rates. Understanding of the device behaviour together with physical modelling is indispensable. Simulation plays a key role in this undertaking.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127793722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-04-18DOI: 10.1109/ESIME.2011.5765831
M. Pander, S. Dietrich, S. Schulze, U. Eitner, M. Ebert
This paper is proposed to enhance the mechanical simulation model for crystalline solar modules by implementing the viscoelastic behaviour of the encapsulation material ethylene-vinyl acetate (EVA). The material is characterized by thermo-mechanical analysis (TMA) experiments. Utilizing time-temperature superposition techniques a master-curve is constructed and the coefficients for the Williams-Landel-Ferry (WLF)-function are determined. This experimental data is transfered into a numerical representation and validated with creep bending tests of glass-polymer-glass-laminates. In the final step the viscoelastic model is used for calculating the cell displacement during the lamination process, followed by thermal cycling. The results for thermal cycling are compared with an optical cell-displacement measurement within a photovoltaic (PV) module [1].
{"title":"Thermo-mechanical assessment of solar cell displacement with respect to the viscoelastic behaviour of the encapsulant","authors":"M. Pander, S. Dietrich, S. Schulze, U. Eitner, M. Ebert","doi":"10.1109/ESIME.2011.5765831","DOIUrl":"https://doi.org/10.1109/ESIME.2011.5765831","url":null,"abstract":"This paper is proposed to enhance the mechanical simulation model for crystalline solar modules by implementing the viscoelastic behaviour of the encapsulation material ethylene-vinyl acetate (EVA). The material is characterized by thermo-mechanical analysis (TMA) experiments. Utilizing time-temperature superposition techniques a master-curve is constructed and the coefficients for the Williams-Landel-Ferry (WLF)-function are determined. This experimental data is transfered into a numerical representation and validated with creep bending tests of glass-polymer-glass-laminates. In the final step the viscoelastic model is used for calculating the cell displacement during the lamination process, followed by thermal cycling. The results for thermal cycling are compared with an optical cell-displacement measurement within a photovoltaic (PV) module [1].","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131930456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-04-18DOI: 10.1109/ESIME.2011.5765809
G. de Graaf, Huaiwen Wu, R. Wolffenbuttel
In this work an analytical model for static and dynamic thermal analysis of heated thin bridges, membranes or cantilevers is presented. The analysis includes the thermal conductivity of the surrounding gas, which cannot be neglected in most MEMS devices. The model is based on Laplace transformation of the heat equations and on the Thermal Quadrupole Method. A one-dimensional approximation using these methods results in practical sets of equations that can be roughly evaluated by hand for feasibility studies of a design. Further evaluation can be done by some basic matrix operations, e.g. analytically by Mathematica or numerically using MATLAB. Plots of these functions can provide the designer with insight on the thermal behavior of the structure, without the use of finite element calculations.
{"title":"A model for static and dynamic thermal analysis of thin film MEMS structures including the thermal conductivity of the surrounding gas","authors":"G. de Graaf, Huaiwen Wu, R. Wolffenbuttel","doi":"10.1109/ESIME.2011.5765809","DOIUrl":"https://doi.org/10.1109/ESIME.2011.5765809","url":null,"abstract":"In this work an analytical model for static and dynamic thermal analysis of heated thin bridges, membranes or cantilevers is presented. The analysis includes the thermal conductivity of the surrounding gas, which cannot be neglected in most MEMS devices. The model is based on Laplace transformation of the heat equations and on the Thermal Quadrupole Method. A one-dimensional approximation using these methods results in practical sets of equations that can be roughly evaluated by hand for feasibility studies of a design. Further evaluation can be done by some basic matrix operations, e.g. analytically by Mathematica or numerically using MATLAB. Plots of these functions can provide the designer with insight on the thermal behavior of the structure, without the use of finite element calculations.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134163230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-04-18DOI: 10.1109/ESIME.2011.5765761
S. Chaparala, V. Bhagavatula, J. Himmelreich
Micro-projector based displays are proposed for information display for a number of consumer devices. These displays would provide larger images than existing fixed Liquid crystal displays. The two major components of micro-projector technology are the Light source and the Imaging technology. Three primary colors, red, blue and green are required to create full color images. The light sources in the projection technology would be semiconductor devices that emit these colors. These devices could be either light emitting diodes (LEDs) or lasers. To enable the laser based projection technology, red and blue lasers are commerically available. Native semiconductor green lasers are still in development. As an alternative, synthetic green light can be produced by passing 1060nm infra-red light emitted from a GaAs based semiconductor laser diode (LD) through second harmonic generation (SHG) crystal, thereby emitting the green light at 530 nm. The current research work proposes bringing the SHG structure in close proximity to the LD, thereby eliminating the use of any optics in between. The proximity coupling approach promises to reduce the number of package components and process cost significantly. This paper presents the mechanical package design, coefficient of thermal expansion based displacement estimates, thermal analysis wherein the thermal impedance is predicted and measured, thermo-mechanical analysis wherein the thermo-mechanical stresses and strains are predicted. Shock modeling has been done to understand the displacements of the waveguides during the shock event. Optical modeling is performed to estimate the coupling efficiency change as a function of lateral and longitudinal offset between the LD and SHG waveguides. Finally, an assembled package that generated green light using this design is presented.
{"title":"Design of athermalized proximity coupled (APC) synthetic green laser opto-electronic package for microprojector displays: Numerical modeling and experiments","authors":"S. Chaparala, V. Bhagavatula, J. Himmelreich","doi":"10.1109/ESIME.2011.5765761","DOIUrl":"https://doi.org/10.1109/ESIME.2011.5765761","url":null,"abstract":"Micro-projector based displays are proposed for information display for a number of consumer devices. These displays would provide larger images than existing fixed Liquid crystal displays. The two major components of micro-projector technology are the Light source and the Imaging technology. Three primary colors, red, blue and green are required to create full color images. The light sources in the projection technology would be semiconductor devices that emit these colors. These devices could be either light emitting diodes (LEDs) or lasers. To enable the laser based projection technology, red and blue lasers are commerically available. Native semiconductor green lasers are still in development. As an alternative, synthetic green light can be produced by passing 1060nm infra-red light emitted from a GaAs based semiconductor laser diode (LD) through second harmonic generation (SHG) crystal, thereby emitting the green light at 530 nm. The current research work proposes bringing the SHG structure in close proximity to the LD, thereby eliminating the use of any optics in between. The proximity coupling approach promises to reduce the number of package components and process cost significantly. This paper presents the mechanical package design, coefficient of thermal expansion based displacement estimates, thermal analysis wherein the thermal impedance is predicted and measured, thermo-mechanical analysis wherein the thermo-mechanical stresses and strains are predicted. Shock modeling has been done to understand the displacements of the waveguides during the shock event. Optical modeling is performed to estimate the coupling efficiency change as a function of lateral and longitudinal offset between the LD and SHG waveguides. Finally, an assembled package that generated green light using this design is presented.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130332747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-04-18DOI: 10.1109/ESIME.2011.5765812
M. Deluca, R. Bermejo, M. Pletz, M. Morianz, J. Stahr, P. Supancic, R. Danzer
The ongoing trend to further miniaturise electronic devices in Printed Circuit Board (PCB) technologies has pointed out the embedding of components as a principal design strategy. The reliability of the PCB relies on the functionality of the embedded components as well as on their structural integrity in order to survive the embedding process. In the present work, the biaxial strength of metallised silicon chips used in PCB technologies has been tested on both the substrate and the metallised side, evidencing a significant influence of the metallic contacts on the strength and the mechanical reliability of the component. Specimens tested with the metallised side under tension underwent an early failure (lower fracture load), whereby a statistical analysis of the strength distribution evidenced the presence of a narrower critical defect size distribution (i.e. higher mechanical reliability). This phenomenon was explained by means of (i) finite elements (FE) simulations of the loading conditions, and (ii) Focussed Ion Beam (FIB) analyses of the metal-silicon interface. It was concluded that the presence of a stress concentration in the interfacial area during loading induces pre-cracks which can act as critical defects upon load enhancement, thus causing failure for a very well defined range of loads.
{"title":"Local strength measurement technique for miniaturised silicon-based components","authors":"M. Deluca, R. Bermejo, M. Pletz, M. Morianz, J. Stahr, P. Supancic, R. Danzer","doi":"10.1109/ESIME.2011.5765812","DOIUrl":"https://doi.org/10.1109/ESIME.2011.5765812","url":null,"abstract":"The ongoing trend to further miniaturise electronic devices in Printed Circuit Board (PCB) technologies has pointed out the embedding of components as a principal design strategy. The reliability of the PCB relies on the functionality of the embedded components as well as on their structural integrity in order to survive the embedding process. In the present work, the biaxial strength of metallised silicon chips used in PCB technologies has been tested on both the substrate and the metallised side, evidencing a significant influence of the metallic contacts on the strength and the mechanical reliability of the component. Specimens tested with the metallised side under tension underwent an early failure (lower fracture load), whereby a statistical analysis of the strength distribution evidenced the presence of a narrower critical defect size distribution (i.e. higher mechanical reliability). This phenomenon was explained by means of (i) finite elements (FE) simulations of the loading conditions, and (ii) Focussed Ion Beam (FIB) analyses of the metal-silicon interface. It was concluded that the presence of a stress concentration in the interfacial area during loading induces pre-cracks which can act as critical defects upon load enhancement, thus causing failure for a very well defined range of loads.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131620132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-04-18DOI: 10.1109/ESIME.2011.5765829
E. Marcault, M. Breil, A. Bourennane, P. Tounsi, P. Dupuy
Based on 2D mechanical and physical simulations, we explore the impact of solder joint ageing at the origin of power assembly failures, on the electrical characteristics of multi IGBT cells. Electrical characteristics variations are analyzed with the aim of using them for health monitoring of embedded power assemblies.
{"title":"Impact of the solder joint ageing on IGBT I–V characteristics using 2D physical simulations","authors":"E. Marcault, M. Breil, A. Bourennane, P. Tounsi, P. Dupuy","doi":"10.1109/ESIME.2011.5765829","DOIUrl":"https://doi.org/10.1109/ESIME.2011.5765829","url":null,"abstract":"Based on 2D mechanical and physical simulations, we explore the impact of solder joint ageing at the origin of power assembly failures, on the electrical characteristics of multi IGBT cells. Electrical characteristics variations are analyzed with the aim of using them for health monitoring of embedded power assemblies.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"79 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133925271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-04-18DOI: 10.1109/ESIME.2011.5765811
H. Karamitaheri, M. Pourfath, R. Faez, H. Kosina
In this work, we present a theoretical investigation of the thermal conductivity of hydrogen-passivated graphene antidot lattices. Using a fourth nearest-neighbor force constant method, we evaluate the phonon dispersion of hydrogen-passivated graphene antidot lattices with circular, hexagonal, rectangular and triangular shapes. Ballistic transport models are used to evaluate the thermal conductivity. The calculations indicate that the thermal conductivity of hydrogen-passivated graphene antidot lattices can be one fourth of that of a pristine graphene sheet. This reduction is stronger for right-triangular and iso-triangular antidots among others, all with the same area, due to longer boundaries and the smallest distance between the neighboring dots.
{"title":"Hydrogen-passivated graphene antidot structures for thermoelectric applications","authors":"H. Karamitaheri, M. Pourfath, R. Faez, H. Kosina","doi":"10.1109/ESIME.2011.5765811","DOIUrl":"https://doi.org/10.1109/ESIME.2011.5765811","url":null,"abstract":"In this work, we present a theoretical investigation of the thermal conductivity of hydrogen-passivated graphene antidot lattices. Using a fourth nearest-neighbor force constant method, we evaluate the phonon dispersion of hydrogen-passivated graphene antidot lattices with circular, hexagonal, rectangular and triangular shapes. Ballistic transport models are used to evaluate the thermal conductivity. The calculations indicate that the thermal conductivity of hydrogen-passivated graphene antidot lattices can be one fourth of that of a pristine graphene sheet. This reduction is stronger for right-triangular and iso-triangular antidots among others, all with the same area, due to longer boundaries and the smallest distance between the neighboring dots.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"154 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133005653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-04-18DOI: 10.1109/ESIME.2011.5765765
L. Siegert, G. Fiannaca, F. Roqueta, G. Gautier, C. Anceau
The aim of this work is to determine a joule heating prediction model for thick copper/Low-k interconnects on glass substrate technology. Experiments and simulations have been used to define thermal conductivities of our stack material from thermal resistance study. In a second time, the thermal resistance is used as quantitative response to predict the joule temperature in the strip. The experimental Rthermic results are well fit with a quadratic model which combined with the thermal coefficient of resistance formalism; allow us to define an analytical temperature joule heating formula. This methodology to define an analytical joule heating formula can be widely used to determine the maximum operating conditions and can be implemented in design rules manuals.
{"title":"Electrothermal prediction model of Cu low k interconnection on glass substrate","authors":"L. Siegert, G. Fiannaca, F. Roqueta, G. Gautier, C. Anceau","doi":"10.1109/ESIME.2011.5765765","DOIUrl":"https://doi.org/10.1109/ESIME.2011.5765765","url":null,"abstract":"The aim of this work is to determine a joule heating prediction model for thick copper/Low-k interconnects on glass substrate technology. Experiments and simulations have been used to define thermal conductivities of our stack material from thermal resistance study. In a second time, the thermal resistance is used as quantitative response to predict the joule temperature in the strip. The experimental Rthermic results are well fit with a quadratic model which combined with the thermal coefficient of resistance formalism; allow us to define an analytical temperature joule heating formula. This methodology to define an analytical joule heating formula can be widely used to determine the maximum operating conditions and can be implemented in design rules manuals.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117235001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-04-18DOI: 10.1109/ESIME.2011.5765847
B. Vandevelde, R. Labie, V. Cherman, T. Webers, C. Winters, E. Beyne, F. Dosseul
Two different flip chip bump configurations have been investigated in terms of their thermo-mechanical, electromigration and fusing behaviour. Standard SAC (SnAgCu) solder bumps with a Ni/Au finish on the chip side are compared with Cu pillar bumps soldered with a thin layer of SnAg alloy. For the test structure, the flip chip assembly is integrated in a BGA package. Finite Element Modelling is used to support the experimental work and explain some of the conclusions.
{"title":"Electromigration, fuse and thermo-mechanical performance of solder bump versus Cu pillar flip chip assemblies","authors":"B. Vandevelde, R. Labie, V. Cherman, T. Webers, C. Winters, E. Beyne, F. Dosseul","doi":"10.1109/ESIME.2011.5765847","DOIUrl":"https://doi.org/10.1109/ESIME.2011.5765847","url":null,"abstract":"Two different flip chip bump configurations have been investigated in terms of their thermo-mechanical, electromigration and fusing behaviour. Standard SAC (SnAgCu) solder bumps with a Ni/Au finish on the chip side are compared with Cu pillar bumps soldered with a thin layer of SnAg alloy. For the test structure, the flip chip assembly is integrated in a BGA package. Finite Element Modelling is used to support the experimental work and explain some of the conclusions.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"519 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116702960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-04-18DOI: 10.1109/ESIME.2011.5765792
E. Weltevreden, M. Erinc, S. Tesarski, A. Wymyslowski, A. Mavinkurve, A. Giele
Delamination of mating interfaces can cause serious reliability problems in different application areas. The causes of delamination are multiple. In the case of leadframe-based chip packages, a critical interface is that between the leadframe and the moulding compound. Delamination can magnify stress levels at the interface and can lead to fatigue of interconnects.
{"title":"A multi-scale approach to the thermo-mechanical behaviour of silica-filled epoxies for electronic packaging","authors":"E. Weltevreden, M. Erinc, S. Tesarski, A. Wymyslowski, A. Mavinkurve, A. Giele","doi":"10.1109/ESIME.2011.5765792","DOIUrl":"https://doi.org/10.1109/ESIME.2011.5765792","url":null,"abstract":"Delamination of mating interfaces can cause serious reliability problems in different application areas. The causes of delamination are multiple. In the case of leadframe-based chip packages, a critical interface is that between the leadframe and the moulding compound. Delamination can magnify stress levels at the interface and can lead to fatigue of interconnects.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"151 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121211292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}