首页 > 最新文献

IEEE Journal of the Electron Devices Society最新文献

英文 中文
Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices 电气和电子工程师学会电子器件期刊》智能传感器系统特刊
IF 2.3 3区 工程技术 Q2 Engineering Pub Date : 2024-06-17 DOI: 10.1109/JEDS.2024.3405552
{"title":"Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices","authors":"","doi":"10.1109/JEDS.2024.3405552","DOIUrl":"https://doi.org/10.1109/JEDS.2024.3405552","url":null,"abstract":"","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10558801","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141334027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Issue on Semiconductor Design for Manufacturing (DFM)Joint Call for Papers 半导体制造设计 (DFM) 特刊 联合征稿
IF 2.3 3区 工程技术 Q2 Engineering Pub Date : 2024-06-17 DOI: 10.1109/JEDS.2024.3412339
{"title":"Special Issue on Semiconductor Design for Manufacturing (DFM)Joint Call for Papers","authors":"","doi":"10.1109/JEDS.2024.3412339","DOIUrl":"https://doi.org/10.1109/JEDS.2024.3412339","url":null,"abstract":"","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10558802","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Call for Nominations Editor-in-Chief IEEE Transactions on Device and Materials Reliability 征集 IEEE《器件与材料可靠性》杂志主编提名
IF 2.3 3区 工程技术 Q2 Engineering Pub Date : 2024-06-17 DOI: 10.1109/JEDS.2024.3369770
{"title":"Call for Nominations Editor-in-Chief IEEE Transactions on Device and Materials Reliability","authors":"","doi":"10.1109/JEDS.2024.3369770","DOIUrl":"https://doi.org/10.1109/JEDS.2024.3369770","url":null,"abstract":"","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10558850","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141334003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partially Isolated Dual Work Function Gate IGZO TFT With Obviously Reduced Leakage Current for 3D DRAMs 为 3D DRAM 提供明显降低漏电流的部分隔离双工作功能栅 IGZO TFT
IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-14 DOI: 10.1109/JEDS.2024.3414469
Yunjiao Bao;Gangping Yan;Lei Cao;Chuqiao Niu;Qingkun Li;Guanqiao Sang;Lianlian Li;Yanzhao Wei;Xuexiang Zhang;Jie Luo;Yanyu Yang;Gaobo Xu;Huaxiang Yin
In this article, a partially isolated dual work function (PIDWF) gate In-Ga-Zn-O (IGZO) thin-film transistor (TFT) is proposed to reduce the off-state current (Ioff) obviously, which also provides a feasible integration method for stacking IGZO TFT on Si-based devices. It is found that compared with the general back gate IGZO TFT structure, the Ioff of the proposed IGZO TFT reduces from $2.57times 10{^{-}14 }$ A/ $mu $ m to $7.57times 10{^{-}16 }$ A/ $mu $ m, achieving two orders of magnitude improvement. This breakthrough has the potential to increase the retention time of DRAM applications by nearly 100 times. Moreover, the pronounced novel structure has mitigated parasitic capacitance, thereby leading to a notable 47.7% reduction in write latency within dynamic-random-access-memory (DRAM) circuits. The relevant operation mechanism is carefully demonstrated and verified by the simulation of the electric field and potential barrier results by technical computer-aided design (TCAD). Furthermore, the impacts of the dual gate work function level, the length, and the type of isolation dielectric between dual work function gates are systematically investigated. The results show that the off-state leakage is further reduced by increasing the difference of the work function levels between in dual gates, the dielectric length (LD) and using the isolation layer with a lower dielectric constant. The PIDWF gate IGZO TFT exhibits scalability and is capable of achieving an 84.6% reduction in leakage current even with ultra-short channel lengths, which offers a promising application for future 3D DRAM applications with little extra cost.
本文提出了一种部分隔离双功函数(PIDWF)栅In-Ga-Zn-O(IGZO)薄膜晶体管(TFT),以明显降低关态电流(Ioff),这也为在硅基器件上堆叠IGZO TFT提供了一种可行的集成方法。研究发现,与一般的背栅IGZO TFT结构相比,所提出的IGZO TFT的Ioff从2.57倍10{^{-}14 }$ A/ $mu $ m降低到7.57倍10{^{-}16 }$ A/ $mu $ m,实现了两个数量级的提升。这一突破有望将 DRAM 应用的保留时间延长近 100 倍。此外,这种明显的新型结构还减轻了寄生电容,从而使动态随机存取存储器(DRAM)电路的写入延迟显著减少了 47.7%。通过技术计算机辅助设计(TCAD)对电场和势垒结果的模拟,对相关的运行机制进行了仔细的论证和验证。此外,还系统地研究了双栅极工作函数水平、长度以及双工作函数栅极之间隔离电介质类型的影响。结果表明,通过增大双栅极之间的功函数级差、介质长度(LD)和使用介电常数较低的隔离层,可以进一步降低离态漏电。PIDWF 栅极 IGZO TFT 具有可扩展性,即使在超短沟道长度的情况下也能将漏电流降低 84.6%,这为未来的 3D DRAM 应用提供了前景广阔的应用前景,而且只需很少的额外成本。
{"title":"Partially Isolated Dual Work Function Gate IGZO TFT With Obviously Reduced Leakage Current for 3D DRAMs","authors":"Yunjiao Bao;Gangping Yan;Lei Cao;Chuqiao Niu;Qingkun Li;Guanqiao Sang;Lianlian Li;Yanzhao Wei;Xuexiang Zhang;Jie Luo;Yanyu Yang;Gaobo Xu;Huaxiang Yin","doi":"10.1109/JEDS.2024.3414469","DOIUrl":"10.1109/JEDS.2024.3414469","url":null,"abstract":"In this article, a partially isolated dual work function (PIDWF) gate In-Ga-Zn-O (IGZO) thin-film transistor (TFT) is proposed to reduce the off-state current (Ioff) obviously, which also provides a feasible integration method for stacking IGZO TFT on Si-based devices. It is found that compared with the general back gate IGZO TFT structure, the Ioff of the proposed IGZO TFT reduces from \u0000<inline-formula> <tex-math>$2.57times 10{^{-}14 }$ </tex-math></inline-formula>\u0000 A/\u0000<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>\u0000 m to \u0000<inline-formula> <tex-math>$7.57times 10{^{-}16 }$ </tex-math></inline-formula>\u0000 A/\u0000<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>\u0000 m, achieving two orders of magnitude improvement. This breakthrough has the potential to increase the retention time of DRAM applications by nearly 100 times. Moreover, the pronounced novel structure has mitigated parasitic capacitance, thereby leading to a notable 47.7% reduction in write latency within dynamic-random-access-memory (DRAM) circuits. The relevant operation mechanism is carefully demonstrated and verified by the simulation of the electric field and potential barrier results by technical computer-aided design (TCAD). Furthermore, the impacts of the dual gate work function level, the length, and the type of isolation dielectric between dual work function gates are systematically investigated. The results show that the off-state leakage is further reduced by increasing the difference of the work function levels between in dual gates, the dielectric length (LD) and using the isolation layer with a lower dielectric constant. The PIDWF gate IGZO TFT exhibits scalability and is capable of achieving an 84.6% reduction in leakage current even with ultra-short channel lengths, which offers a promising application for future 3D DRAM applications with little extra cost.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10557586","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Nitrogen-Based Plasma Passivation on GaN RF HEMTs Using Various Precursors 使用各种前驱体对氮基等离子体钝化 GaN 射频 HEMT 的研究
IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-11 DOI: 10.1109/JEDS.2024.3412186
Qiaoyu Hu;Wei-Chih Cheng;Xiguang Chen;Chenkai Deng;Lina Liao;Wenmao Li;Yang Jiang;Jiaqi He;Yi Zhang;Chuying Tang;Peiran Wang;Kangyao Wen;Fangzhou Du;Yifan Cui;Mujun Li;Wenyue Yu;Robert Sokolovskij;Nick Tao;Qing Wang;Hongyu Yu
This study investigates the DC and RF performance of RF GaN High Electron Mobility Transistors (HEMTs) subjected to surface pretreatments by N2 and N2O plasma. The filling of nitrogen vacancies or the passivation effect introduced by the thin GaON layer result in enhanced DC characteristics and RF performance for devices treated with nitrogen-based plasma. Compared to the untreated device, the device treated with N2 plasma exhibited a significant improvement in performance, i.e., the saturated current increased by approximately 16%, the characteristic frequency (fT) had an increase of 27.6 GHz, the maximum oscillating frequency (fmax) increased by 60.4 GHz. Furthermore, the breakdown voltage had a 10.7% increase, and the dynamic/static on-resistance ratio decreased from 1.34 to 1.18. These results highlight the potential of nitrogen-based plasma treatments in improving the performance of RF GaN HEMTs.
本研究调查了经过 N2 和 N2O 等离子体表面预处理的射频氮化镓高电子迁移率晶体管 (HEMT) 的直流和射频性能。氮空位的填充或氮化镓薄层引入的钝化效应使氮基等离子体处理过的器件具有更强的直流特性和射频性能。与未处理的器件相比,用氮等离子体处理的器件性能有显著提高,即饱和电流提高了约 16%,特性频率(fT)提高了 27.6 GHz,最大振荡频率(fmax)提高了 60.4 GHz。此外,击穿电压增加了 10.7%,动态/静态导通电阻比从 1.34 降至 1.18。这些结果凸显了氮基等离子体处理在提高射频 GaN HEMT 性能方面的潜力。
{"title":"Investigation of Nitrogen-Based Plasma Passivation on GaN RF HEMTs Using Various Precursors","authors":"Qiaoyu Hu;Wei-Chih Cheng;Xiguang Chen;Chenkai Deng;Lina Liao;Wenmao Li;Yang Jiang;Jiaqi He;Yi Zhang;Chuying Tang;Peiran Wang;Kangyao Wen;Fangzhou Du;Yifan Cui;Mujun Li;Wenyue Yu;Robert Sokolovskij;Nick Tao;Qing Wang;Hongyu Yu","doi":"10.1109/JEDS.2024.3412186","DOIUrl":"10.1109/JEDS.2024.3412186","url":null,"abstract":"This study investigates the DC and RF performance of RF GaN High Electron Mobility Transistors (HEMTs) subjected to surface pretreatments by N\u0000<sub>2</sub>\u0000 and N\u0000<sub>2</sub>\u0000O plasma. The filling of nitrogen vacancies or the passivation effect introduced by the thin GaON layer result in enhanced DC characteristics and RF performance for devices treated with nitrogen-based plasma. Compared to the untreated device, the device treated with N\u0000<sub>2</sub>\u0000 plasma exhibited a significant improvement in performance, i.e., the saturated current increased by approximately 16%, the characteristic frequency (f\u0000<sub>T</sub>\u0000) had an increase of 27.6 GHz, the maximum oscillating frequency (f\u0000<sub>max</sub>\u0000) increased by 60.4 GHz. Furthermore, the breakdown voltage had a 10.7% increase, and the dynamic/static on-resistance ratio decreased from 1.34 to 1.18. These results highlight the potential of nitrogen-based plasma treatments in improving the performance of RF GaN HEMTs.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552704","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive Evaluation of Junctionless and Inversion-Mode Nanowire MOSFETs Performance at High Temperatures 全面评估无结和反转模式纳米线 MOSFET 在高温下的性能
IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-05 DOI: 10.1109/JEDS.2024.3409579
Rhaycen R. Prates;Sylvain Barraud;Mikael Cassé;Maud Vinet;Olivier Faynot;Marcelo A. Pavanello
This work aims to perform a comprehensive comparison of the electrical properties of junctionless and inversion-mode nanowires MOSFETS, fabricated with similar gate stack and state-of-art process, in the temperature range from 300 K to 580 K. The comparative analysis is performed through the main electrical parameters of the devices, such as the threshold voltage, subthreshold current and slope, DIBL, conduction current, mobility, and maximum transconductance extracted from experimental data. Devices with different fin widths are compared. It is demonstrated that the inversion-mode nanowire transistors present higher performance with three times higher maximum transconductance and conduction current and twice higher low field mobility than the junctionless’ with a fin width of 10 nm at a fixed temperature. On the other hand, the junctionless nanowire transistors presented higher thermal stability of their electrical parameters with a 75% lower variation of maximum transconductance with temperature, 77% lower maximum transconductance variation with temperature, and 22% lower temperature coefficient of mobility.
本研究旨在全面比较无结和反转模式纳米线 MOSFETS 在 300 K 至 580 K 温度范围内的电气特性,这两种器件均采用类似的栅极堆栈和最先进的工艺制造而成。对不同鳍片宽度的器件进行了比较。结果表明,在固定温度下,反转模式纳米线晶体管具有更高的性能,其最大跨导和传导电流比翅片宽度为 10 纳米的无结晶体管高出三倍,低场迁移率高出两倍。另一方面,无结纳米线晶体管的电气参数具有更高的热稳定性,最大跨导随温度的变化降低了 75%,最大跨导随温度的变化降低了 77%,迁移率的温度系数降低了 22%。
{"title":"Comprehensive Evaluation of Junctionless and Inversion-Mode Nanowire MOSFETs Performance at High Temperatures","authors":"Rhaycen R. Prates;Sylvain Barraud;Mikael Cassé;Maud Vinet;Olivier Faynot;Marcelo A. Pavanello","doi":"10.1109/JEDS.2024.3409579","DOIUrl":"10.1109/JEDS.2024.3409579","url":null,"abstract":"This work aims to perform a comprehensive comparison of the electrical properties of junctionless and inversion-mode nanowires MOSFETS, fabricated with similar gate stack and state-of-art process, in the temperature range from 300 K to 580 K. The comparative analysis is performed through the main electrical parameters of the devices, such as the threshold voltage, subthreshold current and slope, DIBL, conduction current, mobility, and maximum transconductance extracted from experimental data. Devices with different fin widths are compared. It is demonstrated that the inversion-mode nanowire transistors present higher performance with three times higher maximum transconductance and conduction current and twice higher low field mobility than the junctionless’ with a fin width of 10 nm at a fixed temperature. On the other hand, the junctionless nanowire transistors presented higher thermal stability of their electrical parameters with a 75% lower variation of maximum transconductance with temperature, 77% lower maximum transconductance variation with temperature, and 22% lower temperature coefficient of mobility.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10549873","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Interpretability of Neural Compact Models: Toward Reliable Device Modeling 增强神经紧凑模型的可解释性:实现可靠的设备建模
IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-04 DOI: 10.1109/JEDS.2024.3409572
Chanwoo Park;Hyunbo Cho;Jungwoo Lee
Neural Compact Models (NCMs) have emerged as a crucial tool to meet the stringent demands of Design-Technology Co-Optimization (DTCO) and to overcome the complexities and prolonged development cycles encountered in traditional compact model creation. Despite their efficiency in simulating electronic devices, a significant barrier to the widespread adoption of NCMs in the industry remains: the lack of interpretability. In the semiconductor sector, where inaccuracies or failures can lead to considerable financial consequences, it is critical to ensure that the model’s predictions are both understandable and reliable. This study aims to enhance the interpretability of NCMs used for I-V and C-V characterizations by clarifying the physical significance of latent vectors. A regularization technique is employed to disentangle features within the latent space, and interpolation is used to visualize and elucidate each dimension’s physical impact. Our approach, which offers interpretable insights into the model’s functionality, seeks to encourage broader implementation of NCMs in the industry, thus accelerating advancements in DTCO.
神经集成模型 (NCM) 已成为满足设计-技术协同优化 (DTCO) 的严格要求以及克服传统集成模型创建过程中遇到的复杂性和延长开发周期的重要工具。尽管 NCM 在模拟电子设备方面非常高效,但其在行业中的广泛应用仍面临一个重大障碍:缺乏可解释性。在半导体行业,不准确或故障可能导致严重的经济后果,因此确保模型预测的可理解性和可靠性至关重要。本研究旨在通过阐明潜向量的物理意义,提高用于 I-V 和 C-V 特性分析的 NCM 的可解释性。我们采用了正则化技术来分解潜空间内的特征,并使用插值法来直观地阐明每个维度的物理影响。我们的方法为模型的功能提供了可解释的见解,旨在鼓励在行业中更广泛地实施 NCM,从而加快 DTCO 的发展。
{"title":"Enhancing Interpretability of Neural Compact Models: Toward Reliable Device Modeling","authors":"Chanwoo Park;Hyunbo Cho;Jungwoo Lee","doi":"10.1109/JEDS.2024.3409572","DOIUrl":"10.1109/JEDS.2024.3409572","url":null,"abstract":"Neural Compact Models (NCMs) have emerged as a crucial tool to meet the stringent demands of Design-Technology Co-Optimization (DTCO) and to overcome the complexities and prolonged development cycles encountered in traditional compact model creation. Despite their efficiency in simulating electronic devices, a significant barrier to the widespread adoption of NCMs in the industry remains: the lack of interpretability. In the semiconductor sector, where inaccuracies or failures can lead to considerable financial consequences, it is critical to ensure that the model’s predictions are both understandable and reliable. This study aims to enhance the interpretability of NCMs used for I-V and C-V characterizations by clarifying the physical significance of latent vectors. A regularization technique is employed to disentangle features within the latent space, and interpolation is used to visualize and elucidate each dimension’s physical impact. Our approach, which offers interpretable insights into the model’s functionality, seeks to encourage broader implementation of NCMs in the industry, thus accelerating advancements in DTCO.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10547540","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on the Dynamic Characteristics of Hydrogen Plasma Treated p-GaN HEMTs Circuit Using ASM-GaN Model 利用 ASM-GaN 模型研究氢等离子体处理 p-GaN HEMT 电路的动态特性
IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-03 DOI: 10.1109/JEDS.2024.3407098
Fan Li;Shiqiang Wu;Ang Li;Yuhao Zhu;Miao Cui;Jiangmin Gu;Ping Zhang;Yinchao Zhao;Huiqing Wen;Wen Liu
This study demonstrates the first work that achieves accurate modeling of Hydrogen plasmatreated (H-treated) p-GaN gate devices with the ASM-GaN model, facilitating simulations for applications in monolithic integrated circuit (IC) design. The workflow for ASM-GaN model parameter extraction and optimization using IC-CAP is proposed. The I-V characteristics of both Enhancement / Depletion (E/D) mode devices are modeled and fitted. The impact of device capacitance on the dynamic properties of monolithic IC is investigated through the ASM model. The results demonstrate that Cds, Cgd, and Cgs have different effects on the monolithic logic circuit performances. The high-level fitting of experimental data and circuit simulation of Inverter, NAND, and Comparator circuits proves the credibility of the modeling workflow and device capacitance modulation. This work provides a method to speed up the GaN monolithic IC design by accurate modeling with fast parameter extraction workflow regardless of the fabrication process. The reliable prediction of the circuit’s dynamic performance will lay the foundation for designing and scaling up the GaN monolithic IC application.
这项研究首次利用 ASM-GaN 模型实现了氢浆处理(H-treated)p-GaN 栅极器件的精确建模,为单片集成电路(IC)设计中的应用模拟提供了便利。本文提出了使用 IC-CAP 提取和优化 ASM-GaN 模型参数的工作流程。对增强/耗尽(E/D)模式器件的 I-V 特性进行了建模和拟合。通过 ASM 模型研究了器件电容对单片集成电路动态特性的影响。结果表明,Cds、Cgd 和 Cgs 对单片逻辑电路的性能有不同的影响。逆变器、NAND 和比较器电路的实验数据和电路仿真的高水平拟合证明了建模工作流程和器件电容调制的可信度。这项工作提供了一种方法,通过精确建模和快速参数提取工作流程来加快氮化镓单片集成电路的设计,而不受制造工艺的影响。电路动态性能的可靠预测将为设计和扩大氮化镓单片集成电路应用奠定基础。
{"title":"Investigation on the Dynamic Characteristics of Hydrogen Plasma Treated p-GaN HEMTs Circuit Using ASM-GaN Model","authors":"Fan Li;Shiqiang Wu;Ang Li;Yuhao Zhu;Miao Cui;Jiangmin Gu;Ping Zhang;Yinchao Zhao;Huiqing Wen;Wen Liu","doi":"10.1109/JEDS.2024.3407098","DOIUrl":"https://doi.org/10.1109/JEDS.2024.3407098","url":null,"abstract":"This study demonstrates the first work that achieves accurate modeling of Hydrogen plasmatreated (H-treated) p-GaN gate devices with the ASM-GaN model, facilitating simulations for applications in monolithic integrated circuit (IC) design. The workflow for ASM-GaN model parameter extraction and optimization using IC-CAP is proposed. The I-V characteristics of both Enhancement / Depletion (E/D) mode devices are modeled and fitted. The impact of device capacitance on the dynamic properties of monolithic IC is investigated through the ASM model. The results demonstrate that Cds, Cgd, and Cgs have different effects on the monolithic logic circuit performances. The high-level fitting of experimental data and circuit simulation of Inverter, NAND, and Comparator circuits proves the credibility of the modeling workflow and device capacitance modulation. This work provides a method to speed up the GaN monolithic IC design by accurate modeling with fast parameter extraction workflow regardless of the fabrication process. The reliable prediction of the circuit’s dynamic performance will lay the foundation for designing and scaling up the GaN monolithic IC application.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543269","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141474970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A General Toolkit for Advanced Semiconductor Transistors: From Simulation to Machine Learning 先进半导体晶体管通用工具包:从模拟到机器学习
IF 2.3 3区 工程技术 Q2 Engineering Pub Date : 2024-05-16 DOI: 10.1109/jeds.2024.3401852
Antonio J. García-Loureiro, Natalia Seoane, Julian G. Fernández, Enrique Comesaña
{"title":"A General Toolkit for Advanced Semiconductor Transistors: From Simulation to Machine Learning","authors":"Antonio J. García-Loureiro, Natalia Seoane, Julian G. Fernández, Enrique Comesaña","doi":"10.1109/jeds.2024.3401852","DOIUrl":"https://doi.org/10.1109/jeds.2024.3401852","url":null,"abstract":"","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141058923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HCMS: A Hybrid Conductance Modulation Scheme Based on Cell-to-Cell Z-Interference for 3D NAND Neuromorphic Computing HCMS:基于细胞间 Z 干涉的混合电导调制方案,用于 3D NAND 神经形态计算
IF 2.3 3区 工程技术 Q2 Engineering Pub Date : 2024-05-06 DOI: 10.1109/jeds.2024.3397005
Anyi Zhu, Lei Jin, Jianquan Jia, Tianchun Ye, Ming Zeng, Zongliang Huo
{"title":"HCMS: A Hybrid Conductance Modulation Scheme Based on Cell-to-Cell Z-Interference for 3D NAND Neuromorphic Computing","authors":"Anyi Zhu, Lei Jin, Jianquan Jia, Tianchun Ye, Ming Zeng, Zongliang Huo","doi":"10.1109/jeds.2024.3397005","DOIUrl":"https://doi.org/10.1109/jeds.2024.3397005","url":null,"abstract":"","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140882740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal of the Electron Devices Society
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1