Chiplet-based system-on-chip (SoC) architectures, leveraging 2.5-D/3-D integration technologies, provide scalable solutions for a wide range of applications. Achieving high performance and cost-effectiveness in these systems relies heavily on optimizing die-to-die interconnect topologies and designs, which are essential for seamless interchiplet communication. This article introduces a reconfigurable hybrid topology (RHT) architecture designed for chiplet-based multicore systems. RHT achieves high performance and energy efficiency by dynamically reconfiguring the network topology to traffic variations, adaptively selecting transport subnets, and optimizing link bandwidth allocation, thereby minimizing congestion and maximizing packet throughput. Furthermore, RHT leverages global traffic information to dynamically combine Torus loops, maximizing opportunities for rapid packet transmission delivery while guaranteeing minimal hop counts. Moreover, RHT accelerates packet transmission via bufferless combined loops, extending the continuous sleeping periods of routers, improves power gating efficiency, and significantly reduces static power consumption. Simulation results indicate that the Mesh-DyRing achieves over a 40% reduction in network latency and more than a 20% decrease in power consumption overhead compared to the baseline design. When compared to WiNoC, an advanced hybrid wired-wireless topology design, the Mesh-DyRing-PG configuration reduces power consumption by 56.2% while maintaining equivalent average network latency.
基于芯片的系统级芯片(SoC)架构利用2.5 d /3-D集成技术,为广泛的应用提供可扩展的解决方案。在这些系统中实现高性能和成本效益在很大程度上依赖于优化模对模互连拓扑和设计,这对于无缝芯片间通信至关重要。本文介绍了为基于芯片的多核系统设计的可重构混合拓扑(RHT)架构。RHT通过根据流量变化动态地重新配置网络拓扑,自适应地选择传输子网,优化链路带宽分配,从而最大限度地减少拥塞,最大限度地提高数据包吞吐量,从而实现高性能和高能效。此外,RHT利用全球流量信息来动态组合环面环路,在保证最小跳数的同时,最大限度地提高了快速数据包传输的机会。此外,RHT通过无缓冲组合环路加速分组传输,延长路由器的连续休眠时间,提高电源门控效率,显著降低静态功耗。仿真结果表明,与基线设计相比,Mesh-DyRing实现了超过40%的网络延迟减少和超过20%的功耗开销减少。与WiNoC(一种先进的混合有线无线拓扑设计)相比,Mesh-DyRing-PG配置在保持同等平均网络延迟的同时,降低了56.2%的功耗。
{"title":"RHT_NoC: A Reconfigurable Hybrid Topology Architecture for Chiplet-Based Multicore System","authors":"Dongyu Xu;Wu Zhou;Zhengfeng Huang;Huaguo Liang;Xiaoqing Wen","doi":"10.1109/TVLSI.2025.3572112","DOIUrl":"https://doi.org/10.1109/TVLSI.2025.3572112","url":null,"abstract":"Chiplet-based system-on-chip (SoC) architectures, leveraging 2.5-D/3-D integration technologies, provide scalable solutions for a wide range of applications. Achieving high performance and cost-effectiveness in these systems relies heavily on optimizing die-to-die interconnect topologies and designs, which are essential for seamless interchiplet communication. This article introduces a reconfigurable hybrid topology (RHT) architecture designed for chiplet-based multicore systems. RHT achieves high performance and energy efficiency by dynamically reconfiguring the network topology to traffic variations, adaptively selecting transport subnets, and optimizing link bandwidth allocation, thereby minimizing congestion and maximizing packet throughput. Furthermore, RHT leverages global traffic information to dynamically combine Torus loops, maximizing opportunities for rapid packet transmission delivery while guaranteeing minimal hop counts. Moreover, RHT accelerates packet transmission via bufferless combined loops, extending the continuous sleeping periods of routers, improves power gating efficiency, and significantly reduces static power consumption. Simulation results indicate that the Mesh-DyRing achieves over a 40% reduction in network latency and more than a 20% decrease in power consumption overhead compared to the baseline design. When compared to WiNoC, an advanced hybrid wired-wireless topology design, the Mesh-DyRing-PG configuration reduces power consumption by 56.2% while maintaining equivalent average network latency.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 8","pages":"2104-2117"},"PeriodicalIF":2.8,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144704916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-03DOI: 10.1109/TVLSI.2025.3571677
Anastasios Petropoulos;Theodore Antonakopoulos
Deep neural network (DNN) inference relies increasingly on specialized hardware for high computational efficiency. This work introduces a field-programmable gate array (FPGA)-based dynamically configurable accelerator featuring systolic arrays (SAs), high-bandwidth memory (HBM), and UltraRAMs. We present two processing unit (PU) configurations with different computing capabilities using the same interfaces and peripheral blocks. By instantiating multiple PUs and employing a heuristic weight transfer schedule, the architecture achieves notable throughput efficiency over prior works. Moreover, we outline how the architecture can be extended to emulate analog in-memory computing (AIMC) devices to aid next-generation heterogeneous AIMC chip designs and investigate device-level noise behavior. Overall, this brief presents a versatile DNN inference acceleration architecture adaptable to various models and future FPGA designs.
{"title":"A Scalable FPGA Architecture With Adaptive Memory Utilization for GEMM-Based Operations","authors":"Anastasios Petropoulos;Theodore Antonakopoulos","doi":"10.1109/TVLSI.2025.3571677","DOIUrl":"https://doi.org/10.1109/TVLSI.2025.3571677","url":null,"abstract":"Deep neural network (DNN) inference relies increasingly on specialized hardware for high computational efficiency. This work introduces a field-programmable gate array (FPGA)-based dynamically configurable accelerator featuring systolic arrays (SAs), high-bandwidth memory (HBM), and UltraRAMs. We present two processing unit (PU) configurations with different computing capabilities using the same interfaces and peripheral blocks. By instantiating multiple PUs and employing a heuristic weight transfer schedule, the architecture achieves notable throughput efficiency over prior works. Moreover, we outline how the architecture can be extended to emulate analog in-memory computing (AIMC) devices to aid next-generation heterogeneous AIMC chip designs and investigate device-level noise behavior. Overall, this brief presents a versatile DNN inference acceleration architecture adaptable to various models and future FPGA designs.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 8","pages":"2334-2338"},"PeriodicalIF":2.8,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-03DOI: 10.1109/TVLSI.2025.3573045
Zisis Foufas;Vassilis Alimisis;Paul P. Sotiriadis
In this article, a framework for the analog implementation of a deep convolutional neural network (CNN) is introduced and used to derive a new circuit architecture which is composed of an improved analog multiplier and circuit blocks implementing the ReLU activation function and the argmax operator. The operating principles of the individual blocks, as well as those of the complete architecture, are analyzed and used to realize a low-power analog classifier, consuming less than $1.8~mu text {W}$ . The proper operation of the classifier is verified via a comparison with a software equivalent implementation and its performance is evaluated against existing circuit architectures. The proposed architecture is implemented in a TSMC 90-nm CMOS process and simulated using Cadence IC Suite for both schematic and layout design. Corner and Monte Carlo mismatch simulations of the schematic and the physical circuit (postlayout) were conducted to evaluate the effect of transistor mismatches and process voltage temperature (PVT) variations and to showcase a proposed systematic method for offsetting their effect.
本文介绍了一种深度卷积神经网络(CNN)的模拟实现框架,并利用该框架推导了一种新的电路结构,该结构由改进的模拟乘法器和实现ReLU激活函数和argmax算子的电路块组成。分析了各个模块的工作原理,以及整个体系结构的工作原理,并用于实现低功耗模拟分类器,功耗小于1.8~mu text {W}$。通过与软件等效实现的比较验证了分类器的正确运行,并根据现有电路架构评估了其性能。提出的架构在台积电90纳米CMOS工艺中实现,并使用Cadence IC Suite进行原理图和版图设计仿真。对原理图和物理电路(后布局)进行角和蒙特卡罗失配模拟,以评估晶体管失配和工艺电压温度(PVT)变化的影响,并展示一种拟议的系统方法来抵消它们的影响。
{"title":"Design of a Low-Power Analog Integrated Deep Convolutional Neural Network","authors":"Zisis Foufas;Vassilis Alimisis;Paul P. Sotiriadis","doi":"10.1109/TVLSI.2025.3573045","DOIUrl":"https://doi.org/10.1109/TVLSI.2025.3573045","url":null,"abstract":"In this article, a framework for the analog implementation of a deep convolutional neural network (CNN) is introduced and used to derive a new circuit architecture which is composed of an improved analog multiplier and circuit blocks implementing the ReLU activation function and the argmax operator. The operating principles of the individual blocks, as well as those of the complete architecture, are analyzed and used to realize a low-power analog classifier, consuming less than <inline-formula> <tex-math>$1.8~mu text {W}$ </tex-math></inline-formula>. The proper operation of the classifier is verified via a comparison with a software equivalent implementation and its performance is evaluated against existing circuit architectures. The proposed architecture is implemented in a TSMC 90-nm CMOS process and simulated using Cadence IC Suite for both schematic and layout design. Corner and Monte Carlo mismatch simulations of the schematic and the physical circuit (postlayout) were conducted to evaluate the effect of transistor mismatches and process voltage temperature (PVT) variations and to showcase a proposed systematic method for offsetting their effect.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 8","pages":"2172-2185"},"PeriodicalIF":2.8,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144705238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-03DOI: 10.1109/TVLSI.2025.3573924
Ishaan Sharma;Sumit J. Darak;Rohit Kumar
Multiarmed bandits (MABs) are online machine learning algorithms that aim to identify the optimal arm without prior statistical knowledge via the exploration-exploitation tradeoff. The performance metric, regret, and computational complexity of the MAB algorithms degrade with the increase in the number of arms, K. In applications such as wireless communication, radar systems, and sensor networks, K, i.e., the number of antennas, beams, bands, etc., is expected to be large. In this work, we consider focused exploration-based MAB, which outperforms conventional MAB for large K, and its mapping on various edge processors and multiprocessor system on a chip (MPSoC) via hardware-software co-design (HSCD) and fixed point (FP) analysis. The proposed architecture offers 67% reduction in average cumulative regret, 84% reduction in execution time on edge processor, 97% reduction in execution time using FPGA-based accelerator, and 10% savings in resources over state-of-the-art MABs for large $K=100$ .
{"title":"High-Speed Compute-Efficient Bandit Learning for Many Arms","authors":"Ishaan Sharma;Sumit J. Darak;Rohit Kumar","doi":"10.1109/TVLSI.2025.3573924","DOIUrl":"https://doi.org/10.1109/TVLSI.2025.3573924","url":null,"abstract":"Multiarmed bandits (MABs) are online machine learning algorithms that aim to identify the optimal arm without prior statistical knowledge via the exploration-exploitation tradeoff. The performance metric, regret, and computational complexity of the MAB algorithms degrade with the increase in the number of arms, <italic>K</i>. In applications such as wireless communication, radar systems, and sensor networks, <italic>K</i>, i.e., the number of antennas, beams, bands, etc., is expected to be large. In this work, we consider focused exploration-based MAB, which outperforms conventional MAB for large <italic>K</i>, and its mapping on various edge processors and multiprocessor system on a chip (MPSoC) via hardware-software co-design (HSCD) and fixed point (FP) analysis. The proposed architecture offers 67% reduction in average cumulative regret, 84% reduction in execution time on edge processor, 97% reduction in execution time using FPGA-based accelerator, and 10% savings in resources over state-of-the-art MABs for large <inline-formula> <tex-math>$K=100$ </tex-math></inline-formula>.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 7","pages":"2099-2103"},"PeriodicalIF":2.8,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144519437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-03DOI: 10.1109/TVLSI.2025.3573226
Isa Altoobaji;Ahmad Hassan;Mohamed Ali;Yves Audet;Ahmed Lakhssassi
In this article, a compact differential data transfer link architecture for isolated sensor interfaces (SIs) and immune to common mode transients (CMTs) is presented. The proposed architecture shows low latency supporting high-speed transmission with a low bit error rate (BER) in the presence of CMT noise for applications, such as data acquisition, biomedical equipment, and communication networks. In transportation applications, motors and actuators are subjected to harsh environmental conditions, e.g., lightning strikes and abnormal voltage operations. These conditions introduce noise and can cause damage to small electronics due to high-voltage power surges. To ensure human safety and circuitry protection, a data transfer system must be implemented between high-voltage and low-voltage domains. The proposed design has been simulated using Cadence tools, and a prototype has been manufactured in a 0.18-$mu $ m CMOS process. The fabricated prototype consumes an effective silicon area of $37.2times 10^{3}~mu $ m2 and can sustain a breakdown voltage of 710 Vrms. Experimental results show that the proposed solution achieves a CMT immunity (CMTI) of 2.5 kV/$mu $ s at a data rate of 480 Mb/s with a BER of $10^{-12}$ . The propagation delay is 3.9 ns with a 4 ps/°C variation rate over temperatures ranging from $- 31~^{circ }$ C to $100~^{circ }$ C. Under typical test conditions, the BER reaches $10^{-15}$ with a peak-to-peak data dependent jitter (DDJ) of 29.8 ps.
{"title":"A Compact High-Speed Capacitive Data Transfer Link With Common Mode Transient Rejection for Isolated Sensor Interfaces","authors":"Isa Altoobaji;Ahmad Hassan;Mohamed Ali;Yves Audet;Ahmed Lakhssassi","doi":"10.1109/TVLSI.2025.3573226","DOIUrl":"https://doi.org/10.1109/TVLSI.2025.3573226","url":null,"abstract":"In this article, a compact differential data transfer link architecture for isolated sensor interfaces (SIs) and immune to common mode transients (CMTs) is presented. The proposed architecture shows low latency supporting high-speed transmission with a low bit error rate (BER) in the presence of CMT noise for applications, such as data acquisition, biomedical equipment, and communication networks. In transportation applications, motors and actuators are subjected to harsh environmental conditions, e.g., lightning strikes and abnormal voltage operations. These conditions introduce noise and can cause damage to small electronics due to high-voltage power surges. To ensure human safety and circuitry protection, a data transfer system must be implemented between high-voltage and low-voltage domains. The proposed design has been simulated using Cadence tools, and a prototype has been manufactured in a 0.18-<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>m CMOS process. The fabricated prototype consumes an effective silicon area of <inline-formula> <tex-math>$37.2times 10^{3}~mu $ </tex-math></inline-formula>m<sup>2</sup> and can sustain a breakdown voltage of 710 V<sub>rms</sub>. Experimental results show that the proposed solution achieves a CMT immunity (CMTI) of 2.5 kV/<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>s at a data rate of 480 Mb/s with a BER of <inline-formula> <tex-math>$10^{-12}$ </tex-math></inline-formula>. The propagation delay is 3.9 ns with a 4 ps/°C variation rate over temperatures ranging from <inline-formula> <tex-math>$- 31~^{circ }$ </tex-math></inline-formula>C to <inline-formula> <tex-math>$100~^{circ }$ </tex-math></inline-formula>C. Under typical test conditions, the BER reaches <inline-formula> <tex-math>$10^{-15}$ </tex-math></inline-formula> with a peak-to-peak data dependent jitter (DDJ) of 29.8 ps.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 8","pages":"2163-2171"},"PeriodicalIF":2.8,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144705051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-02DOI: 10.1109/TVLSI.2025.3572517
Jiaxin Qing;Philip H. W. Leong;Kin-Hong Lee;Raymond W. Yeung
The network coding enhances performance in network communications and distributed storage by increasing throughput and robustness while reducing latency. Batched sparse (BATS) codes are a class of capacity-achieving network codes, but their practical applications are hindered by their structure, computational intensity, and power demands of finite field (FF) operations. Most literature focuses on algorithmic-level techniques to improve the coding efficiency. Optimization with an algorithm/hardware co-designing approach has long been neglected. Leveraging the unique structure of BATS codes, we first present cyclic-shift BATS (CS-BATS), a hardware-friendly variant. Next, we propose a simple but effective bounded-value (BV) generator, to reduce the size of a finite field multiplier by up to 70%. Finally, we report on a scalable and resource-efficient field-programmable gate array (FPGA)-based network coding accelerator that achieves a throughput of 27 Gb/s, a speedup of more than 300 over software.
{"title":"Toward High-Performance Network Coding: FPGA Acceleration With Bounded-Value Generators","authors":"Jiaxin Qing;Philip H. W. Leong;Kin-Hong Lee;Raymond W. Yeung","doi":"10.1109/TVLSI.2025.3572517","DOIUrl":"https://doi.org/10.1109/TVLSI.2025.3572517","url":null,"abstract":"The network coding enhances performance in network communications and distributed storage by increasing throughput and robustness while reducing latency. Batched sparse (BATS) codes are a class of capacity-achieving network codes, but their practical applications are hindered by their structure, computational intensity, and power demands of finite field (FF) operations. Most literature focuses on algorithmic-level techniques to improve the coding efficiency. Optimization with an algorithm/hardware co-designing approach has long been neglected. Leveraging the unique structure of BATS codes, we first present cyclic-shift BATS (CS-BATS), a hardware-friendly variant. Next, we propose a simple but effective bounded-value (BV) generator, to reduce the size of a finite field multiplier by up to 70%. Finally, we report on a scalable and resource-efficient field-programmable gate array (FPGA)-based network coding accelerator that achieves a throughput of 27 Gb/s, a speedup of more than 300 over software.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 8","pages":"2274-2287"},"PeriodicalIF":2.8,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A compact power-on-reset (POR) circuit with a configurable brown-out reset (BOR) function is presented. An integrated voltage reference (VR) circuit provides a constant bias voltage that facilitates voltage-triggered POR/BOR operation, reliably preventing POR signal generation when the ramping supply voltage (${V} _{text {DD}}$ ) level is too low. Moreover, the proposed POR circuit features a fast, configurable POR/BOR operation owing to an inverter-based trip point detector (TPD), which triggers the reset signal with a programmable trip point. The prototype POR circuit achieves a POR level higher than 752 mV with a maximum POR delay of $16.4~mu $ s at a 0.8–1.2-V ${V} _{text {DD}}$ , supporting a wide range of supply ramping time from $1~mu $ s to 1 s. In addition, the prototype detects brown-out events with a supply drop of 0.1–0.4 V, generating the BOR signal. Designed using a 28-nm CMOS process, the prototype has a compact active area of $995.3~mu $ m2 and a quiescent current of 162–974 nA at a 1-V ${V} _{text {DD}}$ .
{"title":"A Compact Power-on-Reset Circuit With Configurable Brown-Out Detection","authors":"Yoochang Kim;Jun-Eun Park;Kwanseo Park;Young-Ha Hwang","doi":"10.1109/TVLSI.2025.3561131","DOIUrl":"https://doi.org/10.1109/TVLSI.2025.3561131","url":null,"abstract":"A compact power-on-reset (POR) circuit with a configurable brown-out reset (BOR) function is presented. An integrated voltage reference (VR) circuit provides a constant bias voltage that facilitates voltage-triggered POR/BOR operation, reliably preventing POR signal generation when the ramping supply voltage (<inline-formula> <tex-math>${V} _{text {DD}}$ </tex-math></inline-formula>) level is too low. Moreover, the proposed POR circuit features a fast, configurable POR/BOR operation owing to an inverter-based trip point detector (TPD), which triggers the reset signal with a programmable trip point. The prototype POR circuit achieves a POR level higher than 752 mV with a maximum POR delay of <inline-formula> <tex-math>$16.4~mu $ </tex-math></inline-formula>s at a 0.8–1.2-V <inline-formula> <tex-math>${V} _{text {DD}}$ </tex-math></inline-formula>, supporting a wide range of supply ramping time from <inline-formula> <tex-math>$1~mu $ </tex-math></inline-formula>s to 1 s. In addition, the prototype detects brown-out events with a supply drop of 0.1–0.4 V, generating the BOR signal. Designed using a 28-nm CMOS process, the prototype has a compact active area of <inline-formula> <tex-math>$995.3~mu $ </tex-math></inline-formula>m<sup>2</sup> and a quiescent current of 162–974 nA at a 1-V <inline-formula> <tex-math>${V} _{text {DD}}$ </tex-math></inline-formula>.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 7","pages":"2074-2078"},"PeriodicalIF":2.8,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144519346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Z-transform is a fundamental and strong tool being widely utilized in signal processing and various other applications such as communications and networking. By analyzing the Z-transform of a signal, one can extract critical information about its stability, causality, frequency response, energy and power, and overall behavior of the signal. However, errors caused either by environmental changes or malicious injections in large-scale integration (VLSI) implementations can critically compromise the integrity and reliability of its output. Failure to detect such faults may result in unpredictable, erroneous, and misleading function analyses. Therefore, the ability to detect soft errors and faults before accepting the results is of paramount importance. In this article, we propose an efficient fault detection method that combines algorithmic-level checks with partial recomputation to identify both transient and permanent faults with a high error coverage rate across various injection scenarios. The AMD/Xilinx field-programmable gate array (FPGA) implementation of our design demonstrated only a modest increase in time and area overhead. To the best of our knowledge, fault detection for the Z-transform function has not been previously studied.
{"title":"Efficient Partial Recomputation-Based Fault Detection Approaches for Z-transform","authors":"Saeed Aghapour;Kasra Ahmadi;Mehran Mozaffari Kermani;Reza Azarderakhsh","doi":"10.1109/TVLSI.2025.3560154","DOIUrl":"https://doi.org/10.1109/TVLSI.2025.3560154","url":null,"abstract":"The Z-transform is a fundamental and strong tool being widely utilized in signal processing and various other applications such as communications and networking. By analyzing the Z-transform of a signal, one can extract critical information about its stability, causality, frequency response, energy and power, and overall behavior of the signal. However, errors caused either by environmental changes or malicious injections in large-scale integration (VLSI) implementations can critically compromise the integrity and reliability of its output. Failure to detect such faults may result in unpredictable, erroneous, and misleading function analyses. Therefore, the ability to detect soft errors and faults before accepting the results is of paramount importance. In this article, we propose an efficient fault detection method that combines algorithmic-level checks with partial recomputation to identify both transient and permanent faults with a high error coverage rate across various injection scenarios. The AMD/Xilinx field-programmable gate array (FPGA) implementation of our design demonstrated only a modest increase in time and area overhead. To the best of our knowledge, fault detection for the Z-transform function has not been previously studied.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 7","pages":"1983-1993"},"PeriodicalIF":2.8,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144581497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-29DOI: 10.1109/TVLSI.2025.3562015
Guan-Rong Chen;Kuen-Jong Lee
Integrated circuits (ICs) have become extremely complex nowadays. Therefore, multiple test standards could be employed to handle different testing scenarios. Unfortunately, this also leads to serious security problems since attackers can exploit the excellent controllability and observability of test standards to steal confidential information or disrupt the circuit’s functionality. This article proposes a universal sequential authentication scheme that is compatible with test standards employing the test access port controller (TAPC) defined in IEEE Std 1149.1. The main objective is to protect multiple TAPC-based test standards with a universal security module. In this scheme, only authorized test data can be updated to the target register to control the corresponding test standard, and only the response to authorized test data can be output. The key idea is to generate different authentication keys for different test data, and even with the same set of test data, if their input sequences are different, their authentication keys will also be different. Furthermore, we develop an irreversible obfuscation mechanism to generate fake output data to confuse attackers. Due to its irreversibility, the original correct output data cannot be deduced from the fake output data. Experimental results on a typical processor, i.e., SCR1, show that the proposed scheme causes no time overhead, and the area overhead is only 1.74%.
{"title":"A Universal Sequential Authentication Scheme for TAPC-Based Test Standards","authors":"Guan-Rong Chen;Kuen-Jong Lee","doi":"10.1109/TVLSI.2025.3562015","DOIUrl":"https://doi.org/10.1109/TVLSI.2025.3562015","url":null,"abstract":"Integrated circuits (ICs) have become extremely complex nowadays. Therefore, multiple test standards could be employed to handle different testing scenarios. Unfortunately, this also leads to serious security problems since attackers can exploit the excellent controllability and observability of test standards to steal confidential information or disrupt the circuit’s functionality. This article proposes a universal sequential authentication scheme that is compatible with test standards employing the test access port controller (TAPC) defined in IEEE Std 1149.1. The main objective is to protect multiple TAPC-based test standards with a universal security module. In this scheme, only authorized test data can be updated to the target register to control the corresponding test standard, and only the response to authorized test data can be output. The key idea is to generate different authentication keys for different test data, and even with the same set of test data, if their input sequences are different, their authentication keys will also be different. Furthermore, we develop an irreversible obfuscation mechanism to generate fake output data to confuse attackers. Due to its irreversibility, the original correct output data cannot be deduced from the fake output data. Experimental results on a typical processor, i.e., SCR1, show that the proposed scheme causes no time overhead, and the area overhead is only 1.74%.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 7","pages":"1972-1982"},"PeriodicalIF":2.8,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144519361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In fifth-generation (5G) communication systems, multiple input multiple output (MIMO) and orthogonal frequency-division multiplexing (OFDM) are two critical technologies. Fast Fourier transform (FFT), as the core processing steps of OFDM, directly affects the overall system performance. In this brief, we proposed a novel block-level pipelined architecture, which divides the FFT processor into three pipeline blocks: input, radix, and output. Each pipeline block can run in a different FFT simultaneously to achieve higher throughput. Specifically, to reduce the OFDM system-level latency of 5G applications, the FFT processor supports weighted overlap and add (WOLA) on the cyclic prefix and suffix of OFDM symbols. This architecture is implemented using TSMC 12-nm technology, with a processor die area of 0.89 mm2 and a power consumption of 568 mW at 1 GHz. The FFT processor can achieve a system-level throughput up to 2.66 GS/s.
{"title":"A Novel High-Throughput FFT Processor With a Block-Level Pipeline for 5G MIMO OFDM Systems","authors":"Meiyu Liu;Zhijun Wang;Hanqing Luo;Shengnan Lin;Liping Liang","doi":"10.1109/TVLSI.2025.3558947","DOIUrl":"https://doi.org/10.1109/TVLSI.2025.3558947","url":null,"abstract":"In fifth-generation (5G) communication systems, multiple input multiple output (MIMO) and orthogonal frequency-division multiplexing (OFDM) are two critical technologies. Fast Fourier transform (FFT), as the core processing steps of OFDM, directly affects the overall system performance. In this brief, we proposed a novel block-level pipelined architecture, which divides the FFT processor into three pipeline blocks: input, radix, and output. Each pipeline block can run in a different FFT simultaneously to achieve higher throughput. Specifically, to reduce the OFDM system-level latency of 5G applications, the FFT processor supports weighted overlap and add (WOLA) on the cyclic prefix and suffix of OFDM symbols. This architecture is implemented using TSMC 12-nm technology, with a processor die area of 0.89 mm<sup>2</sup> and a power consumption of 568 mW at 1 GHz. The FFT processor can achieve a system-level throughput up to 2.66 GS/s.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 7","pages":"2059-2063"},"PeriodicalIF":2.8,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144519345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}