Pub Date : 2024-09-13DOI: 10.1016/j.sna.2024.115903
Xuan Sun, Jingen Wu, Yiwei Xu, Jieqiang Gao, Bomin Lin, Guannan Yang, Bingfeng Ge, Zhongqiang Hu, Ming Liu
Magnetoelectric (ME) composites are promising for the development of high-performance magnetometers due to their high sensitivity, low cost, low power consumption, and small size. Enhancing the ME coefficient while reducing the background noise is an effective method to improve the performance of ME sensors, which remains challenging. In this work, we propose a method to reduce the equivalent magnetic noise by optimizing the electrode design and the magnetic annealing process in magnetoelectric quartz/Metglas composites. Compared with the non-optimized ME composites, the ME coefficient increases by 1.38 times while the background noise decreases by about 0.78 times, resulting in a LoD of 10 fT at resonance. Due to the high ME coefficient and low background noise, the equivalent magnetic noise from 20 kHz to 50 kHz was less than 6.10 pT/Hz1/2. The results show that proper annealing treatment of Metglas is beneficial for improving the soft magnetic properties. Meanwhile, the hollow electrode of quartz can reduce the equivalent capacitance and enhance the quality factor of the piezoelectric layer. This work demonstrates a feasible way to enhance the performance of ME magnetic field sensors.
磁电(ME)复合材料具有灵敏度高、成本低、功耗低和体积小等优点,因此在开发高性能磁强计方面大有可为。在提高 ME 系数的同时降低背景噪声是提高 ME 传感器性能的有效方法,但这仍然具有挑战性。在这项工作中,我们提出了一种通过优化磁电石英/金属玻璃复合材料的电极设计和磁退火工艺来降低等效磁噪声的方法。与未优化的 ME 复合材料相比,ME 系数增加了 1.38 倍,而背景噪声降低了约 0.78 倍,从而使共振时的 LoD 达到 10 fT。由于 ME 系数高、本底噪声低,从 20 kHz 到 50 kHz 的等效磁噪声小于 6.10 pT/Hz1/2。结果表明,适当的退火处理有利于提高 Metglas 的软磁特性。同时,石英空心电极可以降低等效电容,提高压电层的品质因数。这项研究为提高 ME 磁场传感器的性能提供了一种可行的方法。
{"title":"Reducing equivalent magnetic noise by electrode design and magnetic annealing in Quartz/Metglas magnetoelectric sensors","authors":"Xuan Sun, Jingen Wu, Yiwei Xu, Jieqiang Gao, Bomin Lin, Guannan Yang, Bingfeng Ge, Zhongqiang Hu, Ming Liu","doi":"10.1016/j.sna.2024.115903","DOIUrl":"10.1016/j.sna.2024.115903","url":null,"abstract":"<div><p>Magnetoelectric (ME) composites are promising for the development of high-performance magnetometers due to their high sensitivity, low cost, low power consumption, and small size. Enhancing the ME coefficient while reducing the background noise is an effective method to improve the performance of ME sensors, which remains challenging. In this work, we propose a method to reduce the equivalent magnetic noise by optimizing the electrode design and the magnetic annealing process in magnetoelectric quartz/Metglas composites. Compared with the non-optimized ME composites, the ME coefficient increases by 1.38 times while the background noise decreases by about 0.78 times, resulting in a LoD of 10 fT at resonance. Due to the high ME coefficient and low background noise, the equivalent magnetic noise from 20 kHz to 50 kHz was less than 6.10 pT/Hz<sup>1/2</sup>. The results show that proper annealing treatment of Metglas is beneficial for improving the soft magnetic properties. Meanwhile, the hollow electrode of quartz can reduce the equivalent capacitance and enhance the quality factor of the piezoelectric layer. This work demonstrates a feasible way to enhance the performance of ME magnetic field sensors.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work aims to investigate the detection performance of WS2 and its doped gas sensitive materials for carbon monoxide (CO), one of the most important characteristic gases of partial discharge in air switchgear.Its accurate monitoring can be an effective evaluation of the operating condition of air switchgear. Three gas-sensitive materials were synthesized using the hydrothermal method: WS2, Pt-WS2, and Au-WS2. The materials were characterized through XRD, SEM, and XPS, followed by an evaluation of their sensing performance for CO gas. The findings revealed that the gas sensitivity of WS2 was significantly enhanced through doping with Pt and Au. At a CO concentration of 10 ppm, the response sensitivity of the Pt-WS2 sensor reached 4.03, while that of the Au-WS2 sensor was measured at 2.68—both representing an increase by a factor of 3.52 compared to intrinsic WS2 sensors. Moreover, the response recovery time for the Au-WS2 sensor was found to be 20–30 s faster than that observed in Pt-WS2 sensors. The mechanisms underlying the enhancement in CO adsorption on WS2 due to Pt and Au doping were investigated based on density functional theory calculations encompassing band structure analysis, density of states assessment, adsorption distance measurement, and adsorption energy evaluation. This study posits that both Pt-WS2 and Au-WS2 can be used for the detection of partial discharge gas CO in air switchgear.
一氧化碳(CO)是空气开关设备中局部放电最重要的特征气体之一,准确监测一氧化碳可以有效评估空气开关设备的运行状况。采用水热法合成了三种气敏材料:水热法合成了三种气敏材料:WS2、Pt-WS2 和 Au-WS2。通过 XRD、SEM 和 XPS 对这些材料进行了表征,然后评估了它们对 CO 气体的传感性能。研究结果表明,通过掺杂铂和金,WS2 的气体灵敏度显著提高。在 CO 浓度为 10 ppm 时,铂-WS2 传感器的响应灵敏度达到 4.03,而金-WS2 传感器的响应灵敏度则为 2.68,两者都比固有的 WS2 传感器提高了 3.52 倍。此外,还发现 Au-WS2 传感器的响应恢复时间比 Pt-WS2 传感器快 20-30 秒。基于密度泛函理论计算,包括能带结构分析、状态密度评估、吸附距离测量和吸附能评估,研究了掺杂铂和金导致 WS2 对 CO 吸附增强的机制。本研究认为,Pt-WS2 和 Au-WS2 均可用于空气开关设备中局部放电气体 CO 的检测。
{"title":"Experimental and density functional theory study of the gas sensing property of Pt and Au doped WS2 to partial discharge gas CO in air switchgear","authors":"Yu Zhang , Weiquan Feng , Wenjun Hou , Wen Zeng , Qu Zhou","doi":"10.1016/j.sna.2024.115905","DOIUrl":"10.1016/j.sna.2024.115905","url":null,"abstract":"<div><p>This work aims to investigate the detection performance of WS<sub>2</sub> and its doped gas sensitive materials for carbon monoxide (CO), one of the most important characteristic gases of partial discharge in air switchgear.Its accurate monitoring can be an effective evaluation of the operating condition of air switchgear. Three gas-sensitive materials were synthesized using the hydrothermal method: WS<sub>2</sub>, Pt-WS<sub>2</sub>, and Au-WS<sub>2</sub>. The materials were characterized through XRD, SEM, and XPS, followed by an evaluation of their sensing performance for CO gas. The findings revealed that the gas sensitivity of WS<sub>2</sub> was significantly enhanced through doping with Pt and Au. At a CO concentration of 10 ppm, the response sensitivity of the Pt-WS<sub>2</sub> sensor reached 4.03, while that of the Au-WS<sub>2</sub> sensor was measured at 2.68—both representing an increase by a factor of 3.52 compared to intrinsic WS<sub>2</sub> sensors. Moreover, the response recovery time for the Au-WS<sub>2</sub> sensor was found to be 20–30 s faster than that observed in Pt-WS<sub>2</sub> sensors. The mechanisms underlying the enhancement in CO adsorption on WS<sub>2</sub> due to Pt and Au doping were investigated based on density functional theory calculations encompassing band structure analysis, density of states assessment, adsorption distance measurement, and adsorption energy evaluation. This study posits that both Pt-WS<sub>2</sub> and Au-WS<sub>2</sub> can be used for the detection of partial discharge gas CO in air switchgear.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1016/j.sna.2024.115900
Hong Zhang , Sheng Zou , Wei Quan , Xiyuan Chen
We report a non-destructive and in-situ measurement technique to infer the internal temperature inside a sealed cell of an atomic magnetometer, based on steady-state linewidth analysis. This approach exploits the relationship between the alkali vapor density and the steady-state linewidth of the magnetometer in the presence of an applied DC magnetic field, particularly when the spin polarization of the alkali metal is significantly low (). The atomic density inside the cell is a univariate nonlinear function of the cell temperature, enabling us to establish a model linking the magnetometer’s steady-state linewidth to the internal temperature of the cell. To validate the accuracy and feasibility of this method, we conducted a series of experiments over a wide temperature range, from 140 °C to 190 °C. Using the magnetometer’s steady-state linewidth as a key parameter, we successfully measured the actual temperature inside the cell. The test results were corrected to ensure precision and reliability, and comprehensive evaluations of measurement uncertainty were performed to quantify the confidence level in the temperature measurements. This novel determination method marks a significant advancement in atomic magnetometer temperature measurement, offering real-time and on-site monitoring capabilities within sealed cells.
我们报告了一种基于稳态线宽分析的非破坏性原位测量技术,用于推断原子磁强计密封单元的内部温度。这种方法利用了碱蒸气密度与外加直流磁场下磁力计稳态线宽之间的关系,尤其是当碱金属的自旋极化显著较低时(P≪1)。电池内部的原子密度是电池温度的单变量非线性函数,这使我们能够建立一个模型,将磁力计的稳态线宽与电池内部温度联系起来。为了验证这种方法的准确性和可行性,我们在 140 °C 至 190 °C 的宽温度范围内进行了一系列实验。利用磁强计的稳态线宽作为关键参数,我们成功测量了电池内部的实际温度。我们对测试结果进行了校正,以确保精度和可靠性,并对测量不确定性进行了全面评估,以量化温度测量的置信度。这种新颖的测定方法标志着原子磁强计温度测量的重大进步,为密封电池提供了实时和现场监测能力。
{"title":"Measuring internal temperature inside a sealed cell of an atomic magnetometer using steady-state linewidth analysis","authors":"Hong Zhang , Sheng Zou , Wei Quan , Xiyuan Chen","doi":"10.1016/j.sna.2024.115900","DOIUrl":"10.1016/j.sna.2024.115900","url":null,"abstract":"<div><p>We report a non-destructive and <em>in-situ</em> measurement technique to infer the internal temperature inside a sealed cell of an atomic magnetometer, based on steady-state linewidth analysis. This approach exploits the relationship between the alkali vapor density and the steady-state linewidth of the magnetometer in the presence of an applied DC magnetic field, particularly when the spin polarization of the alkali metal is significantly low (<span><math><mrow><mi>P</mi><mo>≪</mo><mn>1</mn></mrow></math></span>). The atomic density inside the cell is a univariate nonlinear function of the cell temperature, enabling us to establish a model linking the magnetometer’s steady-state linewidth to the internal temperature of the cell. To validate the accuracy and feasibility of this method, we conducted a series of experiments over a wide temperature range, from 140 °C to 190 °C. Using the magnetometer’s steady-state linewidth as a key parameter, we successfully measured the actual temperature inside the cell. The test results were corrected to ensure precision and reliability, and comprehensive evaluations of measurement uncertainty were performed to quantify the confidence level in the temperature measurements. This novel determination method marks a significant advancement in atomic magnetometer temperature measurement, offering real-time and on-site monitoring capabilities within sealed cells.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1016/j.sna.2024.115887
Rui Zhang , Jian Wang , Jilong Wang , Chengjie Du , Zhuanyong Zou , Jianhan Hong
In the field of health monitoring and electronic skin, flexible wearable sensors have attracted considerable research interest. However, preparing a flexible multifunctional sensor that simultaneously possesses a rapid response time, stability, reliability, high breathability, as well as high sensitivity remains a significant challenge. Herein, a flexible pressure-humidity dual-mode sensor based on nonwoven fabrics is developed in this study, using hydroentangled nonwoven fabric with graphene oxide/carbon nanotube composite as the sensing layer and polyester plain nonwoven fabric with carbon nanotube printed interdigitated electrodes as the electrode layer. The sensor exhibits high permeability (649.2 mm/s), high sensitivity (2.72 kPa−1), wide sensing range (0–220 kPa), fast response/recovery time (24.4 /73.3 ms), and low detection limit (2.79 Pa). In addition, the sensor exhibits excellent cyclic stability (15,000 cycles) and can detect both weak body movements (pulses, swallowing) as well as large deformational movements (joint movements). Furthermore, the sensing layer of the sensor responds quickly to different humidity levels, which can be used to monitor humidity in real time, and human breathing and speech can be monitored by placing it inside a mask. This high-performance flexible pressure-humidity dual-mode sensor shows promising potential for applications in health monitoring and respiratory monitoring.
{"title":"Dome structure nonwoven-based dual-mode pressure-humidity sensor: Enhancing sensitivity and breathability for human health monitoring","authors":"Rui Zhang , Jian Wang , Jilong Wang , Chengjie Du , Zhuanyong Zou , Jianhan Hong","doi":"10.1016/j.sna.2024.115887","DOIUrl":"10.1016/j.sna.2024.115887","url":null,"abstract":"<div><p>In the field of health monitoring and electronic skin, flexible wearable sensors have attracted considerable research interest. However, preparing a flexible multifunctional sensor that simultaneously possesses a rapid response time, stability, reliability, high breathability, as well as high sensitivity remains a significant challenge. Herein, a flexible pressure-humidity dual-mode sensor based on nonwoven fabrics is developed in this study, using hydroentangled nonwoven fabric with graphene oxide/carbon nanotube composite as the sensing layer and polyester plain nonwoven fabric with carbon nanotube printed interdigitated electrodes as the electrode layer. The sensor exhibits high permeability (649.2 mm/s), high sensitivity (2.72 kPa<sup>−1</sup>), wide sensing range (0–220 kPa), fast response/recovery time (24.4 /73.3 ms), and low detection limit (2.79 Pa). In addition, the sensor exhibits excellent cyclic stability (15,000 cycles) and can detect both weak body movements (pulses, swallowing) as well as large deformational movements (joint movements). Furthermore, the sensing layer of the sensor responds quickly to different humidity levels, which can be used to monitor humidity in real time, and human breathing and speech can be monitored by placing it inside a mask. This high-performance flexible pressure-humidity dual-mode sensor shows promising potential for applications in health monitoring and respiratory monitoring.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hierarchically oriented plasmonic nanostructures have attracted an advanced molecular sensing platform for multifaceted applications. In the present work, we have attempted to fabricate ultrasensitive and cost-effective pyramidal/nanowire hetero arrays, hosted with silver nanoparticles for the effective surface-enhanced Raman spectroscopy (SERS) assisted detection of toxic water contaminants. Three-dimensionally oriented pyramidal/nanowire hetero arrays with enhanced surface area were fabricated by combining wet etching and metal-assisted chemical etching techniques. The regulation of structural features was achieved by controlling the process parameters during fabrication. Particularly, the evolution of morphological properties of the hybrid sensor was investigated in terms of nanowire aspect ratio and further analyzed in terms of SERS properties. The hetero arrays exhibited significant enhancement in Raman signal for sensing organic pollutants. Moreover, these hetero arrays with a nanowire length of ∼1 µm exhibited the highest signal enhancement. Further, the excellent reproducibility and reusability characteristics were also demonstrated for the fabricated sensors. Different cationic and anionic organic pollutants were employed for efficacy studies which showed detection limits ranging from femtomolar to picomolar levels. Finally, the real-time sensing of organic contaminants such as aniline was also investigated from seawater with an estimated enhancement factor of 8 × 108, indicating that as-fabricated hetero arrays can perform as outstanding SERS sensors for environmental remediation applications.
{"title":"Real-time SERS sensing of highly toxic seawater contaminants using plasmonic silver assembled pyramidal/nanowire heterostructures","authors":"Abdel Rahman Allan , Soumya Columbus , Roqiya Belmerabet , Muhammed Irshad , Krithikadevi Ramachandran , Kais Daoudi , Mounir Gaidi","doi":"10.1016/j.sna.2024.115894","DOIUrl":"10.1016/j.sna.2024.115894","url":null,"abstract":"<div><p>Hierarchically oriented plasmonic nanostructures have attracted an advanced molecular sensing platform for multifaceted applications. In the present work, we have attempted to fabricate ultrasensitive and cost-effective pyramidal/nanowire hetero arrays, hosted with silver nanoparticles for the effective surface-enhanced Raman spectroscopy (SERS) assisted detection of toxic water contaminants. Three-dimensionally oriented pyramidal/nanowire hetero arrays with enhanced surface area were fabricated by combining wet etching and metal-assisted chemical etching techniques. The regulation of structural features was achieved by controlling the process parameters during fabrication. Particularly, the evolution of morphological properties of the hybrid sensor was investigated in terms of nanowire aspect ratio and further analyzed in terms of SERS properties. The hetero arrays exhibited significant enhancement in Raman signal for sensing organic pollutants. Moreover, these hetero arrays with a nanowire length of ∼1 µm exhibited the highest signal enhancement. Further, the excellent reproducibility and reusability characteristics were also demonstrated for the fabricated sensors. Different cationic and anionic organic pollutants were employed for efficacy studies which showed detection limits ranging from femtomolar to picomolar levels. Finally, the real-time sensing of organic contaminants such as aniline was also investigated from seawater with an estimated enhancement factor of 8 × 10<sup>8</sup>, indicating that as-fabricated hetero arrays can perform as outstanding SERS sensors for environmental remediation applications.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An important aspect of controlling the properties of liquids relates to their use in modern engines powered by composite materials. In this context, controlling the properties of industrial fluids containing micro- and nanoscale particles is essential. Understanding the temperature-dependent behavior of fluid density and elasticity is crucial for proper engine operation. Seven physical parameters of pure paraffin oil, paraffin oil with varying concentrations of activated coal nanoparticles or sorbitane monooleate (SPAN 80) were simultaneously determined using only BAW time delay measurement in the single experimental run. This technique relies on propagating LBAW through the test fluid and measuring the time delay and amplitude of these waves at different temperatures. By calculating temperature coefficients for velocity, density, time delay, and expansion using well-established formulas the physical properties of fluids under study were determined. The frequency of the LBAW used in the experiment was 13 MHz. The length of the liquid sample in the propagation direction of LBAW was ∼ 5 mm. The experiments were carried out within a temperature range of −20 °C to +90 °C. The volume of the test sample was around 1 milliliter. The comparison of the physical properties of different suspensions under these conditions allows us to demonstrate the dependence of the measured properties on the type and composition of the medium tested.
控制液体特性的一个重要方面与它们在由复合材料驱动的现代发动机中的应用有关。在这种情况下,控制含有微米级和纳米级颗粒的工业液体的特性至关重要。了解液体密度和弹性随温度变化的行为对发动机的正常运行至关重要。在一次实验中,仅使用 BAW 时延测量法同时测定了纯石蜡油、含有不同浓度活性煤纳米颗粒或单油酸山梨糖醇酐(SPAN 80)的石蜡油的七个物理参数。该技术依赖于在测试流体中传播低压声波,并测量这些波在不同温度下的时间延迟和振幅。通过使用成熟的公式计算速度、密度、时延和膨胀的温度系数,可以确定所研究流体的物理性质。实验中使用的 LBAW 频率为 13 MHz。液体样品在 LBAW 传播方向上的长度为 5 毫米。实验在 -20 °C 至 +90 °C 的温度范围内进行。测试样品的体积约为 1 毫升。通过比较这些条件下不同悬浮液的物理性质,我们可以证明所测得的物理性质与被测介质的类型和成分有关。
{"title":"Determination of acoustic properties of paraffin oil mixed with activated coal nanoparticles or SPAN80 using only BAW time delay measurement","authors":"Vladimir Anisimkin , Natalia Voronova , Elizaveta Shamsutdinova , Andrey Smirnov , Elizaveta Datsuk , Vadim Kashin , Vladimir Kolesov , Nina Filippova , Oleg Kotsyurbenko , Iren Kuznetsova","doi":"10.1016/j.sna.2024.115893","DOIUrl":"10.1016/j.sna.2024.115893","url":null,"abstract":"<div><p>An important aspect of controlling the properties of liquids relates to their use in modern engines powered by composite materials. In this context, controlling the properties of industrial fluids containing micro- and nanoscale particles is essential. Understanding the temperature-dependent behavior of fluid density and elasticity is crucial for proper engine operation. Seven physical parameters of pure paraffin oil, paraffin oil with varying concentrations of activated coal nanoparticles or sorbitane monooleate (SPAN 80) were simultaneously determined using only BAW time delay measurement in the single experimental run. This technique relies on propagating LBAW through the test fluid and measuring the time delay and amplitude of these waves at different temperatures. By calculating temperature coefficients for velocity, density, time delay, and expansion using well-established formulas the physical properties of fluids under study were determined. The frequency of the LBAW used in the experiment was 13 MHz. The length of the liquid sample in the propagation direction of LBAW was ∼ 5 mm. The experiments were carried out within a temperature range of −20 °C to +90 °C. The volume of the test sample was around 1 milliliter. The comparison of the physical properties of different suspensions under these conditions allows us to demonstrate the dependence of the measured properties on the type and composition of the medium tested.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1016/j.sna.2024.115889
Masoumeh Shavikloo, Asghar Esmaeili
The different phases of α-, β-, and γ-graphyne, which are new types of two-dimensional carbon allotropes, hold promise as potential candidates for designing substrate discs in piezoelectric nanogenerators. Accurate modeling of the bending rigidity and stretching properties as well as resonance frequencies of these materials is crucial for engineering applications like nano-resonator and nanogenerator systems. This step is imperative in designing and advancing future applications involving these structures. This study aims to create a hybrid atomistic-continuum model for modeling graphyne monolayers used as substrate discs in nanogenerators. The model integrates the benefits of both atomistic and continuum approaches. Based on the results, α-graphyne is the least mechanically stable, while γ-graphyne is the most stable. However, in terms of vibration frequency, α-graphyne has the highest frequency while γ-graphyne has the lowest. Therefore, β-graphyne, with moderate stability and resonance frequency, is recommended as the ideal choice for the substrate disc in piezoelectric nanogenerators. It can function within the Q-F frequency range (30–140 GHz) and induce deformation in the piezoelectric shim as well as generation voltage.
{"title":"Two-dimensional graphyne monolayers as substrate discs of piezoelectric nanogenerators: A hybrid atomistic-continuum model study","authors":"Masoumeh Shavikloo, Asghar Esmaeili","doi":"10.1016/j.sna.2024.115889","DOIUrl":"10.1016/j.sna.2024.115889","url":null,"abstract":"<div><p>The different phases of α-, β-, and γ-graphyne, which are new types of two-dimensional carbon allotropes, hold promise as potential candidates for designing substrate discs in piezoelectric nanogenerators. Accurate modeling of the bending rigidity and stretching properties as well as resonance frequencies of these materials is crucial for engineering applications like nano-resonator and nanogenerator systems. This step is imperative in designing and advancing future applications involving these structures. This study aims to create a hybrid atomistic-continuum model for modeling graphyne monolayers used as substrate discs in nanogenerators. The model integrates the benefits of both atomistic and continuum approaches. Based on the results, α-graphyne is the least mechanically stable, while γ-graphyne is the most stable. However, in terms of vibration frequency, α-graphyne has the highest frequency while γ-graphyne has the lowest. Therefore, β-graphyne, with moderate stability and resonance frequency, is recommended as the ideal choice for the substrate disc in piezoelectric nanogenerators. It can function within the Q-F frequency range (30–140 GHz) and induce deformation in the piezoelectric shim as well as generation voltage.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1016/j.sna.2024.115886
Jiří Maier , Pavel Ripka , Poki Chen
This work introduces an integrated fluxgate sensor fabricated using CMOS chip technology. The sensor uses a “racetrack” shape of the core. The material used for the core is VITROVAC 6025F, and the shape was laser-cut from 25 m thick foil. The coils are solenoids fabricated using metal layers of the chip and bonding wires. Sensing and excitation coils have 60 and 40 turns respectively. TSMC D35 technology was used for fabrication. The size of the core is 8 mm 1.75 mm. Dimensions of the chip are 8 mm 2.7 mm (21.6 mm).
The sensor was tested in open-loop operation using a sinewave excitation. Sensitivity increases with frequency up to 1.5 MHz, reaching 5000 V/T. This is a significantly higher value than what can be achieved using a flat pick-up coil (around 10 V/T). Fully saturating the core requires a 110 mA excitation current, leading to 300 mW power dissipation in the coil. The Core loss is 100 mW at 1 MHz excitation. The Noise at 1 Hz may be as low as depending on excitation signal parameters. The typical offset is below 1 T.
{"title":"CMOS-based micro-fluxgate with racetrack core and solenoid coils","authors":"Jiří Maier , Pavel Ripka , Poki Chen","doi":"10.1016/j.sna.2024.115886","DOIUrl":"10.1016/j.sna.2024.115886","url":null,"abstract":"<div><p>This work introduces an integrated fluxgate sensor fabricated using CMOS chip technology. The sensor uses a “racetrack” shape of the core. The material used for the core is VITROVAC 6025F, and the shape was laser-cut from 25 <span><math><mi>μ</mi></math></span>m thick foil. The coils are solenoids fabricated using metal layers of the chip and bonding wires. Sensing and excitation coils have 60 and 40 turns respectively. TSMC D35 technology was used for fabrication. The size of the core is 8 mm <span><math><mo>×</mo></math></span> 1.75 mm. Dimensions of the chip are 8 mm <span><math><mo>×</mo></math></span> 2.7 mm (21.6 mm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>).</p><p>The sensor was tested in open-loop operation using a sinewave excitation. Sensitivity increases with frequency up to 1.5 MHz, reaching 5000 V/T. This is a significantly higher value than what can be achieved using a flat pick-up coil (around 10 V/T). Fully saturating the core requires a 110 mA excitation current, leading to 300 mW power dissipation in the coil. The Core loss is 100 mW at 1 MHz excitation. The Noise at 1 Hz may be as low as <span><math><mrow><mn>2</mn><mspace></mspace><mstyle><mi>n</mi><mi>T</mi></mstyle><mo>/</mo><mstyle><msqrt><mrow><mi>H</mi></mrow></msqrt><mi>z</mi></mstyle></mrow></math></span> depending on excitation signal parameters. The typical offset is below 1 <span><math><mi>μ</mi></math></span>T.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.sna.2024.115868
Junning Zhang , Yan Wang , Peng Chen , Tunan Lv , Hongbin Yu
A quasi-static multi-degree-of-freedom piezoelectric MEMS micromirror with large mirror plate and high fill factor based on AlScN is presented. It consists of two individual components, namely the mirror plate and the actuator. They are fabricated separately and vertically assembled together to form the final combination. In current case, a square mirror plate with side length of 5 mm is used. The actuator is designed into a gimbal-less structure, which involves a central connection platform with a mounting hole and four groups of piezoelectric actuators that are connected to the platform's corners via serpentine springs. This configuration provides multi-degree-of-freedom driving capabilities, allowing tip-tilt-piston mirror movement. The piezoelectric actuator is composed of three-stage cantilever-type actuation units that are connected in series, and they are intentionally arranged into S-shape so as to be completely hidden beneath the mirror plate. Moreover, the driving performance is further improved by optimizing the electrode coverage region on each actuation unit. As a result, not only large displacement but also nearly 100 % fill factor as well as high optical utilization efficiency can be achieved. From experimental results, the as-fabricated MEMS micromirror demonstrates static mechanical tilt angles of approximately ±2.2° about two orthogonal axes and piston vertical movement of ±54.9 μm within ±50 VDC driving voltage range with excellent linearity. Given the large mirror size, high fill factor and multi-degree-of-freedom motion advantages, the proposed micromirror could be found application perspective in light field shaping, free space optical communication and projection lithography areas.
{"title":"AlScN-based quasi-static multi-degree-of-freedom piezoelectric MEMS micromirror with large mirror plate and high fill factor","authors":"Junning Zhang , Yan Wang , Peng Chen , Tunan Lv , Hongbin Yu","doi":"10.1016/j.sna.2024.115868","DOIUrl":"10.1016/j.sna.2024.115868","url":null,"abstract":"<div><p>A quasi-static multi-degree-of-freedom piezoelectric MEMS micromirror with large mirror plate and high fill factor based on AlScN is presented. It consists of two individual components, namely the mirror plate and the actuator. They are fabricated separately and vertically assembled together to form the final combination. In current case, a square mirror plate with side length of 5 mm is used. The actuator is designed into a gimbal-less structure, which involves a central connection platform with a mounting hole and four groups of piezoelectric actuators that are connected to the platform's corners via serpentine springs. This configuration provides multi-degree-of-freedom driving capabilities, allowing tip-tilt-piston mirror movement. The piezoelectric actuator is composed of three-stage cantilever-type actuation units that are connected in series, and they are intentionally arranged into S-shape so as to be completely hidden beneath the mirror plate. Moreover, the driving performance is further improved by optimizing the electrode coverage region on each actuation unit. As a result, not only large displacement but also nearly 100 % fill factor as well as high optical utilization efficiency can be achieved. From experimental results, the as-fabricated MEMS micromirror demonstrates static mechanical tilt angles of approximately ±2.2° about two orthogonal axes and piston vertical movement of ±54.9 μm within ±50 V<sub>DC</sub> driving voltage range with excellent linearity. Given the large mirror size, high fill factor and multi-degree-of-freedom motion advantages, the proposed micromirror could be found application perspective in light field shaping, free space optical communication and projection lithography areas.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.sna.2024.115902
M. Raghu Ramaiah, R.G. Athira, Kishore K. Madapu, K. Prabakar, S. Tripurasundari, Sandip K. Dhara
Understanding the mechanical and thermal properties of MoS2 multilayers is of importance for applications ranging from nano-mechanical structures to high-performance flexible electronics. The conventional methods such as micro-Raman spectroscopy, are often constrained by factors like probing laser beam induced heating and substrate interactions. In the present work, we demonstrate a novel method to estimate the Young’s modulus, strain and thermal expansion co-efficient of MoS2 multilayers using a bimaterial like micro-mechanical device made of MoS2 and SiO2. SiO2 microcantilevers (MC) were fabricated using bulk micromachining technique and MoS2 layers were grown on one side of the device by chemical vapor deposition method. Shift in resonance frequency due to the added MOS2 layers on MCs was used to estimate the Young’s modulus of layered MoS2. Similarly, growth induced curvature change of the bimaterial MCs was measured to estimate the interfacial stress between the MoS2 multilayers and the substrate. From the measured temperature induced curvature changes, thermal expansion co-efficient of layered MoS2 was estimated.
{"title":"Sensitive determination of mechanical and thermal properties of MoS2 multilayers using microcantilevers","authors":"M. Raghu Ramaiah, R.G. Athira, Kishore K. Madapu, K. Prabakar, S. Tripurasundari, Sandip K. Dhara","doi":"10.1016/j.sna.2024.115902","DOIUrl":"10.1016/j.sna.2024.115902","url":null,"abstract":"<div><p>Understanding the mechanical and thermal properties of MoS<sub>2</sub> multilayers is of importance for applications ranging from nano-mechanical structures to high-performance flexible electronics. The conventional methods such as micro-Raman spectroscopy, are often constrained by factors like probing laser beam induced heating and substrate interactions. In the present work, we demonstrate a novel method to estimate the Young’s modulus, strain and thermal expansion co-efficient of MoS<sub>2</sub> multilayers using a bimaterial like micro-mechanical device made of MoS<sub>2</sub> and SiO<sub>2</sub>. SiO<sub>2</sub> microcantilevers (MC) were fabricated using bulk micromachining technique and MoS<sub>2</sub> layers were grown on one side of the device by chemical vapor deposition method. Shift in resonance frequency due to the added MOS<sub>2</sub> layers on MCs was used to estimate the Young’s modulus of layered MoS<sub>2</sub>. Similarly, growth induced curvature change of the bimaterial MCs was measured to estimate the interfacial stress between the MoS<sub>2</sub> multilayers and the substrate. From the measured temperature induced curvature changes, thermal expansion co-efficient of layered MoS<sub>2</sub> was estimated.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}